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Existence of non-trivial complex unit neighborhoods

PABLO PINIELLA

ABSTRACT. First, we briefly mention the basic definitions and results on unit neighborhoods of zero. Next,
we show the existence of certain non-trivial complex unit neighborhoods of zero. We expose a generalization of
the construction method used on the mentioned particular case. Since this construction may not lead to a unit
neighborhood of zero, we develop some necessary conditions. Finally, we describe our heuristic use of Wolfram
Mathematica to prove the existence of non-trivial complex unit neighborhoods.

1. INTRODUCTION AND NOTATION

1.1. Notation. All rings will be considered to be non-zero, associative and unital, unless
otherwise explicitly stated. If X is a topological space and A is a subset of X , then int (A),
cl (A), and bd (A) will denote the topological interior, the topological closure, and the
topological boundary of A, respectively. Let R be a ring and A,B ⊂ R, then AB = {ab :
a ∈ A, b ∈ B} and A2 = AA. A absolute semi-value over a ring R is a non-negative
function | · | : R → R such as |ab| = |a||b|, |0| = 0 and |a + b| ≤ |a| + |b|. Given R
an absolute semi-valued ring, we denote the open ball, the closed ball and the sphere of
center x ∈ R and radius r > 0 as UR (x, r), BR (x, r) and SR (x, r) respectively. When x = 0
and r = 1, we will simply write UR, BR and SR respectively.

1.2. Introduction. Topological rings are still an unexplored structure in some aspects.
The classification of absolute-valued division real algebras started by A. Hurwitz, devel-
oped by A. A. Albert and finished by Urbanik and Wright [8] was an important motiva-
tion to the study of general topological rings. On 1969 the first exhaustive introduction
to topological rings [2] is published by Arnautov, Mikhalev and Glavatsky. Twenty years
later, Warner continues this foundational work publishing [10] and [11], which offer a
rich structural perspective of topological rings. Despite of this, there are still open re-
search lines on specific aspects of topological rings [1], [3], [5] and [9]. This article focuses
on studying certain subsets of topological rings called unit neighborhoods of zero. Let us
recall the concept of open units and closed units (introduced in [6]) upon which most of
our results in this paper rely.

Definition 1.1 (Garcia-Pacheco and Piniella, 2015; [6]). Let R be a topological ring.
• A regular open neighborhood U of 0 is said to be an open unit provided that U is

symmetric for the addition, idempotent for the multiplication, and 1 ∈ cl (U).
• A regular closed neighborhood B of 0 is said to be a closed unit provided that

int (B) is an open unit.

Recall that: A is regular open [closed] if int(cl(A)) = A [cl( int(A)) = A]; A is sym-
metric for the addition if A = −A; A is idempotent for the multiplication if A = A2.

Unit neighborhoods are an attempt to generalize the “ball” concept to general topolog-
ical rings. A good generalization is given by Warner on [10, Chapter 19], but it only can
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be applied to division rings. Thus, special interest is given to propositions that relate unit
neighborhoods to balls. In [6], real unit neighborhoods were fully characterized.

Theorem 1.1 (Garcia-Pacheco and Piniella, 2015; [6]). UR [BR] is the only non-trivial open
[closed] unit neighborhood of 0 in R, respectively.

Connection and boundedness was explored for absolute semi-valued rings through the
next Proposition.

Theorem 1.2 (Garcia-Pacheco and Piniella, 2015; [6]). Let R be an absolute semi-valued ring
such that |1| = 1, the open balls are connected and int (BR) = UR. Consider a non-trivial open
unit U of R. If U ∩ U (R) is dense in U , then U ⊆ UR and U is connected.

However, the classification of the open units and the closed units of C was not com-
plete. The following Theorem was proven.

Theorem 1.3 (Garcia-Pacheco and Piniella, 2015; [6]). UC [BC] is the only non-trivial open
[closed] unit neighborhood of 0 in C satisfying SC ⊂ cl(UC) [SC ⊂ BC].

One can notice that there is a misprint in [6], since the last hypothesis was not written
at all, although it was used implicitly in the last step of the proof. This Theorem is not
completely satisfactory, since it does not examine all unit neighborhoods, but a reduced
subset of them. Thus, we devote this paper to deepen our knowledge on non-trivial com-
plex unit neighborhoods.

2. CONSTRUCTION OF NON-TRIVIAL COMPLEX UNIT NEIGHBORHOODS

In order to construct our non-trivial examples, we need a previous Lemma.

Lemma 2.1. Let r > 0 and f : [−π, π] → R be defined as f(t) = 1− 2(1− r)

π

√
(π − |t|)|t| and

x, y ∈ [−π, π]. Then f verifies
(1) f(x) = f(−x)
(2) f(x− π) = f(x) if x ≥ 0
(3) f(x+ π) = f(x) if x ≤ 0

(4)
√
(π − |t|)|t| attains its maximum at ±π/2 and its minimum at 0 and ±π.

(5) f attains its minimum at ±π/2 and its maximum at 0 and ±π.
(6) If |x+ y| ≤ π, f(x+ y) ≥ f(x)f(y)
(7) If x+ y > π, f(x+ y − π) ≥ f(x)f(y)
(8) If x+ y < −π, f(x+ y + π) ≥ f(x)f(y)

Proof. (1) is immediate. For (2), notice that x+ y − π < 0. Then√
(π − |x+ y − π|)(|x+ y − π|) =

√
(x+ y)(π − (x+ y)) =

√
|x+ y|(π − |x+ y|)

which proves f(x + y − π) = f(x + y). (3) is a direct application of (2). (4) and (5) are
elementary real analysis exercises. In order to prove (6), we will first consider x, y ≥ 0.
We can compute

f(x+ y)− f(x)f(y) =

= 1− 2(1− r)

π

√
(π − (x+ y))(x+ y)−

−
(
1− 2(1− r)

π

√
(π − x)x

)(
1− 2(1− r)

π

√
(π − y)y

)
=

= 1− 2(1− r)

π

√
(π − (x+ y))(x+ y)− 1 +

2(1− r)

π

√
(π − x)x+



Existence of non-trivial complex unit neighborhoods 109

+
2(1− r)

π

√
(π − y)y −

(
2(1− r)

π

)2√
(π − x)x(π − y)y =

=

(
2(1− r)

π2

)
=A︷ ︸︸ ︷

π
√
(π − x)x+ π

√
(π − y)y +

=C︷ ︸︸ ︷
2r
√
(π − x)x|(π − y)y −

−

=B︷ ︸︸ ︷(
π
√

(π − (x+ y))(x+ y) + 2
√
(π − x)x(π − y|)y

)
Notice that if x = 0 or y = 0 (which, because of |x + y| ≤ π, is equivalent to y = π or

x = π) then f(x+ y)− f(x)f(y). Thus we can consider x, y > 0. It is clear that C > 0. We
are going to compute A2 and B2 to compare both quantities

A2 =
(
π
√
(π − x)x+ π

√
(π − y)y

)2
=

=

=A1︷ ︸︸ ︷
π2(π − x)x+ π2(π − y)y +

=A2︷ ︸︸ ︷
2π2
√
(π − x)x(π − y)y

B2 =
(
π
√
(π − (x+ y))(x+ y) + 2

√
(π − x)x(π − y)y

)2
=

=

=B1︷ ︸︸ ︷
π2(π − (x+ y))(x+ y) + 4(π − x)x(π − y)y +

+

=B2︷ ︸︸ ︷
4π
√
(π − (x+ y))(x+ y)(π − x)x(π − y)y

Notice that B1 can be expressed as

B1 = π2(π−(x+y))(x+y)+4(π−x)x(π−y)y = π2(π−x)x+π2y(π−y−2x)+4(π−x)x(π−y)y

Considering this and x, y > 0, we can calculate

A1 −B1 =������
π2(π − x)x+ π2(π− y)y−������

π2(π − x)x− π2y(π− y− 2x)− 4(π− x)x(π− y)y =

= π2(π − y)y − π2(π − y − 2x)y − 4(π − x)x(π − y)y = 2π2xy − 4(π − x)x(π − y)y

Now we can compute

A2 −B2 = (A1 −B1) + (A2 −B2) = 2π2
(√

(π − x)x(π − y)y + xy
)
−

−4
(
π
√
(π − (x+ y))(x+ y)(π − x)x(π − y)y + (π − x)x(π − y)y

)
=

= 2π2
(√

(π − x)x(π − y)y + xy
)
−

−4
√

(π − x)x(π − y)y
(
π
√

(π − (x+ y))(x+ y) +
√

(π − x)x(π − y)y
)

A2 −B2

2
√
(π − x)x(π − y)y

= π2

(
1 +

√
xy√

(π − x)(π − y)

)
−

−2
(
π
√
(π − (x+ y))(x+ y) +

√
(π − x)x(π − y)y

)
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From (4) we have π
2 ≥

√
(π − x)x. On one hand, π2 ≥ 2π

√
(π − (x+ y))(x+ y). On

the other,

π2

√
xy√

(π − x)(π − y)
≥ π

2

√
xy ≥

√
(π − x)x(π − y)y

This shows that A2 ≥ B2. Since A > 0, it implies A ≥ B, finishing the proof for x, y ≥ 0.
If x, y ≤ 0, one can obtain easily f(x+ y) = f ((−x) + (−y)) ≥ f(−x)f(−y) = f(x)f(y)

using (1) and the positive case.
If x ≥ 0, y ≤ 0. We distinguish two cases. If x+ y ≥ 0, then using (2) and the preivous

case, we get

f(x+ y) = f(x+ y − π) = f ((x− π) + y) ≥ f(x− π)f(y) = f(x)f(y)

If x+ y ≤ 0, using (3) instead of (2) we get

f(x+ y) = f(x+ y + π) = f (x+ (y + π)) ≥ f(x)f(y + π) = f(x)f(y)

which completes the proof of (6).
To prove (7), suppose x+y > π. Without loss of generality we can assume x > 0. Using

(2) we get
f(x+ y − π) = f ((x− π) + y) ≥ f(x− π)(y) = f(x)f(y)

Showing (8) is an analogous use of (3).
□

Now we can prove the main result of this paper.

Theorem 2.4. For every 0 < r < 1 there exists a non-trivial complex open unit neighborhood of
zero containing UC(0, r).

Proof. Define for every 0 < r < 1

f : [−π, π] → R f(t) = 1− 2(1− r)

π

√
(π − |t|)|t|

as in the previous Lemma. We define for every chosen r the following set

Ur = {z ∈ C : |z| < f(arg(z))}
Clearly 1 ∈ cl(Ur) because [0, 1) ⊂ Ur. Notice that arg(−z) = arg(z) − π if arg(z) > 0
and arg(−z) = arg(z) + π if arg(z) < 0. By Lemma 2.1 (2), (3) this implies f(arg(z)) =
f(arg(−z)). Since |z| = | − z|, it is direct that Ur = −Ur by its own definition. To prove
that Ur ⊂ U2

r , consider z ∈ Ur. Since Ur is open, we can find an open ball centered in z
and fully contained in Ur. This implies the existence of some ε > 0 such as (1 + ε)z ∈ Ur.
Since [0, 1) ⊂ Ur, one has

z = (1 + ε)z

(
1

1 + ε

)
⊂ U2

r

To show that Ur is regular open, first observe that cl(Ur) = Br := {z ∈ C : |z| ≤
f(arg(z))}. Indeed, every z with |z| = f(arg(z)) is an accumulation point of the open
segment joining 0 and z, which is clearly in Ur. This shows Br ⊂ cl(Ur). But Br is closed
since f is continuous and Br = f−1([0, 1]); so the reciprocal inclussion also holds. Also
notice that int(Br) = Ur, since if z ∈ Br and |z| = f(arg(z)), then (1+1/n)z /∈ Br for every
n ∈ N. Joining both identities we get int(cl(Ur)) = int(Br) = Ur proving Ur regularity.

Finally, to show that U2
r ⊂ Ur, consider z, z′ ∈ Ur. Then f(arg(zz′)) is equal to

f(arg(z) + arg(z′)) or f(arg(z) + arg(z′) − 2π) or f(arg(z) + arg(z′) + 2π) depending on
if arg(z) + arg(z′) ∈ [−π, π], if arg(z) + arg(z′) > π or if arg(z) + arg(z′) < π respectively.
Applying Lemma 2.1 (6), (7), (8) respectively and then (2) or (3) if necessary, it is obtained
that f(arg(zz′)) ≥ f(arg(z))f(arg(z′)) ≥ |z||z′| = |zz′| and thus zz′ ∈ Ur.
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□

Of course, a non-trivial closed unit can be constructed using this Ur.

Corollary 2.1. For every 0 < r < 1 there exists a non-trivial complex closed unit neighborhood
of zero containing BC(0, r).

Proof. Just consider cl(Ur), whose interior is Ur as proven in Theorem 2.4 and, conse-
quently, is a closed unit neighborhood of zero. □

3. GENERALIZED CONSTRUCTION AND NECESSARY CONDITIONS

We are interested in generalizing this set construction method using arbitrary functions
in order to construct more examples of closed unit neighborhoods different from those we
know. Consider F ∈ C1(0, π/2). We can define

f0(F, r, x) = 1− 1− r

F (π/2)
F (x)

which verifies f0(F, r, 0) = 1 and f0(F, r, π/2) = r. Notice that the function f(x) used in
Lemma 2.1 and Theorem 2.4 is equal to f0(F, r, x) using F (x) =

√
(π − |x|)|x|. However,

the domain of f0(F, r, ·) is smaller. This problem is easily solved expanding symmetri-
cally:

f(F, r, x) =

{
f(F, r, x) = f0(F, r, |x|) if x ∈ [−π/2, π/2]
f(F, r, x) = f0(F, r, π − |x|) if x ∈ [−π,−π/2] ∪ [π/2, π]

Using this f , one can define for each F ∈ C1(0, π/2) the set

UF,r = {z ∈ C : |z| < f(F, r, arg(z))}

Notice that the set Ur defined on Theorem 2.4 can be constructed this way choosing
F (x) =

√
(π − x)x. It is simple to see that UF,r is not an open unit neighborhood for

every F ∈ C1(0, π/2), as the following example shows.

Example 3.1. Choose F ∈ C1(0, π/2) such as f(F, r, π/4) >
√
r. By definition of UF,r,

there exists ε > 0 such as x = (
√
r + ε)eπ/4 ∈ UF,r. Then

|x2| = (
√
r + ε)2 = r + 2

√
rε+ ε2 > r = f(F, r, π/2) = f(F, r, arg(x2))

and thus x2 /∈ UF,r. Consequently, U2
F,r ̸⊂ UF,r and UF,r is not an open unit neighborhood

of zero.

We present necessary conditions which have to be impossed to F for UF,r to be an open
unit neighborhood of zero. The first demands F to be bounded by 1.

Proposition 3.1. Let F ∈ C1(0, π/2), 0 < r < 1. If there exists x ∈ [0, π/2] such as f(F, r, x) >
1, then UF,r is not an open unit neighborhood of zero.

Proof. In that case, there exists z ∈ UF,r such as |z| > 1. Lemma 1.2 makes UF,r = C,
which contradicts UF,r own definition. □

The next proposition conditions the behaviour of F next to 1 (and, by additive symme-
try, −1) in terms of its first derivative.

Proposition 3.2. Let F ∈ C1(0, π/2), 0 < r < 1. If f ′
+(F, r, 0) is finite then UF,r is not an open

unit neighborhood of zero.
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Proof. If f ′
+(F, r, 0) is finite, its rightside Taylor series can be written as

f(F, r, x) = 1 + f ′
+(F, r, 0)x+O+(x

2).

Notice also that, f ′
+(F, r, 0) ≤ 0; indeed, otherwise there would exist x ∈ UF,r such as

|x| > 1, which leads us to contradiction using the same argument on Proposition 3.1.
Consider z ∈ C such as z ∈ bd(UF,r), that is, |z| = f(F, r, arg(z)), and arg(z) > 0. Notice
that

lim
arg(z)→0+

|z2| = lim
arg(z)→0+

f(F, r, arg(z))2 = (1 + f ′
+(F, r, 0) arg(z))

2 =

= 1 + 2f ′
+(F, r, 0) arg(z) +

(
f ′
+(F, r, 0) arg(z)

)2
> 1 + 2f ′

+(F, r, 0) arg(z) =

= lim
arg(z)→0+

f(F, r, 2 arg(z)) = lim
arg(z)→0+

f(F, r, arg
(
z2
)
)

Thus, we can choose z ∈ bd(UF,r) enough close to 1 such as z2 /∈ UF,r. Consequently, we
can also find z′ ∈ UF,r satisfying (z′)2 /∈ UF,r. □

Notice that Proposition 3.2 still holds if we write f ′
−(F, r, 0) instead of f ′

+(F, r, 0), since
f(F, r, · ) is symmetric. This can be used to describe some characteristics of those UF,r

which in fact are open units, as the following Proposition shows.

Proposition 3.3. If UF,r is an open unit neighborhood of zero, then it is non-convex.

Proof. Since UF,r is an open neighborhood of zero, there exists ρ > 0 such as BC(0, ρ) ⊂
UF,r. In particular, ρi ∈ UF,r. Define s(x) = {z ∈ C : z = tx+ (1− t)ρi , t ∈ [0, 1]}. If UF,r

were convex, s(x) ⊂ UF,r for every x ∈ UF,r. Since (0, 1) ⊂ UF,r, we have
⋃

x∈(0,1)

s(x) ⊂

UF,r. But this would imply that there were an open segment between ρi/2 and 1 fully
contained in UF,r, which is in contradiction to Proposition 3.2. □

4. HEURISTIC APPROACH USING WOLFRAM MATHEMATICA

While proving Theorem 2.4, we made use of Wolfram Mathematica in order to obtain
an intuitive idea of the properties of the sets we were constructing. We show up the
procedures since they have been simple but useful for proving the Theorem. Our aim
was to develop a code which produces a random table of points of UF,r and represents all
their possible products, so we can get an intuitive graphic idea of U2

F,r. If the point cloud
of U2

F,r is not included in UF,r then F does not generate any multiplicatively idempotent
set and, consequently, any unit neighborhood of zero. Thus, we used the following code:

4.1. Code.
RandomTable [ numpoints , f ] := Module[{ i , randomarg , randommod} ,

randomarg = Table [ RandomReal[{− Pi , Pi } ] ,{ i , 1 , numpoints } ] ;
randommod =

Table [ RandomReal [{R , f [ randomarg [ [ i ] ] ]} ] ,{ i , 1 , numpoints } ] ;
Table [{randommod [ [ i ] ] Cos [ randomarg [ [ i ] ] ] ,

randommod [ [ i ] ] Sin [ randomarg [ [ i ] ] ]} ,{ i , 1 , numpoints}]
]

Al lProducts [ t a b l e ] := Module[{ i , j , products , numpoints} ,
products = {} ;
numpoints = Dimensions [ t a b l e ] [ [ 1 ] ] ;
For [ i = 1 , i <= numpoints , i ++ ,

For [ j = i , j <= numpoints , j ++ ,
products = J o i n [ products ,

{{
t a b l e [ [ i , 1 ] ] t a b l e [ [ j , 1 ] ] − t a b l e [ [ i , 2 ] ] t a b l e [ [ j , 2 ] ] ,
t a b l e [ [ i , 1 ] ] t a b l e [ [ j , 2 ] ] + t a b l e [ [ i , 2 ] ] t a b l e [ [ j , 1 ] ]
}}

] ;
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] ;
] ;

products
]

PlotMyTable [ t a b l e , f ] :=
Show[ Parametr i cP lo t [{Cos [ t ] , Sin [ t ]} , { t , −Pi , Pi } ,

P l o t S t y l e −> Black , ImageSize −> 600 ,
AspectRatio −> 1]

, Parametr i cP lo t [{ f [ t ] Cos [ t ] , f [ t ] Sin [ t ]} , { t , −Pi , Pi } ,
P l o t S t y l e −> Gray ]

, L i s t P l o t [ tab le , P l o t S t y l e −> {Orange , Blue }]
]

RandomCone[ numpoints , f , arg , width ] :=
Module[{ i , randomarg , randommod} ,

randomarg =
Table [ RandomReal [{ arg − width , arg + width } ] , { i , 1 , numpoints } ] ;

randommod =
Table [ RandomReal [{Min [ f [ arg − width ] , f [ arg + width ] ] ,

f [ randomarg [ [ i ] ] ] } ] , { i , 1 , numpoints } ] ;
Table [{randommod [ [ i ] ] Cos [ randomarg [ [ i ] ] ] ,

randommod [ [ i ] ] Sin [ randomarg [ [ i ] ] ]} , { i , 1 , numpoints}]
]

PlotMyCone [ cone , f ] :=
Show[ Parametr i cP lo t [{Cos [ t ] , Sin [ t ]} , { t , −Pi , Pi } ,

P l o t S t y l e −> Black , ImageSize −> 1000 ,
AspectRatio −> 1 , PlotRange −> {{0 , 1} , {0 , 1}}]

, Parametr i cP lo t [{ f [ t ] Cos [ t ] , f [ t ] Sin [ t ]} , { t , −Pi , Pi } ,
P l o t S t y l e −> Gray ]

, L i s t P l o t [ cone , P l o t S t y l e −> {Orange , Blue }]
]

RandomTable generates a table of numpoints complex numbers inside UF,r. Notice that
it forces the points to be outside UC(0, R) where R is the maximum radium we can choose
such as UC(0, R) ⊂ UF,r. This is made in order to get points closer to the boundary, which
are the relevant ones since BC(0, 1)UC(0, R) ⊂ UC(0, R) ⊂ UF,r.AllProducts receives a table
of complex numbers and gives the table of all possible products between them. For a
more localizated point cloud, we define RandomCone, which is a version of RandomTable
that concentrates the points inside an specified cone. This sacrifices global representation
but improves precision mantaining the number of points used (and thus, computation
time). PlotMyTable and PlotMyCone are just plotting functions.

4.2. Results. The set we pretended to investigate was Ur as defined on Theorem 2.4. We
chose r = 0.8 for our examples. We generated four different point clouds using initial
tables of 250, 500, 750 and 1000 points respectively:
Table [ PlotMyTable [ AllProducts [ RandomTable [250 i , f ] ] , f ]} , { i , 1 , 4}]

Blue corresponds to initial data while orange corresponds to the products. In order to
obtain localized information, we generated a cone with a 500 point initial table :
PlotMyCone [ AllProducts [RandomCone[ 5 0 0 , f , Pi /32 , Pi / 3 2 ] ] , f ]
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We concluded that Ur behaviour was very likely to satisfy multiplicative idempotency.
Since the algebraic manipulation required to prove Lemma 2.1 was cumbersome, this first
intuition was really helpful as it encouraged us to continue on our work.
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