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Normality degrees of finite groups

MARIUS TĂRNĂUCEANU

ABSTRACT. In this paper we introduce and study the concept of normality degree of a finite group G. This
quantity measures the probability of a random subgroup of G to be normal. Explicit formulas are obtained for
some particular classes of finite groups. Several limits of normality degrees are also computed.

1. INTRODUCTION

In the last years there has been a growing interest in the use of probability in finite
group theory. One of the most important aspects which have been studied is the proba-
bility that two elements of a finite group G commute. It is called the commutativity degree
of G, and has been investigated in many papers, as [3], [5]–[9] or [11]. Inspired by this
concept, in [18] we introduced a similar notion for the subgroups of G, called the subgroup
commutativity degree of G. This quantity is defined by

sd(G) =
1

|L(G)|2
∣∣{(H,K) ∈ L(G)2 | HK = KH}

∣∣ =
=

1

|L(G)|2
∣∣{(H,K) ∈ L(G)2 | HK ∈ L(G)}

∣∣
(where L(G) denotes the subgroup lattice of G) and it measures the probability that two
subgroups of G commute, or equivalently the probability that the product of two sub-
groups of G be a subgroup of G (recall also the natural generalization of sd(G), namely
the relative subgroup commutativity degree of a subgroup of G, introduced and studied in
[20]).

A remarkable modular sublattice of L(G) is the normal subgroup lattice N(G), which
consists of all normal subgroups of G. Note that for an arbitrary finite group G compu-
ting the number of subgroups, as well as the number of normal subgroups, is a difficult
work. These numbers are in general unknown, excepting for few particular classes of
finite groups.

In the following we introduce the quantity

ndeg(G) =
|N(G)|
|L(G)|

,

which will be called the normality degree of G. Clearly, it constitutes a significant pro-
babilistic aspect on subgroup lattices of finite groups, by measuring the probability of a
random subgroup of such a group to be normal. The normality degree is closely con-
nected to a special type of an action of a finite group on a lattice, introduced and studied
in [15]. Recall that, given a finite group G acting on a lattice (L,∧,∨), we say that L is a
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G-lattice if the following two equalities hold

g ◦ (l ∧ l′) = (g ◦ l) ∧ (g ◦ l′),
g ◦ (l ∨ l′) = (g ◦ l) ∨ (g ◦ l′),

for all g ∈ G and l, l′ ∈ L, that is the action ◦ of G on L is compatible with the binary
operations ∧ and ∨ of L. For a finite G-lattice L, the set FixG(L) = {l ∈ L | g ◦ l = l,∀ g ∈
G} forms a G-sublattice of L and the quantity

(∗) |FixG(L)|
|L|

measures the probability of an element of L to be fixed with respect to ◦. Moreover, if we
assume that both the initial element and the final element of L are contained in FixG(L),
then the map fL : L −→ L defined by fL(l) =

∧
g∈G

g ◦ l, for any l ∈ L, is isotone. Therefore

the set Fix(fL) = {l ∈ L | fL(l) = l} is also a G-sublattice of L, according to the well-
known fixed-point theorem of complete lattices. Again, a specific quantity associated to
L, namely

(∗∗) |Fix(fL)|
|L|

,

can be seen as a probabilistic aspect on L, more precisely it measures the probability of an
element of L to be a fixed point of fL. One of the most important examples of a G-lattice
is constituted by the subgroup lattice L(G) associated to G. In this case the action of G on
L(G) is defined by g ◦H = Hg , for all (g,H) ∈ G×L(G), and fL(G) maps every subgroup
H ∈ L(G) into its core in G. Then both G-sublattices FixG(L(G)) and Fix(fL(G)) of L(G)
will coincide with the normal subgroup lattice N(G). In other words, both quantities (∗)
and (∗∗) are equal to the normality degree ndeg(G) of G. Hence ndeg(G) measures the
probability of a random subgroup of G to be a fixed point of L(G) relative to the above
canonical action of G on L(G), and also to be a fixed point of the map fL(G).

All the previous remarks give a strong motivation to study the normality degree of
finite groups. In our paper a first step of this study is made.

The paper is organized as follows. Some basic properties and results on normality
degree are presented in Section 2. Section 3 deals with normality degrees for two special
classes of finite groups: semidirect products of finite cyclic groups and finite p-groups
possessing a cyclic maximal subgroup. An interesting density result of normality degree is
proved in Section 4. In the final section several conclusions and further research directions
are indicated.

Most of our notation is standard and will usually not be repeated here. Elementary
notions and results on lattices (respectively on groups) can be found in [2] (respectively
in [4] and [14]). For subgroup lattice concepts we refer the reader to [12], [15] and [16].

2. BASIC PROPERTIES OF NORMALITY DEGREE

Let G be a finite group. First of all, remark that the normality degree ndeg(G) satisfies
the following relation

0 < ndeg(G) ≤ 1.

Moreover, we have ndeg(G) = 1 if and only if all subgroups of G are normal, that is G
is a Dedekind group. As we have seen in [18], the normality degree and the subgroup
commutativity degree of G are connected by the inequality

(2.1) ndeg(G) ≤ sd(G).
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Clearly, this becomes an equality if and only if for every subgroup H of G the set C(H)
consisting of all subgroups of G which commute with H coincides with N(G). Since H
itself is contained in C(H), it must be normal and so G is a Dedekind group. Hence the
following result holds.

Proposition 2.1. Let G be a finite group. Then the following conditions are equivalent:
a) ndeg(G) = 1.
b) ndeg(G) = sd(G).
c) G is a Dedekind group.

Next, let S be a set of representatives for the conjugacy classes of subgroups of G with
at least two elements. Then

|L(G)| = |N(G)|+
∑
H∈S

(G : NG(H)),

which implies that

(2.2) ndeg(G) =
|N(G)|

|N(G)|+
∑
H∈S

(G : NG(H))

This equality can be used to calculate the normality degree of finite groups whose conju-
gacy classes of subgroups are completely determined. The simplest examples are consti-
tuted by the symmetric groups S3 and S4, for which one obtains

ndeg(S3) =
1

2
and ndeg(S4) =

2

15
.

In particular, if G is a finite p-group, (2) leads us to an inequality satisfied by ndeg(G),
namely

ndeg(G) ≤ |N(G)|
|N(G)|+ p |S|

.

In many situations computing the normality degree of a finite group is reduced to
computing the number of all its subgroups. One of them is constituted by finite groups
with few normal subgroups, as the symmetric groups.

Example 2.1. The following equality holds

ndeg(Sn) =
3

|L(Sn)|
, for all n ≥ 5.

Mention that we also have

ndeg(Sn × Sn) =
10

|L(Sn × Sn)|
, for all n ≥ 5,

and a formula for ndeg(Sk
n) which depends only on |L(Sk

n)| can be easily inferred, accord-
ing to [10].

In the following assume that G and G′ are two finite groups. It is obvious that if G ∼= G′,
then ndeg(G) = ndeg(G′). In particular, we infer that any two conjugate subgroups of a
finite group have the same normality degree. The above conclusion is not true in the case
when G and G′ are only lattice-isomorphic, as shows the next example.
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Example 2.2. Let G be the finite elementary abelian 3-group Zn
3 (where n ≥ 2) and G′

be a semidirect product of an elementary abelian normal subgroup A of order 3n−1 by
the group B ∼= Z2 which induces a nontrivial power automorphism on A. Then both G
and G′ are contained in the class P (n, 3) (see [12], page 49) and so they are L-isomorphic.
We have ndeg(G) = 1, because G is abelian. On the other hand, in Section 2 of [18] we
have proved that sd(G′) < 1. This implies that ndeg(G′) < 1, in view of (1). Hence
ndeg(G) ̸= ndeg(G′).

By a direct calculation we obtain

ndeg(S3 × Z2) =
7

16
̸= 1

2
= ndeg(S3)ndeg(Z2)

and therefore in general we don’t have ndeg(G × G′) = ndeg(G)ndeg(G′). Clearly, a
sufficient condition in order to this equality holds is

gcd(|G|, |G′|) = 1,

that is G and G′ are of coprime orders. This remark can be extended to an arbitrary finite
direct product.

Proposition 2.2. Let Gi, i = 1, 2, ..., k, be a family of finite groups having coprime orders. Then

ndeg(

k∏
i=1

Gi) =

k∏
i=1

ndeg(Gi).

The following immediate consequence of Proposition 2.2 shows that computing the
normality degree of a finite nilpotent group is reduced to finite p-groups.

Corollary 2.1. If G is a finite nilpotent group and Gi, i = 1, 2, ..., k, are the Sylow subgroups of
G, then

ndeg(G) =

k∏
i=1

ndeg(Gi).

3. NORMALITY DEGREES FOR SOME CLASSES OF FINITE GROUPS

In this section we determine explicitly the normality degree of several finite groups.
The most significant results are obtained for the class of finite dihedral groups and for the
class of finite p-groups possessing a cyclic maximal subgroup.

3.1. The normality degree of some semidirect products of finite groups. Let p be a
prime, n ≥ 2 be an integer such that p ∤ n and f : Zp −→ Aut(Zn) be a group homo-
morphism. Put k̂0 = f(1̄)(1̂) and suppose that k0 ̸= 1. Then we have gcd(k0, n) = 1
and

f(x̄)(ŷ) = kx0 ŷ, for any x̄ ∈ Zp, ŷ ∈ Zn.

Denote by G be the semidirect product of Zp and Zn with respect to f . Recall that the
operation of G is defined by

(x̄1, ŷ1) · (x̄2, ŷ2) = (x̄1 + x̄2, k
x2
0 ŷ1 + ŷ2), for all (x̄1, ŷ1), (x̄2, ŷ2) ∈ G.

It is well-known that the maps

σ1 : Zp −→ G, σ1(x̄) = (x̄, 0̂), for any x̄ ∈ Zp,

σ2 : Zn −→ G, σ2(ŷ) = (0̄, ŷ), for any ŷ ∈ Zn,
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are injective group homomorphisms. Moreover, if H = σ1(Zp) and K = σ2(Zn), then H
is a subgroup of G and K is a normal subgroup of G, which satisfy

G = HK, H ∩K = {(0̄, 0̂)}.

In the following our goal is to compute explicitly the normality degree of G. First of all,
we shall give a precise description of L(G) (for more details, see Section 3.2 of [15]). Let
G1 be a subgroup of G. Then | G1 | is a divisor of pn.

In the case when p ∤ |G1| we shall prove that G1 ⊆ K. Indeed, if we assume that
G1 ⊈ K, then we have K ⊂ G1K ⊆ G and so the index (G1K : K) of K in G1K is ≥ 2.
Since p = (G : K) = (G : G1K)(G1K : K) is prime, one obtains (G1K : K) = p and
(G : G1K) = 1, i.e. G1K = G. It results

G1/G1 ∩K ∼= G1K/K = G/K,

which shows that |G1/G1 ∩K| = p and therefore p | |G1|, a contradiction. Hence

(3.3) G1 ∈ L(K) = L(σ2(Zn)) = σ2(L(Zn)).

In the case when p | |G1| at least a subgroup of order p is contained in G1. Let {H1 =
H,H2, ...,Hnp

} be the set of all Sylow p-subgroups of G, where np = (G : NG(H)). By a
direct calculation, the normalizer NG(H) of H in G can be easily determined.

Lemma 3.1. The following equality holds

NG(H) = { (x̄, ŷ) ∈ G | x̄ ∈ Zp, ŷ∈ ⟨ n̂
d
⟩},

where d = gcd(k0 − 1, n).

Then np =
n

d
=

n

gcd(k0 − 1, n)
. For every i ∈ {1, 2, ..., np} there exists zi ∈ G (z1 = (0̄, 0̂))

such that Hi = Hzi . One obtains

G = Gzi = (HK)zi = HziKzi = HiK, i = 1, 2, ..., np .

Suppose that Hi ⊆ G1 for some i ∈ {1, 2, ..., np}. It results G1 = G1 ∩ G = G1 ∩ (HiK) =
Hi(G1 ∩K) and thus G1 is contained in the set

(3.4) A={Hziσ2(⟨
n̂

k
⟩)| k|n, i = 1, np}={(Hσ2(⟨

n̂

k
⟩))zi | k|n, i = 1, np}.

In order to determine the number of elements of A, we need to compute the normalizer in G of such
an element.

Lemma 3.2. If k is a divisor of n, then

NG(Hσ2(⟨
n̂

k
⟩)) = { (x̄, ŷ) ∈ G | x̄ ∈ Zp, ŷ ∈ ⟨ n̂

ε(k)
⟩},

where ε(k) = gcd(k(k0 − 1), n).

From Lemma 3.2 we easily infer that

(3.5) |A| =
∑
k|n

ε(k)

gcd(k0 − 1, n)
=

∑
k|n

gcd(k,
n

gcd(k0 − 1, n)
).

Now, by using the relations (3.3), (3.4) and (3.5), we are able to describe the subgroup structure of
G.
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Proposition 3.3. The subgroup lattice L(G) of the above semidirect product G is given by the
following equality:

L(G) = σ2(L(Zn)) ∪ A.

Moreover, the total number of subgroups of G is

|L(G)| = τ(n) +
∑
k|n

gcd(k,
n

gcd(k0 − 1, n)
),

where τ(n) denotes the number of all divisors of n.

Clearly, the normal subgroups of G are all subgroups contained in K and G itself, that
is

N(G) = σ2(L(Zn)) ∪ {G},
and therefore

|N(G)| = τ(n) + 1.

Hence we have proved the following theorem.

Theorem 3.1. The normality degree of the above semidirect product G is given by the following
equality:

(3.6) ndeg(G) =
τ(n) + 1

τ(n) +
∑
k|n

gcd(k,
n

gcd(k0 − 1, n)
)
.

Remark 3.1. Let r =
n

gcd(k0 − 1, n)
. Then 1 ≤ (k, r) ≤ k, r, for all divisors k of n. So, by

(3.6) we infer that ndeg(G) satisfies the following inequalities:

(3.7) ndeg(G) ≤ τ(n) + 1

2τ(n)
,

(3.8) ndeg(G) ≥ τ(n) + 1

τ(n) + σ(n)
,

(3.9) ndeg(G) ≥ τ(n) + 1

τ(n)(r + 1)
>

1

r + 1
.

Next, let us assume that p = 2 and k0 = n − 1. Then the group G studied above is the
dihedral group D2n. Recall that D2n is the symmetry group of a regular polygon with n
sides and it has the order 2n. The most convenient abstract description of D2n is obtained
by using its generators: a rotation x of order n and a reflection y of order 2. Under these
notations, we have

D2n = ⟨x, y | xn = y2 = 1, yxy = x−1⟩.
Since n is odd, it results gcd(k0 − 1, n) = gcd(n− 2, n) = 1 and so∑

k|n

gcd(k,
n

gcd(k0 − 1, n)
) =

∑
k|n

gcd(k, n) = σ(n),

where σ(n) denotes the sum of all divisors of n. Thus, (3.6) leads us to

(3.10) ndeg(D2n) =
τ(n) + 1

τ(n) + σ(n)
,

that is (3.8) becomes an equality for G = D2n with n odd.
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A similar formula can be also obtained for even positive integers n. In this case it is
well-known that we have

N(D2n) = L(⟨x⟩) ∪ {D2n, ⟨x2, y⟩, ⟨x2, xy⟩}

and therefore

(3.11) ndeg(D2n) =
τ(n) + 3

τ(n) + σ(n)

Hence (3.10) and (3.11) imply the following result.

Corollary 3.2. The normality degree of the dihedral group D2n is given by the following equality:

(3.12) ndeg(D2n) =


τ(n) + 1

τ(n) + σ(n)
, if n is odd

τ(n) + 3

τ(n) + σ(n)
, if n is even

Remark 3.2. A simple arithmetic exercise shows that τ(n) + 2 ≤ σ(n), for all odd posi-
tive integers n ̸= 1, and τ(n) + 6 ≤ σ(n), for all even positive integers n ̸= 2, 4. These
inequalities give us an upper bound for the normality degree of D2n, namely

ndeg(D2n) ≤
1

2
,

for all n ̸= 2, 4. Mention also that we have ndeg(D2n) =
1

2
if and only if n = 3, that is in

the class of finite dihedral groups only D6 (which is isomorphic to S3) has the normality

degree
1

2
.

In the end of this subsection, we note that the normality degrees of other semidirect
products of finite groups can be also computed. Such an example is constituted by ZM-
groups, that is finite groups with all Sylow subgroups cyclic. It is well-known (see [4], I)
that a ZM-group possesses a presentation of type

ZM(m,n, r) = ⟨a, b | am = bn = 1, b−1ab = ar⟩ ,

where the triple (m,n, r) satisfies the conditions

gcd(m,n) = gcd(m, r − 1) = 1 and rn ≡ 1 (mod m).

The subgroups of ZM(m,n, r) have been computed in [1]:

|L(ZM(m,n, r))| =
∑
m1|m

∑
n1|n

gcd(m1,
rn − 1

rn1 − 1
) ,

while the number of normal subgroups of ZM(m,n, r) has been determined in [21]:

|N(ZM(m,n, r))| =
∑
n1|n

τ(gcd(m, rn1 − 1)) .

In this way, one obtains

(3.13) ndeg(ZM(m,n, r)) =

∑
n1|n

τ(gcd(m, rn1 − 1))

∑
m1|m

∑
n1|n

gcd(m1,
rn − 1

rn1 − 1
)
.
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Finally, remark that, by taking n = 2 and r = m − 1 with m odd in (3.13), the previous
formula(3.10) is obtained. This is not a surprise, according to the group isomorphism
ZM(m, 2,m− 1) ∼= D2m.

3.2. The normality degree of finite p-groups possessing a cyclic maximal subgroup. Let
p be a prime, n ≥ 3 be an integer and denote by G the class consisting of all finite p-
groups of order pn having a maximal subgroup which is cyclic. Obviously, G contains
finite abelian p-groups of type Zp × Zpn−1 whose normality degree is 1, but some finite
nonabelian p-groups belong to G, too. They are exhaustively described in Theorem 4.1,
[14], II: a nonabelian group is contained in G if and only if it is isomorphic to

– M(pn) = ⟨x, y | xpn−1

= yp = 1, y−1xy = xpn−2+1⟩
when p is odd, or to one of the following groups

– M(2n) (n ≥ 4),
– the dihedral group D2n ,
– the generalized quaternion group

Q2n = ⟨x, y | x2n−1

= y4 = 1, yxy−1 = x2n−1−1⟩,

– the quasi-dihedral group

S2n = ⟨x, y | x2n−1

= y2 = 1, y−1xy = x2n−2−1⟩ (n ≥ 4)

when p = 2.

In the following the normality degrees of the above p-groups will be determined. We
recall first the explicit formulas for the total number of subgroups of these groups, found
in [18].

Lemma 3.3. The following equalities hold:

a) |L(M(pn))| = (1 + p)n+ 1− p ,
b) |L(D2n)| = 2n + n− 1 ,
c) |L(Q2n)| = 2n−1 + n− 1 ,
d) |L(S2n)| = 3 · 2n−2 + n− 1 .

In order to compute the normality degree of the nonabelian p-groups that belong to G, we need
to know the number of their normal subgroups. Our reasoning is founded on the following simple
remark: such a group G possesses a unique normal subgroup of order p, namely ⟨xq⟩ (where
q = pn−2 and x denotes a generator of a cyclic maximal subgroup of G). We infer that there exists
a bijection between the set of nontrivial normal subgroups of G and N(G/⟨xq⟩), that is

(3.14) |N(G)| = 1 + |N(G/⟨xq⟩)| .

For G = M(pn), the minimal normal subgroup ⟨xq⟩ is in fact the commutator subgroup
D(M(pn)) of M(pn) and we have

M(pn)/D(M(pn)) ∼= Zp × Zpn−2 .

Since Zp × Zpn−2 is abelian, the number of its normal subgroups coincides with the number of all
its subgroups. Put xn = |L(Zp × Zpn−2)| . This number can be easily determined by using the
following lemma, established in [17] (see also [19]).
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Lemma 3.4. For every 0 ≤ α ≤ α1 + α2, the number of all subgroups of order pα1+α2−α in the
finite abelian p-group Zpα1 × Zpα2 (α1 ≤ α2) is

pα+1 − 1

p− 1
, if 0 ≤ α ≤ α1

pα1+1 − 1

p− 1
, if α1 ≤ α ≤ α2

pα1+α2−α+1 − 1

p− 1
, if α2 ≤ α ≤ α1 + α2.

In particular, the total number of subgroups of Zpα1 × Zpα2 is

1

(p−1)2
[
(α2−α1+1)pα1+2−(α2−α1−1)pα1+1−(α1+α2+3)p+(α1+α2 + 1)

]
.

By taking α1 = 1 and α2 = n− 2, one obtains

xn =
1

(p−1)2
[
(n− 2)p3−(n− 4)p2−(n+ 2)p+n

]
= (1 + p)n− 2p .

So, (3.14) becomes
|N(M(pn))| = 1 + xn = (1 + p)n+ 1− 2p .

For every G ∈ {D2n , Q2n , S2n} the minimal normal subgroup ⟨xq⟩ coincides with the center
Z(G) of G and we have

G/Z(G) ∼= D2n−1 ,

therefore
|N(G)| = 1 + |N(D2n−1)|.

Let G = D2n−1 in the above equality and set yn = |N(D2n−1)|. Then the integer sequence
(yn)n∈N∗ satisfies the recurrence relation yn = 1+yn−1, which shows that yn = n+3, for any n ∈
N∗. Thus

|N(G)| = 1 + yn−1 = yn = n+ 3 ,

for all above 2-groups G. Hence we have proved the following result.

Lemma 3.5. The following equalities hold:
a) |N(M(pn))| = (1 + p)n+ 1− 2p ,
b) |N(G)| = n+ 3 , for all G ∈ {D2n , Q2n , S2n}.

Now, it is clear that Lemmas 3.3 and 3.5 imply the next theorem.

Theorem 3.2. The normality degrees of the nonabelian groups in the class G are given by the
following equalities:

1) ndeg(M(pn)) =
(1 + p)n+ 1− 2p

(1 + p)n+ 1− p
,

2) ndeg(D2n) =
n+ 3

2n + n− 1
,

3) ndeg(Q2n) =
n+ 3

2n−1 + n− 1
,

4) ndeg(S2n) =
n+ 3

3 · 2n−2 + n− 1
.
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Remark 3.3. The normality degree of the dihedral group D2n can also be directly com-
puted by using Corollary 3.2:

ndeg(D2n) =
τ(2n−1) + 3

τ(2n−1) + σ(2n−1)
=

n+ 3

2n + n− 1
.

The following limits are immediate from Theorem 3.2

Corollary 3.3. We have:
a) lim

n→∞
ndeg(M(pn)) = 1, for any fixed prime p.

b) lim
n→∞

ndeg(G) = 0, for all G ∈ {D2n , Q2n , S2n}.

We end this section by mentioning that the normality degree of any finite nilpotent
group whose Sylow subgroups belong to G can explicitly be calculated, in view of Corol-
lary 2.5.

4. A DENSITY RESULT OF NORMALITY DEGREE

As we have seen in Section 3, there are some sequences of finite groups (Gn)n∈N satisfy-
ing lim

n→∞
ndeg(Gn) ∈ {0, 1}. In this section our purpose is to extend this result by proving

that each x in the interval [0,1] is the limit of a certain sequence of normality degrees of
finite groups.

First of all, we shall prove the above result for rational numbers in [0,1].

Theorem 4.3. For every x ∈ [0, 1]∩Q there exists a sequence (Gn)n∈N of finite groups such that
lim

n→∞
ndeg(Gn) = x.

Proof. For x = 0 and x = 1 our statement is already verified in the previous section,
by taking Gn = D2n (or Gn = Q2n , or Gn = S2n ) and Gn = M(pn), respectively. Let
x ∈ (0, 1) ∩ Q. Then x =

a

b
, where a, b ∈ N∗ and a < b. Denote by (pn)n∈N the se-

quence of the prime numbers and choose the disjoint strictly increasing subsequences
(k1n), (k

2
n), ..., (k

b−a
n ) of N. We also consider Gi = M(pa+i+1

ki
n

), i = 1, 2, ..., b − a. Then the
normality degree of Gi is given by

ndeg(Gi) =
(a+ i− 1)pki

n
+ a+ i+ 2

(a+ i)pki
n
+ a+ i+ 2

and we have

lim
n→∞

ndeg(Gi) =
a+ i− 1

a+ i
,

for all i = 1, b− a. Let G =
∏b−a

i=1 Gi. From Corollary 2.5 it results

ndeg(G) =

b−a∏
i=1

ndeg(Gi).

Hence

lim
n→∞

ndeg(Gn) =

b−a∏
i=1

lim
n→∞

ndeg(Gi) =

b−a∏
i=1

a+ i− 1

a+ i
=

a

b
= x,

which completes our proof. □

Since the set [0, 1]∩Q is dense in [0,1], by Theorem 5.1 we infer the following corollary.
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Corollary 4.4. For every x ∈ [0, 1] there exists a sequence (Gn)n∈N of finite groups such that
lim
n→∞

ndeg(Gn) = x.

Let a, b ∈ N∗ with a < b. In general, there is no finite group G satisfying both equalities

|N(G)| = a and |L(G)| = b.

The above system has no solution G even in the particular case when b = a+1. In contrast
with this statement, for several values of a we are able to construct finite groups G such
that

ndeg(G) =
a

a+ 1
.

For example, we have ndeg(S3) =
1

2
and ndeg(M(54)) =

3

4
(more generally, a fraction

a

a+ 1
is the normality degree of a finite p-group of type M(pn) if and only if there is a

prime q such that q + 1 divides a + 3). Inspired by these examples, we came up with the
following conjecture.

Corollary 4.5. For every a ∈ N∗ there exists a finite group G such that ndeg(G) =
a

a+ 1
.

Finally, notice that it is natural to generalize Conjecture 5.3 in the following manner.

Conjecture 4.1. For every x ∈ (0, 1] ∩Q there exists a finite group G such that ndeg(G) = x.

5. CONCLUSIONS AND FURTHER RESEARCH

All our previous results show that the concept of normality degree introduced in this
paper can constitute a significant aspect of probabilistic finite group theory. It is clear that
the study started here can successfully be extended to other classes of finite groups. This
will surely be the subject of some further research.

Two interesting conjectures on normality degree have been formulated in Section 4.
Another open problems concerning this topic are the following:

Problem 5.1. Given a finite group G, a subgroup H of G and a normal subgroup N of
G, which is the connection between ndeg(G) and ndeg(H), respectively between ndeg(G)
and ndeg(G/N)?

Problem 5.2. Give explicit formulas for the normality degrees of other classes of finite
groups.

Problem 5.3. For a fixed a ∈ (0, 1), describe the structure of finite groups G satisfying

ndeg(G) = (≤, ≥) a.

Problem 5.4. Study the properties of the map ndeg from the class of finite groups to [0,1].
What can be said about two finite groups having the same normality degree?

Problem 5.5. As we have seen in Corollary 3.3, the following equalities hold

lim
n→∞

ndeg(D2n−1) = lim
n→∞

ndeg(Q2n−1) = lim
n→∞

ndeg(S2n−1) = 0.

Is this true for other ”natural” classes of finite groups?
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