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New Suzuki-Berinde type fixed point results

N. HUSSAIN and J. AHMAD

ABSTRACT. The aim of this article is to improve the results of Piri et al. [Fixed Point Theory and Applications
2014, 2014:210] by introducing new types of contractions say Suzuki-Berinde type F -contractions and Suzuki
type rational F -contractions. We also establish a common fixed point theorem for a sequence of multivalued
mappings. An example is also given to support our main results.

1. INTRODUCTION

In the theory of metric spaces, Banach fixed point theorem [4] is an important tool which
guarantees the existence and uniqueness of fixed points of certain self mappings. It actu-
ally provides a constructive method to find fixed points. This theorem was first stated by
a Polish Mathematician Stefan Banach in 1922.

There are many generalizations of Banach fixed point theorem in the literature. One
of the most interesting generalizations is characterization of metric completeness and it
was first given by Suzuki [18] in 2008. Further, Berinde [5, 6] studied many kinds of
contraction mappings and gave the concept of almost contraction in following way.

Definition 1.1. [6] Let (X, d) be a metric space. A mapping T : X → X is said to be
generalized almost contraction if there exists a constant λ ∈ [0, 1) and some L ≥ 0 such
that

d(Tx, Ty) ≤ λd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}
for all x, y ∈ X.

Recently, in 2012 Wardowski [19] introduced new type of contractions called F -contractions
and extended the contractive condition on such mappings. He defined F -contraction as
follows:

Definition 1.2. [19] Let (X, d) be a metric space. A mapping T : X → X is said to be a
F−contraction if there exists τ > 0 such that for x, y ∈ X;

(1.1) d(Tx, Ty) > 0 =⇒ τ + F
(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
where, F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing;
(F2) for all sequence {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;
(F3) there exists 0 < k < 1 such that limα→0+ αkF (α) = 0.

Consistent with Wordowski [19], we denote by ∆F the set of all functions F : R+ → R
satisfying (F1)− (F3) conditions.

Very recently, Secelean [17] proved the following lemma and replaced condition (F2)
by an equivalent but a more simple condition (F2′ ).
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Lemma 1.1. Let F : R+ → R be an increasing mapping and {αn}∞n=1 be a sequence of positive
real numbers. Then the following assertions hold:

(a) if limn→∞ F (αn) = −∞ then limn→∞ αn = 0;
(b) if inf F = −∞ and limn→∞ αn = 0, then limn→∞ F (αn) = −∞.
He replaced (F2) with the following condition.
(F2′ ) inf F = −∞
or, also, by
(F

2
′′ ) there exists a sequence {αn}∞n=1 of positive real numbers such that

lim
n→∞

F (αn) = −∞.

On the other hand, Piri et al. [16] utilized much simple condition (F
′

3) instead of (F3)
in F -contraction and established some new fixed point theorems regarding this condition.

(F3′ ) F is continuous on (0,∞).
We denote by 𭟋 the family of all functions F : R+ → R which satisfy conditions (F1),

(F
′

2) and (F
′

3). For more details in this direction, we refer the reader to[1, 2, 7, 9, 10, 11, 12,
13, 14, 15].

In this paper, we first generalize the results of Piri et al. [16] by introducing Suzuki-
Berinde type F -contraction in the setting of complete metric spaces. Then we give the
notion of Suzuki type rational F -contraction and establish some new fixed point results
regarding F -contraction and rational expressions. We also prove a fixed point theorem
for a sequence of multi-valued mappings in ε-chainable metric spaces.

2. FIXED POINT RESULTS FOR SUZUKI-BERINDE TYPE F -CONTRACTION

In the present section, we define Suzuki-Berinde type F -contractions to prove some
fixed point theorems in the context of complete metric spaces. Our new results are proper
generalization of Piri et al. [16].

Definition 2.3. Let (X, d) be a metric space and T be a self-mapping on X. We say that T
is Suzuki-Berinde type F -contraction if there exist F ∈ 𭟋, τ > 0 and L ≥ 0 such that for
all x, y ∈ X with Tx ̸= Ty, we have

(2.1)
1

2
d(x, Tx) < d(x, y)

implies

(2.2) τ + F
(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
+ Lmin{d(x, Tx), d(x, Ty), d(y, Tx)}.

Theorem 2.1. Let (X, d) be a complete metric space and T : X → X be a self-mapping satisfying
Suzuki-Berinde type F -contraction. Then T has a unique fixed point z ∈ X and for every x0 ∈ X
the sequence {Tnx0}∞n=1 is convergent to z.

Proof. Let x0 ∈ X , we define the sequence {xn} by xn = Tnx0 = Txn. If there exist n0 ∈ N
such that, xn0

= xn0+1. Then xn0
is fixed point of T and we have nothing to prove. So we

assume that xn ̸= xn+1 or
0 < d(xn, Txn)

for all n ∈ N. Therefore

(2.3)
1

2
d(xn, Txn) < d(xn, Txn)

for all n ∈ N. It follows from assumption of theorem that

τ+F
(
d(xn, Txn)

)
≤ F

(
d(xn−1, Txn−1)

)
+Lmin{d(xn−1, Txn−1), d(xn−1, Txn), d(xn, Txn−1)}



New Suzuki-Berinde type fixed point results 61

which implies that,

F
(
d(xn, Txn)

)
≤ F

(
d(xn−1, Txn−1)

)
+ Lmin{d(xn−1, xn), d(xn−1, xn+1), d(xn, xn)} − τ

≤ F
(
d(xn−1, Txn−1)

)
− τ.

Therefore

(2.4) F
(
d(xn, Txn)

)
≤ F

(
d(xn−1, Txn−1)

)
− τ ≤ . . . ≤ F (d(x0, Tx0))− nτ

for all n ∈ N. Since F ∈ 𭟋, so by taking limit as n → ∞ in (2.4) we have,

(2.5) lim
n→∞

F
(
d(xn, Txn)

)
= −∞ ⇐⇒ lim

n→∞
d(xn, Txn) = 0.

Now, we claim that {xn}∞n=1 is a Cauchy sequence. We suppose on the contrary that
{xn}∞n=1 is not a Cauchy sequence, then we assume that there exists ε > 0 and sequences
{p(n)}∞n=1 and {q(n)}∞n=1 of natural numbers such that for p(n) > q(n) > n, we have

(2.6) d(xp(n), xq(n)) ≥ ε.

Then
d(xp(n)−1, xq(n)) < ε

for all n ∈ N. So, by triangle inequality and (2.6), we have

ε ≤ d(xp(n), xq(n)) ≤ d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n))

≤ d(xp(n)−1, Txp(n)−1) + ε.

By taking the limit and using inequality (2.5), we get

(2.7) lim
n→∞

d(xp(n), xq(n)) = ε.

From (2.5) and (2.7), we can choose a natural number n0 ∈ N such that

(2.8)
1

2
d(xp(n), Txp(n)) <

ε

2
< d(xp(n), xq(n))

for all n ≥ n0. Then by the assumption, we get

τ + F
(
d(Txp(n), Txq(n))

)
≤ F

(
d(xp(n), xq(n))

)
+Lmin{d(xp(n), Txp(n)), d(xp(n), Txq(n)), d(xq(n), Txp(n))}

= F
(
d(xp(n), xq(n))

)
+Lmin{d(xp(n), xp(n)+1), d(xp(n), xq(n)+1), d(xq(n), xp(n)+1)}

By taking limit as n → +∞ and using (F3
′
), (2.5) and (2.7), we get

τ + F (ε) ≤ F (ε)

which is a contradiction. Thus {xn} is a Cauchy sequence. Completeness of X ensures
that there exist z ∈ X such that, xn → z as n → ∞. Therefore

(2.9) lim
n→∞

d(xn, z) = 0.

Next, we claim that

(2.10)
1

2
d(xn, Txn) < d(xn, z) or

1

2
d(Txn, T

2xn) < d(Txn, z)

for all n ∈ N. We suppose on the contrary that there exists m ∈ N such that

(2.11)
1

2
d(xm, Txm) ≥ d(xm, z) or

1

2
d(Txm, T 2xm) ≥ d(Txm, z).



62 Hussain and Ahmad

Therefore

2d(xm, z) ≤ d(xm, Txm)

≤ d(xm, z) + d(z, Txm)

which implies that

(2.12) d(xm, z) ≤ d(z, Txm).

It follows from (2.11) and (2.12) that

(2.13) d(xm, z) ≤ d(z, Txm) ≤ 1

2
d(Txm, T 2xm).

Since
1

2
d(xm, Txm) < d(xm, Txm).

So by assumption, we get

τ+F
(
d(Txm, T 2xm)

)
≤ F

(
d(xm, Txm)

)
+Lmin{d(xm, Txm), d(xm, T 2xm), d(Txm, Txm)}

which implies that
τ + F

(
d(Txm, T 2xm)

)
≤ F

(
d(xm, Txm)

)
.

Since F is strictly increasing, so we have

(2.14) d(Txm, T 2xm) < d(xm, Txm).

It follows from (2.11), (2.13) and (2.14) that

d(Txm, T 2xm) < d(xm, Txm)

≤ d(xm, z) + d(z, Txm)

≤ 1

2
d(Txm, T 2xm) +

1

2
d(Txm, T 2xm)

= d(Txm, T 2xm).

This is contradiction. Hence (2.10) holds. So from (2.10), for every n ∈ N, we have

τ + F
(
d(Txn, T z)

)
≤ F

(
d(xn, z)

)
+ Lmin{d(xn, Txn), d(xn, T z), d(z, Txn)}

which implies that

(2.15) τ + F
(
d(Txn, T z)

)
≤ F

(
d(xn, z)

)
+ Lmin{d(xn, xn+1), d(xn, T z), d(z, xn+1)}.

Using (2.15), (F2
′
) and Lemma 1.1, we get

lim
n→∞

F
(
d(Txn, T z)

)
= −∞.

It follows from (F2
′
) and Lemma 1.1, we obtain

(2.16) lim
n→∞

d(Txn, T z) = 0.

So
d(z, Tz) = lim

n→∞
d(xn+1, T z) = lim

n→∞
d(Txn, T z) = 0.

Hence, z is a fixed point of T . Now we show the uniqueness of fixed point. We suppose
on the contrary that there exist an other fixed point u of T distinct from z that is

Tz = z ̸= u = Tu.

Then
d(Tz, Tu) > 0.
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So we get

0 =
1

2
d(z, Tz) < d(z, u).

Then from assumption of theorem, we obtain

F
(
d(z, u)

)
= F

(
d(Tz, Tu)

)
< τF

(
d(Tz, Tu)

)
≤ F

(
d(z, u)

)
+ Lmin{d(z, Tz), d(z, Tu), d(u, Tz)}

which further implies that
F
(
d(z, u)

)
< F

(
d(z, u)

)
.

This is contradiction. Thus z is the unique fixed point of T. □

Corollary 2.1. [16]Let (X, d) be a complete metric space and T : X → X be a self-mapping. If
there exist τ > 0 and F ∈ 𭟋 such that for all x, y ∈ X with Tx ̸= Ty, we have

1
2d(x, Tx) < d(x, y) =⇒ τ + F

(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
Then T has a unique fixed point z ∈ X and for every x0 ∈ X the sequence {Tnx0}∞n=1 is
convergent to z.

Corollary 2.2. [16]Let (X, d) be a complete metric space and T : X → X be a self-mapping. If
there exist F ∈ 𭟋 and τ > 0 such that for all x, y ∈ X with Tx ̸= Ty, we have

τ + F
(
d(Tx, Ty)

)
≤ F

(
d(x, y)

)
].

Then T has a unique fixed point x∗ ∈ X and for every x0 ∈ X the sequence {Tnx0}∞n=1 is
convergent to x∗.

3. FIXED POINT RESULTS FOR SUZUKI TYPE RATIONAL F -CONTRACTIONS

In this section, we first introduce Suzuki type rational F -contractions and then establish
some fixed point results regarding these contractions.

Definition 3.4. Let (X, d) be a metric space and T be a self-mapping on X. We say T is
Suzuki type rational F−contraction if for all x, y ∈ X with Tx ̸= Ty, we have

(3.17) 1
2d(x, Tx) < d(x, y) =⇒ τ + F

(
d(Tx, Ty)

)
≤ F

(
R(x, y)

)
where

R(x, y) = max{d(x, y), d(x, Tx), d(Ty, y), d(Ty, y)(1 + d(x, Tx))

1 + d(x, y)
}

for some τ > 0 and F ∈ 𭟋.

Theorem 3.2. Let (X, d) be a complete metric space. Let T : X → X be a Suzuki type rational
F -contraction. Then T has a unique fixed point x∗ ∈ X and for every x0 ∈ X the sequence
{Tnx0}∞n=1 is convergent to x∗.

Proof. Let x0 be an arbitrary but fixed element X . We define the sequence {xn} by xn =
Tnx0 = Txn. If there exists some n0 ∈ N such that, xn0

= xn0+1. Then xn0
is the required

fixed point of T . So we assume that xn ̸= xn+1 or

0 < d(xn, Txn)

for all n ∈ N. Therefore
1

2
d(xn, Txn) < d(xn, Txn)
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for all n ∈ N. Then by the given assumption, we have

τ + F
(
d(Txn−1, Txn)

)
≤ F

(
max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),

d(xn, Txn)(1 + d(xn−1, Txn−1))

1 + d(xn−1, xn)

)
= F

(
max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn, xn+1)(1 + d(xn−1, xn))

1 + d(xn−1, xn)

)
= F

(
max{d(xn−1, xn), d(xn, xn+1)}

)
.

If
max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1).

Then
τ + F

(
d(xn, xn+1)

)
= τ + F

(
d(Txn−1, Txn)

)
≤ F

(
d(xn, xn+1)

)
we get a contradiction to the fact that F is strictly increasing and τ > 0. Thus

max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn).

Hence
τ + F

(
d(xn, xn+1)

)
≤ F

(
d(xn−1, xn)

)
which implies that

F
(
d(xn, xn+1)

)
≤ F

(
d(xn−1, xn)

)
− τ.

Therefore

(3.18) F
(
d(xn, xn+1)

)
≤ F

(
d(xn−1, xn)

)
− τ ≤ . . . ≤ F (d(x0, x1))− nτ

for all n ∈ N. Since F ∈ 𭟋, so by taking limit as n → ∞ in (3.18) we have,

(3.19) lim
n→∞

F
(
d(xn, xn+1)

)
= −∞ ⇐⇒ lim

n→∞
d(xn, xn+1) = 0.

Now, we claim that {xn}∞n=1 is a Cauchy sequence. We suppose on the contrary that
{xn}∞n=1 is not Cauchy then we assume there exists ε > 0 and sequences {p(n)}∞n=1 and
{q(n)}∞n=1 of natural numbers such that for p(n) > q(n) > n, we have

(3.20) d(xp(n), xq(n)) ≥ ε.

Then
d(xp(n)−1, xq(n)) < ε

for all n ∈ N. So, by triangle inequality and (3.20), we have

ε ≤ d(xp(n), xq(n)) ≤ d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n))

≤ d(xp(n), xp(n)−1) + ε.

By taking the limit and using inequality (3.19), we get

(3.21) lim
n→∞

d(xp(n), xq(n)) = ε.

From (3.19) there exists a natural number n0 ∈ N such that

(3.22)
1

2
d(xp(n), Txp(n)) <

ε

2
< d(xp(n), xq(n))

for all n ≥ n0. Thus by the given assumptions, we get

τ + F
(
d(Txp(n), Txq(n))

)
≤ F

(
max{d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),

d(xq(n), Txq(n))[1 + d(xp(n), Txp(n))]

1 + d(xp(n), xq(n))

)
.
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If

max{d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),
d(xq(n), Txq(n))[1 + d(xp(n), Txp(n))]

1 + d(xp(n), xq(n))

= d(xp(n), xq(n)).

By taking limit as n → +∞ and using (F3
′
),(3.17), (3.19) and (3.21), we get

τ + F (ε) ≤ F (ε)

which is a contradiction. If

max{d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),
d(xq(n), Txq(n))[1 + d(xp(n), Txp(n))]

1 + d(xp(n), xq(n))

= d(xp(n), Txp(n)).

By taking limit as n → +∞ and using (F3
′
) (3.17), (3.19) and (3.21), we get

τ + F (ε) ≤ F ( ε2 )

which is a contradiction. If

max{d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),
d(xq(n), Txq(n))[1 + d(xp(n), Txp(n))]

1 + d(xp(n), xq(n))

= d(xq(n), Txq(n)).

By taking limit as n → +∞ and using (F3
′
),(3.17), (3.19) and (3.21), we get

τ + F (ε) ≤ F ( ε2 )

a contradicition. If

max{d(xp(n), xq(n)), d(xp(n), Txp(n)), d(xq(n), Txq(n)),
d(xq(n), Txq(n))[1 + d(xp(n), Txp(n))]

1 + d(xp(n), xq(n))

=
d(xq(n), Txq(n))[1 + d(xp(n), Txp(n))]

1 + d(xp(n), xq(n))
.

By taking limit as n → +∞ and using (F3
′
),(3.17), (3.19) and (3.21), we get

τ + F (ε) ≤ F (ε).

This is also a contradiction. Thus {xn} is a Cauchy sequence. Completeness of X ensures
that there exist x∗ ∈ X such that, xn → x∗ as n → ∞ that is limn→∞ d(xn, x

∗) = 0. Now
we prove that x∗ = Tx∗. For this we claim that

(3.23)
1

2
d(xn, Txn) < d(xn, x

∗) or
1

2
d(Txn, T

2xn) < d(Txn, x
∗)

for all n ∈ N. We suppose on the contrary that there exists k ∈ N such that

(3.24)
1

2
d(xk, Txk) ≥ d(xk, z) or

1

2
d(Txk, T

2xk) ≥ d(Txk, x
∗).

Therefore

2d(xk, x
∗) ≤ d(xk, Txk)

≤ d(xk, x
∗) + d(x∗, Txk)

which implies that

(3.25) d(xk, x
∗) ≤ d(x∗, Txk).
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It follows from (3.24) and (3.25) that

(3.26) d(xk, x
∗) ≤ d(x∗, Txk) ≤

1

2
d(Txk, T

2xk).

Since
1

2
d(xk, Txk) < d(xk, Txk).

So by assumption, we get

τ + F
(
d(Txk, T

2xk)
)

≤ F
(
max{d(xk, Txk), d(xk, Txk), d(Txk, T

2xk),

d(Txk, T
2xk)(1 + d(xk, Txk))

1 + d(xk, Txk)

)
which implies that

τ + F
(
d(Txk, T

2xk)
)
≤ F

(
max{d(xk, Txk), d(Txk, T

2xk)}
)
.

If
max{d(xk, Txk), d(Txk, T

2xk)} = d(Txk, T
2xk)

then
τ + F

(
d(Txk, T

2xk)
)
≤ F

(
d(Txk, T

2xk)
)

and we get a contradiction to the fact that τ > 0. If

max{d(xk, Txk), d(Txk, T
2xk)} = d(xk, Txk)

then
τ + F

(
d(Txk, T

2xk)
)
≤ F

(
d(xk, Txk)

)
.

Since F is strictly increasing, so we have

(3.27) d(Txk, T
2xk) < d(xk, Txk).

It follows from (3.24), (3.26) and (3.27) that

d(Txk, T
2xk) < d(xk, Txk)

≤ d(xk, x
∗) + d(x∗, Txk)

≤ 1

2
d(Txk, T

2xk) +
1

2
d(Txk, T

2xk)

= d(Txk, T
2xk)

which is a contradiction. Hence the inequality (3.23) holds and by the given assumption,
we get

τ + F
(
d(xn+1, Tx

∗)
)
= τ + F

(
d(Txn, Tx

∗)
)

≤ F
(
max{d(xn, x

∗), d(xn, Txn), d(Tx
∗, x∗),

d(Tx∗, x∗)[1+d(xn, Txn)]

1+d(xn, x∗)
}
)

≤F
(
max{d(xn, x

∗), d(xn, xn+1), d(Tx
∗, x∗),

d(Tx∗, x∗)[1 + d(xn, xn+1)]

1+d(xn, x∗)
}
)
.

If

max{d(xn, x
∗), d(xn, xn+1), d(Tx

∗, x∗),
d(Tx∗, x∗)[1 + d(xn, xn+1)]

1 + d(xn, x∗)
} = d(xn, x

∗)

then
τ + F

(
d(xn+1, Tx

∗)
)
≤ F

(
d(xn, x

∗)
)
.

which further implies that

F
(
d(xn+1, Tx

∗)
)
≤ F

(
d(xn, x

∗)
)
− τ.
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Since F is strictly increasing, so we get

d(xn+1, Tx
∗) < d(xn, x

∗).

Taking limit as n → +∞, we get
d(x∗, Tx∗) ≤ 0.

Thus x∗ is a fixed point of T . If

max{d(xn, x
∗), d(xn, xn+1), d(x

∗, Tx∗),
d(x∗, Tx∗)[1 + d(xn, xn+1)]

1 + d(xn, x∗)
} = d(xn, xn+1).

Then by the same procedure as above, one can easily get x∗ as a fixed point of T. If

max{d(xn, x
∗), d(xn, xn+1), d(x

∗, Tx∗),
d(x∗, Tx∗)[1 + d(xn, xn+1)]

1 + d(xn, x∗)
} = d(x∗, Tx∗).

Then
τ + F

(
d(xn+1, Tx

∗)
)
≤ F

(
d(x∗, Tx∗)

)
which further implies that

F
(
d(xn+1, Tx

∗)
)
≤ F

(
d(x∗, Tx∗)

)
− τ.

Since F is strictly increasing, so we get

d(xn+1, Tx
∗) < d(x∗, Tx∗).

Taking limit as n → +∞, we get
d(x∗, Tx∗) ≤ 0.

Thus by (3.26), we get

τ + F
(
d(xn+1, Tx

∗)
)
≤ F

(
d(x∗, Tx∗)

)
for all n ≥ max{n0, n1}. Since F is continuous, taking the limit as n → ∞ in above in-
equality, we get

τ + F
(
d(x∗, Tx∗)

)
≤ F

(
d(x∗, Tx∗)

)
which is a contradiction. Therefore d(x∗, Tx∗) = 0, that is x∗ is a fixed point of T. The
uniqueness is similar to the above main result. □

4. FIXED POINT RESULTS FOR MULTIVALUED MAPPINGS

Now we state the main result of this section as follows.

Theorem 4.3. Let (X, d) be a complete ε-chainable metric space and {Tn}∞n=1 : X → CB(X)
be the sequence of mappings. Assume that there exist a function F ∈ 𭟋 which is continuous from
right and τ > 0 such that

(4.28) ∀x, y ∈ X and 0 < d(x, y) < ε ⇒ 2τ + F
(
H(Tnx, Tmy)

)
≤ F

(
d(x, y)

)
for all n,m = 1, 2, ...Then there exists a point u∗ ∈ X such that u∗ ∈ ∩∞

n=1Tnu
∗.

Proof. Let y0 ∈ X be an arbitrary but fixed element. We define a sequence {yn} of points
of X in the following way. Let y1 ∈ X be such that y1 ∈ Ty0 and

(4.29) y0 = x(1,0), x(1,1), x(1,2), ..., x(1,m) = y1 ∈ Ty0

be an arbitrary ε-chain from y0 to y1. Rename the following y1 as x(2,0). Since x(2,0) ∈
Tx(1,0), so from (4.28), we have

2τ + F
(
H(T1x(1,0), T2x(1,1))

)
≤ F

(
d(x(1,0), x(1,1))

)
.
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By F1, we get

H(T1x(1,0), T2x(1,1)) < d(x(1,0), x(1,1))

< ϵ.

Since F is continuous from the right, so there exists a real number r > 1 such that

F
(
rH(T1x(1,0), T2x(1,1))

)
< F

(
H(T1x(1,0), T2x(1,1))

)
+ τ.

We can choose x(2,1) ∈ T2x(1,1) such that

d(x(2,0), x(2,1)) ≤ rH(T1x(1,0), T2x(1,1)).

Consequently, we have

F (d(x(2,0), x(2,1))) ≤ F (rH(T1x(1,0), T2x(1,1)))

< F
(
H(T1x(1,0), T2x(1,1))

)
+ τ

which implies

2τ + F (d(x(2,0), x(2,1))) < 2τ + F
(
H(T1x(1,0), T2x(1,1))

)
+ τ

≤ F
(
d(x(1,0), x(1,1))

)
+ τ.(4.30)

Since F is strictly increasing, we deduce

d(x(2,0), x(2,1))) < d(x(1,0), x(1,1)) < ε.

Since x(2,1) ∈ T2x(1,1), so from (4.28), we get

2τ + F
(
H(T2x(1,1), T2x(1,2))

)
≤ F

(
d(x(1,1), x(1,2))

)
.

Since F is strictly increasing, we have

H(T2x(1,1), T2x(1,2)) < d(x(1,1), x(1,2))

< ϵ.

Since F is continuous from the right, there exists a real number r > 1 such that

F
(
rH(T2x(1,1), T2x(1,2))

)
< F

(
H(T2x(1,1), T2x(1,2))

)
+ τ

We can choose x(2,2) ∈ T2x(1,2) such that d(x(2,1), x(2,2)) ≤ rH(T2x(1,1), T2x(1,2)). Conse-
quently, we get

F (d(x(2,1), x(2,2))) ≤ F (rH(T2x(1,1), T2x(1,2)))

< F
(
H(T2x(1,1), T2x(1,2))

)
+ τ

which implies

2τ + F (d(x(2,1), x(2,2))) < 2τ + F
(
H(T2x(1,1), T2x(1,2))

)
+ τ

≤ F
(
d(x(1,1), x(1,2))

)
+ τ.(4.31)

Since F is strictly increasing, we deduce

d(x(2,1), x(2,2)) < d(x(1,1), x(1,2)) < ε.

Thus we can get a finite set of points x(2,1), x(2,2), ..., x(2,m) such that x(2,0) ∈ T1x(1,0) and
x(2,j) ∈ T2x(1,j), for j = 1, 2, ...,m, with

d(x(2,j), x(2,j+1)) < d(x(1,j), x(1,j+1)) < ε

for j = 0, 1, 2, ...m− 1. Let x(2,m) = y2, then the set of points

y1 = x(2,0), x(2,1), x(2,2), ..., x(2,m) = y2 ∈ T2y1



New Suzuki-Berinde type fixed point results 69

is an ε-chain from y1 to y2. Rename the following y2 as x(3,0), then by the same procedure
we obtain an ε-chain

y2 = x(3,0), x(3,1), x(3,2), ..., x(3,m) = y3 ∈ T3y2

from y2 to y3. Inductively, we obtain

yn = x(n+1,0), x(n+1,1), x(n+1,2), ..., x(n+1,m) = yn+1 ∈ Tn+1yn

with
d(x(n+1,j), x(n+1,j+1)) < d(x(n,j), x(n,j+1)) < ε

for j = 0, 1, 2, ...,m − 1 and n = 0, 1, 2, ... Consequently, we generate a sequence {yn} of
points of X with

y1 = x(1,m) = x(2,0) ∈ T1y0

y2 = x(2,m) = x(3,0) ∈ T2y1

y3 = x(3,m) = x(4,0) ∈ T3y2

.......................

.......................

.......................

that is
yn+1 = x(n+1,m) = x(n+2,0) ∈ Tn+1yn

for n = 0, 1, 2, ... and

2τ + F (d(yn, yn+1) < 2τ + F
(
H(Tnyn−1, Tn+1yn)

)
+ τ

≤ F
(
d(yn−1, yn)

)
+ τ

that is

F (d(yn, yn+1)) < F
(
d(yn−1, yn)

)
− τ

.

.

.

< F
(
d(y0, y1)

)
− nτ

for all n = 1, 2, ... It follows by similar to the above Theorem 2.1 and Theorem 3.2 that
{yn} is a Cauchy sequence. Since X is complete, so yn → u∗. Hence there exists an integer
M > 0 such that n > M implies d(yn, u∗) < ε. Thus by the inequality (4.28), we have

2τ + F
(
d(yn+1, Tju

∗)
)

≤ 2τ + F
(
H(Tn+1yn, Tju

∗)
)

≤ F
(
d(yn, u

∗)
)
+ τ.

Since F is strictly increasing, we have

d(yn+1, Tju
∗) < d(yn, u

∗).

Letting n → +∞ in the previous inequality, we get d(u∗, Tju
∗) = 0 which implies that

u∗ ∈ Tju
∗. Therefore u∗ ∈ ∩∞

n=1Tnu
∗. □

Example 4.1. Consider the sequence {Sn} as follows:

Sn = 1.1! + 2.2! + 3.3! + ...+ n.n! = (n+ 1)!− 1.
Let X = {Sn : n ∈ N} and d (x, y) = |x− y| . Then (X, d) is a complete metric space.

Define the mapping T : X → X by

T (S1) = S1, T (Sn) = Sn−1, for all n > 1.
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First, let us consider the mapping F (t) = ln(t). The mapping T is not the F -contraction in
this case (which actually means that T is not Suzuki- type F -contraction with τ = 8).

Indeed, for n = 1 and m = 4, we get
1

2
d(Sn, T (Sn)) ≤ d(Sn, Sm)

implies
τ + ln(d(T (Sn), T (Sm))) ≥ ln(d(Sn, Sm))

because
8 + ln(2.2! + 3.3!) ≥ ln(2.2! + 3.3! + 4.4!)

that is
8 + ln(d(S1, S3)) ≥ ln(d(S1, S4)).

Let us consider the mapping F (t) = −1
t + t, we obtain that T is Suzuki-Berinde type

F -contraction with τ = 8.
To see this, let us consider the following calculations. We discuss our main result for

[(1 = n < m) ∨ (1 = m < n) ∨ (1 < n < m)].
For 1 = n < m, we have

(4.32) |T (Sm)− T (S1) | = |Sm−1 − S1| = 2.2! + 3.3! + ...+ (m− 1).(m− 1)!

(4.33) d (Sm, S1) = |Sm − S1| = 2.2! + 3.3! + ...+m.(m)!

Since m > 1, so we have

8− −1

2.2! + 3.3! + ...+ (m− 1).(m− 1)!
+ 2.2! + 3.3! + ...+ (m− 1).(m− 1)!

< − −1

2.2! + 3.3! + ...+m.(m)!
+ 2.2! + 3.3! + ...+ (m− 1).(m− 1)! +m.(m)!

+min{m.(m)!, 2.2! + 3.3! + ...+m.(m)!, 2.2! + 3.3! + ...+ (m− 1).(m− 1)!}.
Thus from the equalities (4.32) and (4.33), we have

8− 1

|T (Sm) , T (S1) |
+|T (Sm) , T (S1) | < − 1

|Sm−S1|
+ |Sm − S1|

+Lmin{|Sm, T (Sm) |, |Sm, T (S1) |, |S1, T (Sm)|}.
For every m,n ∈ N with m > n > 1, we have

(4.34) |T (Sm)− T (Sn) | = n.(n)! + (n+ 1).(n+ 1)! + ...+ (m− 1).(m− 1)!

(4.35) |Sm − Sn| = (n+ 1).(n+ 1)! + ...+ (m).(m)!.

Since m > n > 1, we have

(m).(m)! ≥ (n+1).(n+1)! = (n).(n+1)!+(n+1)! > (n).(n)!+(n)!+(n+1)! ≥ (n).(n)!+8.

From above, we get

8− −1

n.(n)! + (n+ 1).(n+ 1)! + ...+ (m− 1).(m− 1)!

+n.(n)! + (n+ 1).(n+ 1)! + ...+ (m− 1).(m− 1)!

< − −1

(n+ 1).(n+ 1)! + ...+ (m).(m)!

(n+ 1).(n+ 1)! + ...+ (m).(m)!

+min{m.(m)!, 2.2! + 3.3! + ...+m.(m)!, 2.2! + 3.3! + ...+ (m− 1).(m− 1)!}.
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So from the equalities (4.34) and (4.35), we have

8− 1

|T (Sm) , T (S1) |
+|T (Sm) , T (S1) | < − 1

|Sm−S1|
+ |Sm − S1|

+Lmin{|Sm, T (Sm) |, |Sm, T (S1) |, |S1, T (Sm)|}.

Hence all the conditions of Theorem 2.1 are satisfied and S1 is a unique fixed point of
mapping T. Notice that the above mentioned results can not be applied on this example
as L ̸= 0.
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