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Extending the applicability of Newton’s method using
Wang’s–Smale’s α–theory

IOANNIS K. ARGYROS and SANTHOSH GEORGE

ABSTRACT. We improve semilocal convergence results for Newton’s method by defining a more precise
domain where the Newton iterate lies than in earlier studies using the Smale’s α– theory. These improvements
are obtained under the same computational cost. Numerical examples are also presented in this study to show
that the earlier results cannot apply but the new results can apply to solve equations.

1. INTRODUCTION

Let B1, B2 be Banach spaces and L(B1, B2) be the space of all bounded linear operators
from B1 to B2. Throughout this paper U(x, r) and Ū(x, r) stand, respectively for the open
and closed balls in B1 with center x and radius r > 0. In this study we are concerned with
the problem of approximating a locally unique solution x∗ of equation

F (x) = 0,

where F is a Fréchet-differentiable operator defined on a convex subset Ω of B1.
Newton’s method defined by

(1.1) xn+1 = xn − F ′(xn)
−1 F (xn) for each n = 0, 1, 2, . . . ,

where x0 is an initial point is undoubtedly the most popular iterative process for gener-
ating a sequence {xn} approximating x∗. Here, F ′(x) denotes the Fréchet-derivative of F
for each x ∈ Ω.

In this paper we extend the applicability of Newton’s method under the γ-condition
by introducing the notion of the center γ0-condition (to be precised in Definition 2.5) for
some γ0 ≤ γ. Moreover, we define a more precise domain where the iterates lie. This way
we obtain tighter upper bounds on the norms of ∥ F ′(x)−1 F ′(x0) ∥ for each x ∈ U(x0, R)
(see (2.7) and (2.8)) leading to weaker sufficient convergence conditions and a tighter con-
vergence analysis than in earlier studies such as [5, 9, 10]. The approach of introduc-
ing center-Lipschitz condition has already been fruitful for expanding the applicability of
Newton’s method under the Kantorovich-type theory [2, 3, 7].

Let γ > 0 be a parameter x0 ∈ B1 and Ω ⊆ B1. Wang in his work [10] on approximate
zeros of Smale (cf. [9]) used the γ-Lipschitz condition at x0

(1.2) ∥ F ′(x0)
−1 F ′′(x) ∥≤ 2 γ

(1− γ ∥ x− x0 ∥)3
for each x ∈ Ω,

where F ′(x0)
−1 ∈ L(B2, B1) to show the following semi-local convergence result for

Newton’s method.
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The most famous semi-local convergence result is the celebrated Kantorovich theorem
for solving nonlinear equations. This theorem provides a simple and transparent conver-
gence criterion for operators with bounded second derivatives F ′′ or the Lipschitz con-
tinuous first derivatives [2, 3]. Another important theorem inaugurated by Smale at the
International Conference of Mathematics (cf. [9]), where the concept of an approximate
zero was proposed and the convergence criteria were provided to determine an approxi-
mate zero for analytic function, depending on the information at the initial point. Wang
[10] generalized Smale’s result by introducing the γ-condition (see (1.2)). For more details
on Smale’s theory, the reader can refer to the excellent Dedieu’s book [6, Chapter 3.3] (see
also [1, 8, 9, 10]).

Theorem 1.1. Let F : Ω ⊆ B1 −→ B2 be a twice Fréchet-differentiable operator. Suppose
condition (1.2) holds,

∥F ′(x0)
−1F (x0)∥ ≤ η for some η ≥ 0,

and for

α = γη

(1.3) α ≤ 3− 2
√
2.

Then, sequence {xn} generated by Newton’s method (1.1) is well defined, remains in U(x0, t
∗)

for each n = 0, 1, . . . and converges to a unique solution x∗ ∈ Ū(x0, t
∗) of equation F (x) = 0.

Moreover, the following error estimates hold:

(1.4) ∥F ′(x0)
−1(F ′(x)− F ′(x0))∥ ≤ 1

(1− γ∥x− x0∥)2
− 1,

∥xn+1 − xn∥ ≤ tn+1 − tn

and

∥xn+1 − x∗∥ ≤ t∗ − tn, t∗ = lim
n−→∞

tn,

where

t∗ =
1 + α−

√
(1 + α)2 − 8α

4γ
≤ (1− 1√

2
)
1

γ

and the scalar sequence {tn} is defi ned by

t0 = 0, t1 = η,

tn+1 = tn +
γ(tn − tn−1)

2

(2− 1
(1−γtn)2

)(1− γtn)(1− γtn−1)2

= tn − φ(tn)

φ′(tn)

for each n = 1, 2, . . . , where

φ(t) = η − t+
γt2

1− γt
.

The point t∗ is the smallest positive zero of function φ(t) which exists under the hypothesis (1.3).
Moreover, it is worth noticing that condition (1.2) implies (1.4) but not necessarily vice versa, even
if F is a twice Fréchet differentiable operator.
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2. SEMI-LOCAL CONVERGENCE OF NEWTON’S METHOD

We need the definitions:

Definition 2.1. Let F : Ω −→ B2 be a twice Fréchet-differentiable operator. Operator F
satisfies the center γ0-Lipschitz condition at x0 if for each x ∈ Ω

(2.5) ∥F ′(x0)
−1(F ′(x)− F ′(x0))∥ ≤ 1

(1− γ0∥x− x0∥)2
− 1.

In view of (2.5) and the choice of γ0, we have that

(2.6) ∥F ′(x0)
−1(F ′(x)− F ′(x0))∥ ≤ 1

(1− γ0∥x− x0∥)2
− 1 < 1.

Then, by (2.6) and the Banach lemma on invertible operators [2, 3, 8] F ′(x0)
−1 ∈ L(B2, B1)

and

(2.7) ∥F ′(x)−1F ′(x0)∥ ≤ (2− 1

(1− γ0∥x− x0∥)2
)−1.

The corresponding result using (1.4) is

(2.8) ∥F ′(x)−1F ′(x0)∥ ≤ (2− 1

(1− γ∥x− x0∥)2
)−1.

Estimate (2.7) is more precise than (2.8), since γ0 ≤ γ leading to a more precise majorizing
sequence which in turn leads to the advantages already stated. Set Ω0 = U(x0, (1− 1√

2
) 1
γ0
).

Definition 2.2. Let F : Ω −→ B2 be a twice Fréchet-differentiable operator. Operator F
satisfies the β-Lipschitz condition at x0 on Ω ∩ Ω0, if

(2.9) ∥F ′(x0)
−1F ′′(x)∥ ≤ 2β

(1− β∥x− x0∥)3

for each x ∈ Ω ∩ Ω0.

Clearly, we have that
β ≤ γ,

since Ω ∩ Ω0 ⊆ Ω. Define scalar sequences {rn} and {sn} by

r0 = s0 = 0, r1 = s1 = η,

rn+1 = rn +
β(rn − rn−1)

2

(2− 1
(1−γ0rn)2

)(1− βrn)(1− βrn−1)2
,

sn+1 = sn +
β(sn − sn−1)

2

(2− 1
(1−γsn)2

)(1− βsn)(1− βsn−1)2
.

Then, we can show the following semilocal convergence result for Newton’s method (1.1).

Theorem 2.2. Let F : Ω −→ B2 be a twice-Fréchet differentiable operator and let x0 be such
that F ′(x0)

−1 ∈ L(B2, B1). Suppose operator F is center γ0-Lipschitz on Ω0 and β-Lipschitz on
Ω ∩ Ω0 with γ0 ≤ β,

∥F ′(x0)
−1F (x0)∥ ≤ η,

(2.10) α0 = βγ ≤ 3− 2
√
2.

Then, sequence {xn} generated by Newton’s method (1.1) is well defined, remains in U(x0, r
∗) for

each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈ Ū(x0, r
∗) of equation F (x) = 0,

where

r∗ =
1 + α0 −

√
(1 + α0)2 − 8α0

4β
≤ (1− 1√

2
)
1

β
.
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Moreover, the following estimates hold

∥xn+1 − xn∥ ≤ rn+1 − rn

and
∥x∗ − xn∥ ≤ r∗ − rn, r∗ = lim

n−→∞
rn.

Proof. Follow the proof of Wang’s theorem in [10] and simply notice that the iterates xn

lie in Ω ∩ Ω0 which is a more precise location than Ω used in [10].
□

A simple inductive argument leads to:

Proposition 2.1. Suppose that the hypotheses of Theorem 1.1 and Theorem 2.2 hold. Then, the
following hold

(2.11) ∥xn+1 − xn∥ ≤ rn+1 − rn ≤ sn+1 − sn ≤ tn+1 − tn

r∗ = lim
n−→∞

rn ≤ s∗ ≤ t∗

and
α ≤ 3− 2

√
2 =⇒ α0 ≤ 3− 2

√
2

but not necessarily vice versa, unless, if β = γ.

Proposition 2.1 justifies the claim about the advantages made at the introduction.
Notice also that sequence {sn} converges to s∗ under condition (2.9) but not necessar-

ily under (2.10). Moreover, the local convergence given in [4] which improved the local
convergence in [4, 10] can also be improved using the new idea. Indeed, by replacing x0

by x∗, we get that the convergence radii R0 and R∗ given, respectively by Theorem 1.1
and Theorem 2.2 are R0 = (1− 1√

2
) 1γ and R1 = (1− 1√

2
) 1β so R0 ≤ R1, since β ≤ γ.

Next, we present an example involving a nonlinear integral equation of Chandrasekhar-
type [3].

Example 2.1. Let B1 = B2 = C[0, 1] be equipped with the max-norm. Let Ω = U(0, r) for
some r > 2. Define F on Ω by

F (x)(s) = x(s)− y(s)− λ

∫ 1

0

k(s, t)x3(t)dt for each x ∈ C[0, 1] and each s ∈ [0, 1],

where y ∈ C[0, 1] is given, λ is a real parameter and the kernel k is the Green’s function
defined by

k(s, t) =

{
t(1− s), t ≤ s
s(1− t), s < t.

Then, the Fréchet-derivative of F is defined by

(F ′(x)(w))(s) = w(s)− 3λ

∫ 1

0

k(s, t)x2(t)w(t)dt for each w ∈ C[0, 1] and each s ∈ [0, 1].

Let us choose in particular, x0(s) = y(s) = 1 and |λ| < 8
3 . Then, we have that (see e.g. [3,

Chapter 1]) ∥I − F ′(x0)∥ < 3
8 |µ|, F

′(x0)
−1 ∈ L(B2, B1), ∥F ′(x0)

−1∥ ≤ 8
8−3|λ| , η = |λ|

8−3|λ| ,

β = γ0 = 12|λ|
8−3|λ| and γ = 6r|λ|

8−3|λ| . Notice that

(2.12) γ0 < γ,

since r > 2. Therefore, in view of (2.12) our results in this paper improves the correspond-
ing ones using (1.3) [9, 10].
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Example 2.2. Let B1 = B2 = R, p ∈ (0, 1), x0 = 1, Ω = U(x0,
1

2−p ) and define function on
Ω by

F (x) = x3 − p.

Define Ω∗ = U(x0, 1− p). Then, we have

Ω∗ ⊆ Ω, if p ∈ [0.381966, 1).

We restrict function F on Ω∗. Let L0 = 3 − p and L = 2(2 − p). Then, Argyros showed in
[2, 3] that for each x, y ∈ Ω∗

(2.13) |F ′(x0)
−1(F ′(x)− F ′(x0))| ≤ L0|x− x0|

(2.14) |F ′(x0)
−1(F ′(x)− F ′(y))| ≤ L|x− y|.

In view of (1.2) and (2.14), we have L ≤ 2γ, so we choose γ = 2−p. Then, since η = 1
3 (1−p),

condition (2.9) is satisfied, if

(2.15) 0.6255179 ≤ p < 1.

We must have

U(x0, (1−
1√
2
)
1

γ
) ⊆ U(x0, 1− p),

which is true for

(2.16) 0 < p ≤ 0.7631871.

It follows from (2.15) and (2.16) that

(2.17) 0.6255179 < p ≤ 0.7631871.

Set y = γ0|x− x0| and L0 = dγ0, d > 0, γ0 > 0. Using (2.5) and (2.13), we must have

L0|x− x0| ≤
1

(1− γ0|x− x0|)2
− 1

or
d(1− y)2 ≤ 2− y

or

(2.18) dy2 + (1− 2d)y + d− 2 ≤ 0.

Let e.g. d = 2, then γ0 = L0

2 = e−1
2 and (2.18) becomes (p− 3)(p− 1) ≤ 3 or p(p− 4) ≤ 0,

which is true. We must show (1− 1√
2
) 1
γ0

≤ 1− p or p2 − 4p+1+
√
2 ≥ 0, which is true for

(2.19) 0 < p ≤ 0.7407199.

Notice that Ω0 ⊂ Ω, since (1− 1√
2
) 1
γ0

< 1
γ or p ≤ 3 +

√
2, which is true, so

Ω ∩ Ω0 = Ω0.

Then, for x ∈ Ω0

|F ′(x0)
−1F ′′(x)| = 2|x| ≤ 2(|x− x0|+ |x0|)

≤ 2((1− 1√
2
)

2

3− p
+ 1)

must be smaller than 2β, so we can choose

β = 1 + (1− 1√
2
)

2

3− p
= 1 +

2−
√
2

3− p
.
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Notice that β < γ, if (2.19) holds. We also have that γ0 < β, if

3− p

2
< 1 +

2−
√
2

3− p

or if

p2 − 4p− 1 + 2
√
2 < 0

or, if

(2.20) 0.5263741 < p < 1.

We also must have

(1− 1√
2
)
1

β
≤ 1− p

or

2p2 + (
√
2− 10)p+ 4 +

√
2 ≤ 0,

which is true for

(2.21) p ≤ 0.767996.

Then, notice that

1− p ≤ 1

γ
,

if p2 − 3p+ 1 ≤ 0, which is true for

0.381966 ≤ p < 1.

Then, we have that α0 ≤ 3− 2
√
2 = q, if (1 + 2−

√
2

3−p ) 13 (1− p) ≤ q or if

p2 + (
√
2− 6 + 3q)p+ 5−

√
2− 9q ≤ 0,

which is true for

(2.22) 0.5857931 ≤ p < 1.

In view of (2.19), (2.20), (2.21) and (2.22) we must have

0.5857931 ≤ p ≤ 0.7407199.

Define intervals I and I1 by

(2.23) I = [0.5857931, 0.6255179)

and

(2.24) I1 = (0.7407199, 0.7631871].

In view of (2.17), (2.23) and (2.24), we see that for p ∈ I, Theorem 1.1 cannot guarantee
the convergence of Newton’s method (1.1) to x∗ = 3

√
p. However, Theorem 2.2 guarantees

the convergence of Newton’s method (1.1) to x∗. Notice that, if p ∈ I1, then we can set
β = γ = γ0.

Next, we compare the error bounds. Choose p = 0.65. Then, we have the following
comparison table, which shows that the new error bounds (see also (2.11)) are more pre-
cise than the ones in [10].
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n tn+1 − tn sn+1 − sn rn+1 − rn
1 0.1167 0.1167 0.1167
2 0.0333 0.0337 0.0260
3 0.0088 0.0048 0.0017
4 0.0024 1.0958e− 04 7.8741e− 06
5 6.6130e− 04 5.7796e− 08 1.6553e− 10

TABLE 1. Comparison table
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