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Isosceles triple convexity

LIPING YUAN1, TUDOR ZAMFIRESCU2,3 and YUE ZHANG1

ABSTRACT. A set S in Rd is called it-convex if, for any two distinct points in S, there exists a third point in
S, such that one of the three points is equidistant from the others.

In this paper we first investigate nondiscrete it-convex sets, then discuss about the it-convexity of the eleven
Archimedean tilings, and treat subsequently finite subsets of the square lattice. Finally, we obtain a lower bound
on the number of isosceles triples contained in an n-point it-convex set.

1. INTRODUCTION

Three points x, y, z ∈ Rd (always d ≥ 2) form an isosceles triple {x, y, z} if one of them
is equidistant from the others.

Let S ⊂ Rd. A pair of points x, y ∈ S is said to enjoy the it-property in S if there exists
a third point z ∈ S, such that {x, y, z} is an isosceles triple.

The set S is called isosceles triple convex, for short it-convex, if every pair of its points
enjoys the it-property in S.

The study of it-convexity, to which is devoted this paper, is embedded in a more gen-
eral theme. Let F be a family of sets in IRd. A set M ⊂ IRd is called F-convex if for any
pair of distinct points x, y ∈ M there is a set F ∈ F such that x, y ∈ F and F ⊂ M .

The second author proposed at the 1974 meeting on Convexity in Oberwolfach the
investigation of this very general kind of convexity. Usual convexity, affine linearity, arc-
wise connectedness, polygonal connectedness, are just some examples of F-convexity (for
suitably chosen families F).

Blind, Valette and the second author [1], and also Böröczky, Jr. [2], investigated the
rectangular convexity, Magazanik and Perles dealt with staircase connectedness [4], the
second author studied the right convexity [8], the first two authors generalized the latter
type of convexity and investigated the right triple convexity [7], [6].

For distinct x, y ∈ Rd, let xy denote the line-segment from x to y. Furthermore, let Hxy

be the hyperplane through the midpoint (x+ y)/2 of xy, orthogonal to xy, and Sxy be the
hypersphere of radius ∥x−y∥ centred at x. Put S′

xy = Sxy\{y}, and Wxy = Hxy∪S′
xy∪S′

yx.
Clearly, S ⊂ Rd is it-convex if and only if, for any two distinct points x, y ∈ S, S ∩

Wxy ̸= ∅.
For S ⊂ Rd, let diamS = supx,y∈S ∥x− y∥. The pair (x, y) ∈ S × S is called diametral, if

∥x− y∥ = diamS.
Let S ⊂ Rd. If there is a hyperplane H such that H ∩ S = ∅, but S meets both open

halfspaces determined by H , then S is said to be strictly separated by H .
Let A,B ⊂ IRd be compact and choose x ∈ IRd. Put

r(x,A) = max
y∈A

∥x− y∥, n(x,A) = min
y∈A

∥x− y∥.
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Then r(A) = minx r(x,A) is called the radius of A. Also,

h(A,B) = max{max
x∈A

n(x,B),max
y∈B

n(y,A)}

is called the Pompeiu-Hausdorff distance between A and B.

2. NONDISCRETE it-CONVEXITY

For every cardinal number α satisfying 3 ≤ α ≤ c, there is an it-convex set of cardinality
α. Indeed, consider a point x plus a set of cardinality α− 1 included in a circle around x.

Also, remark that every open set in IRd is it-convex.

Theorem 2.1. All sets in IRd which cannot be strictly separated by any hyperplane are it-convex.

Proof. Assume S ⊂ IRd cannot be strictly separated by any hyperplane. For any two
distinct points x, y ∈ S, consider the hyperplane Hxy . Clearly x and y are lying in the
distinct half-spaces determined by Hxy , so Hxy ∩ S ̸= ∅. Now, for any z ∈ Hxy ∩ S,
∥x− z∥ = ∥y − z∥ and {x, y, z} is an isosceles triple. □

Corollary 2.1. All connected sets in IRd are it-convex.

Now we study the it-convexity of sets with at least 2 connected components.

Theorem 2.2. Let S be a set with at least 2 components. If the union of any two components is
it-convex, then S is it-convex.

Proof. Take two distinct points x, y ∈ S. If x, y are in the same component, then by
Corollary 2.1, they enjoy the it-property. Otherwise, x, y are in distinct components, say
S1 and S2. Since S1 ∪ S2 is it-convex, x, y enjoy for this reason the it-property. □

Theorem 2.3. If the compact set K has two connected components A, B, and h(A,B) < r(A)/2,
then K is it-convex.

Proof. Take x ∈ B, y ∈ A. Let w ∈ A be closest to x.
If ∥x−w∥ ≤ ∥w − y∥, see Figure 1 (a), then A meets the hyperplane Hxy in some point

u, because A is connected. The triple {x, y, u} is isosceles.

�

��

�

�

�

�

�

�
�

�

(a) (b)

FIGURE 1. h(A,B) < r(A)/2.

If ∥x− w∥ > ∥w − y∥, as shown in Figure 1 (b), take z ∈ A farthest from y. We have

∥x− w∥ ≤ h(A,B) ≤ r(A)

2
≤ ∥y − z∥

2
.

Also,
∥x− y∥ ≤ ∥x− w∥+ ∥w − y∥ < 2∥x− w∥.

It follows that ∥x− y∥ < ∥y − z∥, and we find some v ∈ A ∩ Syx, as Syx separates in A the
point y from z. Now, {x, y, v} is an isosceles triple. □
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The continua A,B are called unseparable if, for any hyperplane H disjoint from A ∪ B,
one of the two open half-spaces determined by H includes A ∪B.

Clearly, if A,B are unseparable continua, then A∪B is it-convex. This extends straight-
forwardly as follows. If the continua A1, A2, ..., An are pairwise unseparable, then

⋃n
i=1 Ai

is it-convex. But the hypothesis here can be relaxed.

Theorem 2.4. Let A1, A2, ..., An be continua, and G be a tree with vertex set V (G) = {v1, ..., vn}.
Suppose for every edge (vi, vj) ∈ E(G), the sets Ai, Aj are unseparable. Then

⋃n
i=1 Ai is it-

convex.

Proof. Take, for every i, xi ∈ Ai. We have to show that, for any distinct i, j, there exists a
y ∈

⋃n
i=1 Ai such that {xi, xj , y} is an isosceles triple.

We have a (unique) path P in G from vi to vj . Consider the hyperplane Hxixj
and the

broken line Q ⊂ IRd obtained as union of all line-segments xmxn corresponding to edges
(vm, vn) of P . Since Q joins the points xi, xj lying on different sides of H , it must meet H .
Let now xmxn denote one of the line-segments of Q meeting H . Since (vm, vn) ∈ E(P ) ⊂
E(G), the sets Am, An are unseparable. Hence,

Hxixj
∩ (Am ∪An) ̸= ∅,

and xi, xj enjoy the it-property. □

A referee has asked the interesting question: “Is it easy to prove that most (in the Baire
sense) compact sets of IRd are it-convex?” In fact, it is indeed easy to prove the contrary:
In most compact sets there is no pair of distinct pairs of points (a, b), (c, d), such that ∥a − b∥ =
∥c− d∥. Consequently, most compact sets are not it-convex.

3. it-CONVEXITY OF ARCHIMEDEAN TILINGS

For a general overview of tilings, see Grünbaum and Shephard’s book [3]. A plane tiling
T is a countable family of closed sets T = {T1, T2, · · · } which cover the plane without gaps
or overlaps. And every closed set Ti ∈ T is called a tile of T . We consider a special case of
tilings in which each tile is a polygon. If the corners and sides of a polygon coincide with
the vertices and edges of the tiling, we call the tiling edge-to-edge. A so-called type of vertex
describes its neighbourhood. If, for example, in some cyclic order around a vertex there
are a triangle, then another triangle, then a square, next a third triangle, and last another
square, then its type is (32.4.3.4). We consider plane edge-to-edge tilings in which all tiles
are regular polygons, and all vertices are of the same type. Thus, the vertex type will be
defining our tiling.

There exist precisely eleven such tilings [3]. These are (36), (34.6), (33.42), (32.4.3.4),
(3.4.6.4), (3.6.3.6), (3.122), (44), (4.6.12), (4.82), and (63). They are called Archimedean
tilings.

We shall say that a tiling is it-convex if its vertex set is it-convex.
In this section, we investigate the it-convexity of all Archimedean tilings. We choose

the length of edges in all tilings to be 1.

Theorem 3.5. The Archimedean tilings (36), (44), (63), (3.6.3.6) are it-convex.

Proof. Let T denote the vertex set of the Archimedean tiling (36). For each x ∈ T , let fx be
a map from T to T formed by rotating T anticlockwise about x by an angle π

3 , see Figure 2
(a). Obviously, fx is a bijection from T to T , and fx(y) = y if and only if y = x. So for any
two distinct points x, y ∈ T , fx(y) ∈ T \ {x, y} satisfies ∥x− y∥ = ∥x− fx(y)∥. Therefore
T is it-convex.
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FIGURE 2. it-convexity of (36), (44), (63) and (3.6.3.6).

For the Archimedean tilings (44), (63), (3.6.3.6), we only need to define fx by rotating
the vertex sets about x by angles π

2 , 2π
3 , π, respectively (see Figure 2 (b)− (d)). □

Theorem 3.6. The Archimedean tiling (32.4.3.4) is it-convex.

Proof. It is clear that a line passing through the common edge of any two adjacent trian-
gular tiles is an axis of symmetry of the vertex set of the (32.4.3.4) tiling. Furthermore,
every vertex x is lying on precisely one axis of symmetry, ℓx (see Figure 3).
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FIGURE 3. it-convexity of (32.4.3.4).

For any two distinct vertices x, y, if ℓx ̸= ℓy , let y′ be the reflection image of y with
respect to ℓx. Then d(x, y) = d(x, y′), and {x, y, y′} is an isosceles triple.

If ℓx = ℓy , suppose they are horizontal. As the length of each edge is 1, the distance
between two consecutive vertices lying on ℓx is 1 or

√
3, which appear alternately.

If ∥x − y∥ is a multiple of 1 +
√
3, the tiling has the vertex 2y − x, and so (x, y) enjoys

the it-property.
If not, the vertical axis of symmetry Hxy is also an axis of symmetry for the whole tiling,

and meets its vertex set.
Consequently, the Archimedean tiling (32.4.3.4) is it-convex. □

Theorem 3.7. The Archimedean tiling (34.6) is it-convex.
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FIGURE 4. it-convexity of (34.6).

Proof. Let S denote the vertex set of the tiling (34.6) with side length 1, and C denote the
set of the centers of all hexagon tiles. Then C is the vertex set of a triangular tiling with
side length

√
7, and S ∪ C is the vertex set T of the triangular tiling (36) with side length

1. Clearly, S ∩ C = ∅.
Given x ∈ T , let fx be the map from the proof of Theorem 3.5. Then {f0

x , fx, f
2
x , f

3
x ,

f4
x , f

5
x} form a transformation group on T . For each y ∈ T \ {x}, the points fx(y), f2

x(y),
f3
x(y), f4

x(y), f5
x(y) lie in T and are the vertices of a regular hexagon centred at x.

Assume now that x, y ∈ S. If all points fx(y), f2
x(y), f3

x(y), f4
x(y), f5

x(y) are in C, we
have ffx(y)(f

2
x(y)) ∈ C, since C is the vertex set of a triangular tiling. But ffx(y)(f

2
x(y)) =

x, so we get x ∈ C, contradicting our choice of x. Hence, there is a point z ∈ {fx(y), f2
x(y),

f3
x(y), f

4
x(y), f

5
x(y)} ∩ S and ∥x− y∥ = ∥x− z∥. So (34.6) is it-convex. □

Despite the encouraging Theorems 3.5–3.7, not all Archimedian tilings are it-convex.

Theorem 3.8. The Archimedian tilings (4.82), (3.4.6.4), (33.42), (4.6.12), (3.122) are not it-
convex.

Proof. We only prove here the theorem for the tiling (4.82) (see Figure 5), the proof for the
other tilings being very similar (see Figure 6 (a)− (d)). We denote the vertex set of (4.82)
by V .

In order for V to be it-convex, the pair (x, y) from Figure 5 should enjoy the it-property,
that is, Wxy ∩ V ̸= ∅. The line Hxy does not meet V . We show that S′

xy ∩ V = ∅ too, which
will end the proof.
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FIGURE 5. Non-it-convexity of (4.82).

The points of V which are “candidates” for belonging to S′
xy are a, a′, b, b′, c, c′, d, d′, e,

e′, f , g from Figure 5, and other points symmetrical to them with respect to xy.
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We have ∥x− y∥ = 1 + 2
√
2, so ∥x− y∥2 = 9 + 4

√
2.

But
∥x− a∥2 = (1 +

3

2

√
2)2 + (1 +

1

2

√
2)2 = 7 + 4

√
2 < ∥x− y∥2,

∥x− b∥ < ∥x− a∥, as ∠xba =
π

2
,

∥x− b′∥2 = 11 + 6
√
2 > ∥x− y∥2, ∥x− c∥ = ∥x− u∥ < ∥x− a∥,

∥x− c′∥2 = 9 + 6
√
2 > ∥x− y∥2, ∥x− d′∥ > ∥x− c′∥,

∥x− d∥ = ∥x− a∥, ∥x− e∥ = ∥x− b∥,
∥x− e′∥2 = 9 + 6

√
2 > ∥x− y∥2, ∥x− a′∥ > ∥x− e′∥,

∥x− f∥ = ∥x− c′∥, ∥x− g∥ = 2 +
√
2 < ∥x− y∥.

Thus, all candidates fail, and V is not it-convex. □

��
��
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(c) (d)

FIGURE 6. Non-it-convexity of (3.4.6.4), (4.6.12), (33.42), (3.122).

4. it-CONVEXITY OF FINITE SUBSETS OF THE SQUARE LATTICE

We shall make use of the following well-known fact [5].

Lemma 4.1. For the planar square lattice Z2, lines with rational slope either contain infinitely
many lattice points, or contain no lattice points. A line

y =
m

n
x+

r

s

with m, n, r, s ∈ Z and gcd(m,n) = gcd(r, s) = 1, contains infinitely many lattice points if
and only if s | n.

Let xk,l denote the point with Cartesian coordinates (k, l) , where k, l ∈ Z.
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Lemma 4.2. If m+ k + n+ l ≡ 1 (mod 2), then Hxk,lxm,n
contains no lattice points.

Proof. Assume w.l.o.g. k = l = 0. Then m+ n ≡ 1 (mod 2). The equation of Hx0,0xm,n
is

y =
−m

n
x+

n2 +m2

2n
.

If n is even, then −m and n2 +m2 are odd. Let n = 2pa, where a is odd. The denom-
inators of the irreducible form of −m

n and n2+m2

2n are 2pb and 2p+1c respectively, where b

and c are odd. As (2p+1c) ∤ (2pb), by Lemma 4.1, Hx0,0xm,n
contains no lattice points.

If n is odd, then m is even, and n2 + m2 is odd. After reduction, the denominator of
−m
n is odd, but the denominator of n2+m2

2n is even. By Lemma 4.1, Hx0,0xm,n
contains no

lattice points. □

Lemma 4.3. Let S be a finite subset of Z2. If S has a diametral pair (x, y), where x = xk,l, y =
xm,n, such that the following conditions are satisfied
1)m+ k + n+ l ≡ 1 (mod 2),
2) no other diametral pair contains x or y,
then (x, y) does not enjoy the it-property in S, and therefore S is not it-convex.

Proof. By Condition 1) and Lemma 4.2, Hxy contains no lattice points. Due to Condition
2), for each z ∈ S \ {x, y}, we have ∥x − z∥ < ∥x − y∥, ∥y − z∥ < ∥x − y∥. Therefore
S ∩Wxy = ∅, which means that (x, y) does not enjoy the it-property in S, and hence S is
not it-convex. □

Corollary 4.1. Let x = xk,l, y = xm,n. Consider the set R ⊂ Z2 of all points lying in the
(possibly degenerate) rectangle with horizontal and vertical sides, admitting xy as a diagonal. If
m + k + n + l ≡ 1 (mod 2) and {x, y} ⊂ S ⊂ R, then (x, y) does not enjoy the it-property in
S, whence S is not it-convex.

Proof. The set S admits (x, y) as a diameter pair, and for this pair the conditions of Lemma
3 are satisfied. □

Let x, y be points of the square lattice, and P, Q be shortest paths from x to y in the
graph defined by the lattice. These paths, considered as arcs in IR2, form the boundary of
an open set U , the unique unbounded component of IR2 \ (P ∪Q).

All lattice points in IR2 \ U form a set that we call monotone. We investigate now the
it-convexity of monotone sets.

It is clear from the definition that both P, Q and the whole monotone set determined
by them lie in the rectangle (with horizontal and vertical sides) with diagonal xy, and
contain x, y, which are called endpoints of the set.

Thus, if x = xk,l, y = xm,n, we can suppose k = l = 0, m ≥ n ≥ 0. This will be assumed
from now on. Let T (m,n) be the family of all monotone sets with endpoints x0,0, xm,n,
and R(m,n) be the set of all lattice points lying in the rectangle (with horizontal and
vertical sides) having x0,0xm,n as a diagonal.

Lemma 4.4. For every monotone set T ∈ T (m,n), if m+n ≡ 1 (mod 2), then (x0,0, xm,n) does
not enjoy the it-property in T , and therefore T is not it-convex.

Proof. Since {x0,0, xm,n} ⊂ T ⊂ R(m,n), by Corollary 4.1, (x0,0, xm,n) does not enjoy the
it-property in T , and hence T is not it-convex. □

Theorem 4.9. There are precisely 8 pairwise non-congruent it-convex monotone sets in
⋃∞

m,n=0

T (m,n), namely one in T (2, 0), two in T (1, 1), three in T (2, 2), one in T (4, 4), and one in
T (5, 5) (see Figure 7).
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FIGURE 7. All the non-congruent it-convex monotone sets.

Proof. If m + n ≡ 1 (mod 2), for each T ∈ T (m,n), by Lemma 4.4, T is not it-convex. If
m + n ≡ 0 (mod 2), there are 4 cases to be considered. We look for those T ∈ T (m,n)
which are it-convex.

Case 1. n = 0.

(a) (b)

FIGURE 8. Monotone sets in T (m, 0).

Here m is even. T (m, 0) contains only one monotone set, R(m, 0). Obviously, R(2, 0),
shown in Figure 8 (a), is it-convex. For m ⩾ 4, we see that (x0,0, xm−1,0) does not enjoy
the it-property in R(m, 0).

Case 2. n = 1.
First suppose m > n = 1. In this case m is odd. For T ∈ T (m, 1), xm,0 or xm−1,1 must

be in T . As (x0,0, xm,0) does not enjoy the it-property in R(m, 1), we have xm,0 /∈ T and
xm−1,1 ∈ T . By Lemma 4.4, Wx0,0xm−1,1

∩ (T \ {xm,1}) = ∅. Since xm,1 /∈ Wx0,0xm−1,1
, too,

we get Wx0,0xm−1,1 ∩ T = ∅, and T is not it-convex.
If m = n = 1, there are precisely two non-congruent monotone sets in T (1, 1), as shown

in Figure 9, and they are both it-convex.

FIGURE 9. it-convex monotone sets in T (1, 1).

Case 3. n = 2.
Subcase 3.1. m > n = 2.
Now m is even. For T ∈ T (m, 2), xm,1 or xm−1,2 must be in T . Suppose xm−1,2 ∈ T .

Then (T \ {xm,0, xm,1, xm,2}) ∈ T (m− 1, 2). By Lemma 4.4,

Wx0,0xm−1,2
∩ T \ {xm,0, xm,1, xm,2} = ∅.

We also can verify that

(S′
x0,0xm−1,2

∪ S′
xm−1,2x0,0

) ∩ {xm,0, xm,1, xm,2} = ∅.

By Lemma 4.2, Hx0,0xm−1,2
contains no lattice points. Consequently,

Wx0,0xm−1,2 ∩ {xm,0, xm,1, xm,2} = ∅.
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Therefore Wx0,0xm−1,2
∩ T = ∅ and T is not it-convex. Hence, xm,1 ∈ T and (T \ {xm,2}) ∈

T (m, 1). By Lemma 4.4, Wx0,0xm,1
∩ (T \ {xm,2}) = ∅. Since xm,2 /∈ Wx0,0xm−1,2

, we have
T ∩Wx0,0xm−1,2 = ∅, and T is not it-convex.

Subcase 3.2. m = n = 2.

(a) (b) (c)

FIGURE 10. it-convex monotone sets in T (2, 2).

For T ∈ T (2, 2), x1,2 or x2,1 must be in T . If one of them, say x1,2, belongs to T , then
the it-property at (x0,0, x1,2) implies that the other, x2,1, is also in T . Symmetrically, x1,0

and x0,1 are both in T . Therefore T ⊃ S, where S is the set shown in Figure 10 (a). We can
easily verify that each T ∈ T (2, 2) including S is it-convex. See Figure 10.

Case 4. n ⩾ 3.
Subcase 4.1. m > n ⩾ 3.
For T ∈ T (m,n), xm,n−1 or xm−1,n must be in T . By a method similar to that used in

the proof of Subcase 3.1, we can verify that (x0,0, xm,n−1) does not enjoy the it-property
in T , hence xm,n−1 /∈ T , and xm−1,n ∈ T , which imply that (x0,0, xm−1,n) does not enjoy
the it-property in T .

Subcase 4.2. m = n = 3.

FIGURE 11. Monotone sets in T (3, 3).

We prove that there is no it-convex set in T (3, 3). Suppose T ∈ T (3, 3); as before,
x1,0, x0,1, x2,3, x3,2 ∈ T . We observe that the it-property is not satisfied at (x1,0, x1,3) in
R(3, 3), and at the other pairs symmetrical to it. This implies that T must be included in
the set S shown in Figure 11. But (x0,1, x3,2) does not enjoy the it-property in S, contra-
dicting the fact that T is it-convex.

Subcase 4.3. m = n = 4.

(a) (b)

FIGURE 12. Monotone sets in T (4, 4).

We can show that there is exactly one it-convex set S2 ∈ T (4, 4), shown in Figure 12 (b).
Of course, as before, x1,0, x0,1, x4,3, x3,4 ∈ T . Therefore x3,3 and x1,1 are also in T , which
implies that x2,3 or x3,2 must be in T , and x1,2 or x2,1 must be in T .
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If, say, x2,3 ∈ T , then x2,0 /∈ T because the it-property is not verified at (x2,0, x2,3)
in R(4, 4). Hence x4,0 /∈ T . The it-property at (x0,0, x2,3) implies that x3,2 must be in T .
Therefore, by symmetry, S1 ⊂ T ⊂ S2, where S1 and S2 are shown in Figure 12 (a) and (b),
respectively. The it-property of the pairs (x1,0, x2,3) and (x0,1, x3,2) implies that T = S2.
We can see that S2 is it-convex.

Subcase 4.4. m = n = 5.

(a) (b)

FIGURE 13. Monotone sets in T (5, 5).

We will prove that R(5, 5), shown in Figure 13 (a), is the only it-convex set in T (5, 5).
Again x1,0, x0,1, x1,1, x5,4, x4,5, x4,4 ∈ T .

If {x0,2, x2,0, x3,5, x5,3} ∩ T ̸= ∅, then T = R(5, 5). Indeed, if, say x3,5 ∈ T , the it-
property at (x1,0, x3,5) implies that x5,0 ∈ T , whence x5,3 ∈ T . Now the it-property at
(x0,1, x5,3), forces x0,5 ∈ T . Therefore T = R(5, 5). It is easy to verify that R(5, 5) is indeed
it-convex.

If {x0,2, x2,0, x3,5, x5,3} ∩ T = ∅, then T ⊂ S, the set S being shown in Figure 13 (b).
But (x1,0, x4,5) does not enjoy the it-property in S, contradicting the it-convexity of T .

Subcase 4.5. m = n ⩾ 6.
We prove that there is no it-convex set in T (n, n), if n ⩾ 6.
As before, x1,0, x0,1, x1,1, xn,n−1, xn−1,n, xn−1,n−1 ∈ T . We observe that the it-property

is not satisfied at (x1,0, xn−2,n) in R(n, n), and at the other pairs symmetrical to it. This
implies that T ⊂ S1, where S1 is shown in Figure 14 (a).

(a) (b)

FIGURE 14. Monotone sets in T (n, n) (n ⩾ 6).

If n ≡ 1(mod 2), we can verify that (x1,0, xn−1,n) does not enjoy the it-property in
S1, contradicting the fact that T is it-convex. Hence n ≡ 0(mod 2). Now, xn−1,n−2 or
xn−2,n−1 must be in T , and if one of them, say xn−1,n−2, is in T , then the it-property at
(x0,0, xn−1,n−2) implies that the other, xn−2,n−1, is also in T . Since (x0,1xn−1,n−3) does not
enjoy the it-property in S1, xn−1,n−3 /∈ T . Symmetrically, xn−3,n−1 /∈ T . Thus, T ⊂ S2,
where S2 is shown in Figure 14 (b). Unfortunately, (x1,0, xn−2,n−1) does not enjoy the
it-property in S2, contradicting the it-convexity of T . □

5. it-CONVEXITY OF OTHER DISCRETE POINT SETS

Are the vertex sets of all regular polygons it-convex?
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Theorem 5.10. The vertex set of a regular n-polygon is it-convex if and only if n ̸≡ 2 (mod 4).

Proof. Let Rn denote the vertex set of a regular n-polygon. We label the vertices in Rn as
x0, x1, · · · , xn−1, in counterclockwise direction.

Suppose n ≡ 0, 1, 3 (mod 4). For any xi, xj ∈ Rn (i < j), if j − i ̸= n
2 , let k = 2j −

i (mod n). Then ∥xi−xj∥ = ∥xk−xj∥. If j−i = n
2 , let k = i+ n

4 . Then ∥xi−xk∥ = ∥xk−xj∥.
So, xi and xj enjoy the it-property, and Rn is it-convex.

If n ≡ 2 (mod4), it is clear that Wx0xn/2
∩Rn = ∅, so Rn is not it-convex. □

Also the vertex sets of the five Platonic polyhedra behave differently. While the vertex
sets of the regular tetrahedron and regular octahedron are it-convex, those of the cube,
regular dodecahedron and regular icosahedron are not.

Let S = {x1, x2, · · · , xn} ⊂ IRd. A matrix A(S) = [aijk]n×n×n is called the it-trimatrix
of S in case aijk = 1 if and only if {xi, xj , xk} form an isosceles triple, otherwise aijk = 0.
Particularly, aijk = 0, when at least two of i, j, k are equal.

Thus, S = {x1, x2, · · · , xn} is it-convex if and only if for any distinct i, j ∈ {1, 2, · · · , n},
there is a k such that, in A(S), aijk ̸= 0.

Let A(S) = [aijk]n×n×n be the it-trimatrix of S = {x1, x2, · · · , xn}. The matrix B(S) =

[bij ]n×n is called the it-matrix of S, if bij =
n∑

k=1

aijk.

Obviously, S = {x1, x2, · · · , xn} is it-convex if and only if it is non-zero outside the
main diagonal.

An n-point it-convex set is called poor if the number of isosceles triples in it is minimal
among all n-point it-convex sets. The number of isosceles triples in a poor n-point it-
convex set is denoted by N(n).

Theorem 5.11. N(n) ⩾
⌈
n(n−1)

6

⌉
, when n is odd; N(n) ⩾

⌈
n(n−1)

6

⌉
+ 1, when n is even.

Proof. Let S = {x1, x2, · · · , xn} be it-convex, with it-matrix B(S) = [bij ]n×n. Thus,
for i ̸= j, bij ⩾ 1. Hence,

∑
i,j

bij ⩾ n(n − 1). For every isosceles triple {xi, xj , xk}, we

have aijk = aikj = ajik = ajki = akij = akji = 1. Thus, the contribution of each
isosceles triple to bij , bji, bik, bki, bjk, bkj is 1, and therefore its contribution to

∑
i,j

bij is 6.

Hence, the number of isosceles triples in S is not less than
⌈
n(n−1)

6

⌉
, which means that

N(n) ⩾
⌈
n(n−1)

6

⌉
.

Now, let n be even, and put m =
⌈
n(n−1)

6

⌉
, r = 6m− n(n− 1). As 6m and n(n− 1) are

even, r = 0, 2, or 4. To show that N(n) > m, assume, on the contrary, N(n) = m.
Since for each isosceles triple {xi, xj , xk}, its contribution to bij , bji, bik, bki, bjk, bkj is 1,

the contribution to
n∑

l=1

bil,
n∑

l=1

bjl,
n∑

l=1

bkl is 2. Hence, for every i ∈ {1, 2, · · · , n},
n∑

j=1

bij is

even.
If r = 0, then for any distinct i, j ∈ {1, 2, · · · , n}, bij = 1. So, for every i,

∑n
j=1 bij =

n− 1 is even, and a contradiction is obtained.
If r = 2, then the number of pairs (i, j) satisfying bij > 1 is at most 2. By the symmetry

of B(S), this number of pairs is exactly 2. Suppose they are (i0, j0), (j0, i0), so bi0j0 =

bj0i0 = 2. As n ⩾ 4, there exists an i ∈ {1, 2, · · · , n} \ {i0, j0}, such that
n∑

j=1

bij = n − 1,

leading again to a contradiction.
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If r = 4, we have n ⩾ 8. Now, for any distinct i, j ∈ {1, 2, · · · , n}, the number of pairs
(i, j) that satisfy bij > 1 is 4. Let the 4 pairs be (i1, j1), (j1, i1), (i2, j2), (j2, i2). As n ⩾ 8,

for some i,
n∑

j=1

bij = n− 1, a contradiction.

Hence N(n) ⩾
⌈
n(n−1)

6

⌉
+ 1. □

We exhibit several poor it-convex sets to prove our last theorem.

Theorem 5.12. N(3) = 1, N(4) = 3, N(5) = 4, N(6) = 6.
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FIGURE 15. Examples of poor n-point it-convex sets for 3 ≤ n ≤ 6.

Proof. N(3) = 1, because there is just one triple.
Let S(4) = {x1, x2, x3, x4}, where x1 = (0, 4), x2 = (0, 0), x3 = (4, 0), x4 = (

√
7 +

3,
√
7 + 1). In this case of an obviously it-convex 4-point set, all 4 triples are isosceles but

one, {x1, x2, x4}. By Theorem 5.11, N(4) ⩾ 3. Consequently, N(4) = 3, see Figure 15.
Let S(5) = {x1, x2, x3, x4, x5}, where x1 = (0, 6.5), x2 = (0, 0), x3 = (6.5, 0), x4 =

(−2.5,−3), x5 = (2.5,−3). The it-matrix of S(5) is
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 3
1 1 1 3 0

 ,

which shows that S(5) is an it-convex 5-point set with 24/6 = 4 isosceles triples. Combin-
ing this with Theorem 5.11, we get N(5) = 4.

Let S(6) = {x1, x2, x3, x4, x5, x6}, where x1 = (0, 2), x2 = (0, 0), x3 = (2, 0), x4 =

(−3,
√
15− 4), x5 = (3,

√
15− 4), x6 = (

√
15− 2, 1). Then S(6) has the it-matrix

0 2 1 1 1 1
2 0 1 1 1 1
1 1 0 1 1 2
1 1 1 0 2 1
1 1 1 2 0 1
1 1 2 1 1 0

 .

Clearly S(6) is an it-convex set containing 36/6 = 6 isosceles triples. Again by Theorem
5.11, we have N(6) = 6. □

Theorem 5.12 shows that the bounds in Theorem 5.11 are best possible for n ⩽ 6. This
motivates us to end the paper with the following.

Open problem. Are the inequalities of Theorem 5.11 in fact equalities?
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As pointed out by a referee, a planar version of this open problem would also be of
interest.
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