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Blow up of solutions for 3D quasi-linear wave equations
with positive initial energy

AMIR PEYRAVI

ABSTRACT. In this paper we investigate blow up property of solutions for a system of nonlinear wave equa-
tions with nonlinear dissipations and positive initial energy in a bounded domain in R3. Our result improves
and extends earlier results in the literature such as the ones in [Zhou, J. and Mu, C., The lifespan for 3D quasilinear
wave equations with nonlinear damping terms, Nonlinear Anal., 74 (2011), 5455–5466] and [Pişkin, E., Uniform de-
cay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms, Math. Meth.
Appl. Scie., 37 (2014), No. 18, 3036–3047] in which the nonexistence results obtained only for negative initial
energy or the one in [Ye, Y., Global existence and nonexistence of solutions for coupled nonlinear wave equations with
damping and source terms, Bull. Korean Math. Soc., 51 (2014), No. 6, 1697–1710] where blow up results have been
not addressed. Estimate for the lower bound of the blow up time is also given.

1. INTRODUCTION

This paper deals with the blow up of solutions for the following problem:

(1.1)


∂2t ui −∆ui + |∂tui|pi−1∂tui +m2

iui = fi(u1, . . . , un), in ΩT , (i = 1, . . . , n),

ui = 0, on ΓT , (i = 1, . . . , n),

ui(x, 0) = φi(x), in Ω, (i = 1, . . . , n),

∂tui(x, 0) = ψi(x), in Ω, (i = 1, . . . , n),

where Ω ⊂ R3 is a bounded open set with smooth boundary ∂Ω and ∆ denotes the Lapla-
cian operator in R3, T is a positive constant, ΩT = Ω × (0, T ), ΓT = ∂Ω × (0, T ), n ≥ 2 is
an integer, mi ≥ 0, pi ≥ 1 and fi : Rn → R (i = 1, . . . , n) are given functions such that
fi = ∂ui

F , (i = 1, . . . , n) where

F (u1, . . . , un) = a

∣∣∣∣∣
n∑

i=1

ui

∣∣∣∣∣
4

+ 2b

∣∣∣∣∣
n∏

i=1

ui

∣∣∣∣∣
2

,

with a, b > 0.
When n = 2 and Ω ⊂ RN , (N ≥ 1) the problem (1.1) has been investigated by many

authors. In the case mi = 0 (i = 1, . . . , n) and N = 1, 2, 3, Agre and Rammaha [1] proved
the existence of global solutions if min{p1, p2} ≥ 3 and showed the blow up of solutions
if 3 > min{p1, p2} when the initial energy is negative. Later, these results improved by
Alves et al. [2] where global existence result obtained by a method involving the Nehari
manifold and a blow up result established when the initial energy is considered to be non-
negative. Recently, this blow up result has been improved by Said-Houari [21] in which
a certain class of initial data with positive initial energy is considered. In this regard and
in connecting with global existence and nonexistence of solutions for coupled nonlinear
wave equations with damping and source terms we refer to the studies by Messaoudi and
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Houari [14], Said-Houari et al. [23], Said-Houari [22], Wu [27], Kafini and Messaoudi [5],
Li et al. [6], the studies by Liu [10, 11, 12] and a recent work by Ye [29] and the references
in these works.

In the case mi ≥ 0 (i = 1, . . . , n) and n = 2, the system in (1.1) converts to a Klein-
Gordon type model. Reed in [20] considered the problem with

f1(u1, u2) = −4λ(u1 + αu2)
3 − 2βu1u

2
2,

f2(u1, u2) = −4αλ(u1 + αu2)
3 − 2βu21u2,

which defines the motion of charged mesons in an electro-magnetic field (see [24]). For
more results concerning the existence of weak, global and nonglobal solutions we refer to
Jörgens [4], Makhankov [13], Medeiros and Menzala [16] and the works by Miranda and
Medeiros [15, 17]. In [7], Li and Tsai considered the system

(1.2) ∂2t ui −∆ui + ai|∂tui|pi−1∂tui +m2
iui = fi(u1, u2), ai ≥ 0, i = 1, 2,

in a bounded domain Ω ⊂ RN , (N ≥ 1) when ai = 0, (i = 1, 2). Under Dirichlet
boundary conditions, some considerations on initial data and the source terms, they ob-
tained global existence, uniqueness and blow-up of solutions. Recently, when ai > 0, pi =
1 (i = 1, 2) and without setting any restriction on upper bound of the initial energy, Wu
in [26] extended their blow up result and investigated the local existence and established
a sufficient condition of the initial data with arbitrarily high initial energy such that the
corresponding local solution blows up in finite time. More recently, Ye [28] considered
(1.2) for the case ai > 0, pi > 1 (i = 1, 2) with the sources f1(u1, u2) = b|u1|βu1|u2|β+2,
f2(u1, u2) = b|u2|βu2|u1|β+2, b, β > 0, and obtained the existence of global solutions and
the asymptotic stability of solutions by using the potential well method. However, a blow
up result has been not considered. In this regard, we may also mention to an other work
by Pişkin [18] in which the author investigated (1.2) for some class of sources in a bounded
domain Ω ⊂ RN , (N = 1, 2, 3) when ai > 0, pi > 1 (i = 1, 2) and obtained a blow up of
solutions with negative initial energy.

Whenmi ≥ 0 (i = 1, . . . , n) and n ≥ 2, Zhou and Mu [31] recently investigated (1.1) in a
bounded domain Ω ⊂ R3. They extended the results in [1] and [7] and discussed the blow
up of solutions in linear and nonlinear damping cases. They obtained the nonexistence
of global solutions under some conditions on the parameters and showed the blow up
of weak solutions with different range of initial energy. For this purpose, the authors
considered the following additional assumption on the source term:

(1.3)
n∑

i=1

m2
i ξ

2
i − 2F (ξ1, . . . , ξn) ≤ 0, for all (ξ1, . . . , ξn) ∈ Rn.

In nonlinear damping case they also proved a nonexistence result with negative initial
energy. Motivated to the above studies, in this paper we extend and improve the blow
up results in the recent works [18, 31] by proving a blow up result for the problem (1.1)
with not necessarily negative initial energy. In this way we don’t need to consider the
assumption (1.3) in the case of weak damping. An estimate for the lower bound of the
blow up time is also given. We are inspired by some earlier studies such as the works by
Philippin [19], Lili et al. [9] and Zhou [30] to obtain this estimate.

2. PRELIMINARIES

In this section we present some notations, assumptions and lemmas needed for our
work. In order to obtain our results, similar as in [31], we consider the following assump-
tions on the problem (1.1):
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(A1) φi ∈ H1
0 (Ω), ψi ∈ L2(Ω), (i = 1, . . . , n).

(A2) There exists constants c0, c1 > 0 such that

c0

n∑
i=1

|ui|4 ≤ F (u1, . . . , un) ≤ c1

n∑
i=1

|ui|4, for all (u1, . . . , un) ∈ Rn.

Using the Faedo-Galerkin approximations and following the arguments in [1, 3] and [7]
we can obtain the local existence of weak solutions:

Theorem 2.1. Suppose that the assumptions (A1) and (A2) hold. Then there exists a unique local
weak solution (u1, . . . , un) of (1.1) in the class

ui ∈ C
(
[0, T ), H1

0 (Ω)
)
, (i = 1, . . . , n),

∂tui ∈ C
(
[0, T ), L2(Ω)

)
∩ Lpi+1

(
[0, T ), Lpi+1(Ω)

)
, (i = 1, . . . , n),

for some T > 0.

Next, we define the following functionals on H1
0 (Ω):

K(t) = K(u1, . . . , un) =

n∑
i=1

(
∥∇ui∥22 + ∥miui∥22

)
− 4

∫
Ω

F (u1, . . . , un)dx,

J(t) = J(u1, . . . , un) =
1

2

n∑
i=1

(
∥∇ui∥22 + ∥miui∥22

)
−
∫
Ω

F (u1, . . . , un)dx,

E(t) = E(u1, . . . , un) =
1

2

n∑
i=1

∥∂tui∥22 + J(u1, . . . , un).

Lemma 2.1. E(t) is a non-increasing function for t ≥ 0 and

(2.4) E(t) = E(0)−
n∑

i=1

∫ t

0

∫
Ω

|∂tui(s)|pi+1dxds.

Proof. Multiplying the equations in (1.1) by ∂tui (i = 1, . . . , n), integrating over Ω, and
using the initial and boundary conditions we obtain (2.4). □

Consider the space

WT =
{
(u1, . . . , un) : ui ∈ C

(
[0, T ), H1

0 (Ω)
)
,

∂tui ∈ C
(
[0, T ), L2(Ω)

)
∩ Lpi+1([0, T ), Lpi+1(Ω)

)
, i = 1, . . . , n

}
,

with the norm

∥(u1, . . . , un)∥2WT
= max

0≤t≤T

{ n∑
i=1

(
∥∂tui(t)∥22 + ∥∇ui(t)∥22

)}
+

n∑
i=1

(∫ T

0

∥ui(s)∥pi+1
pi+1ds

) 1
pi+1

.

Definition 2.1. Let the assumptions (A1) and (A2) hold, (u1, . . . , un) be a solution of (1.1)
and

T ⋆ = sup
{
T > 0 : (u1, . . . , un) ∈ WT exists on [0, T )

}
.

If T ⋆ = +∞ then we say that the solution of (1.1) exists globally and if T ⋆ < +∞ we say
that the solutions blow up at the finite time T ⋆ in the sense

(2.5)
n∑

i=1

(
∥∂tui(t)∥22 + ∥∇ui(t)∥22

)
→ +∞ as t→ T ⋆−

.
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Remark 2.1. In the case T ⋆ = +∞ we refer to the arguments in [1, 3] and [7] to obtain
global existence of weak solutions when pi ≥ 3. In the case T ⋆ < +∞ Zhou and Mu in
[31] considered (1.1) and proved the blow up results in linear damping case (pi = 1) with
different range of initial energy and nonlinear damping case (1 < pi < 3) with negative
initial energy.

3. BLOW UP

In this section, we study the blow up of the solutions to the system (1.1). First, we
introduce the following:

ĉ = 4π−23−3/2,
1

α
= max

{
1

m2
1

, . . . ,
1

m2
n

}
, γ1 =

1

2
√
3c1ĉ

√
α

n
, E1 =

1

6
γ1.

Our main result reads in the following theorem:

Theorem 3.2. Suppose that the assumptions (A1) and (A2) hold, 1 ≤ pi < 3, (i = 1, . . . , n),
and (u1, . . . , un) is a solution of (1.1). Moreover, assume that

(3.6) E(0) < E1,

n∑
i=1

(
∥∇φi∥22 + ∥miφi∥22

)
> γ1.

Then, the solution of (1.1) blows up at a finite time T ⋆. Furthermore, the finite blow-up time T ⋆

satisfies in the following estimate

(3.7) T ⋆ >

∫ +∞

Φ(0)

27π4dζ

210n
[(
E(0)

)3
+ c31ζ

3
]
+ 108π4

(
E(0) + c1ζ

) .
where Φ(0) =

∑n
i=1 ∥φi∥44.

To prove the above theorem we need the following lemma:

Lemma 3.2. Suppose that (3.6) and the assumptions (A1) and (A2) hold. Then, there exists a
constant γ2 > γ1 such that

(3.8)
n∑

i=1

(
∥∇ui(t)∥22 + ∥miui(t)∥22

)
> γ2, ∀t ≥ 0,

and

(3.9) (c1ĉ)
−2/3 3

√
α

n

(
a

n∑
i=1

∥ui(t)∥44 + 2b
∥∥∥ n∏

i=1

ui(t)
∥∥∥2
2

)1/3

≥ γ2, ∀t ≥ 0.

Proof. By the assumption (A2) we have

(3.10) E(t) ≥ 1

2

n∑
i=1

(
∥∇ui(t)∥22 + ∥miui(t)∥22

)
− c1

n∑
i=1

∥ui∥44.

Using the Young’s inequality, for any ε > 0, we get

(3.11)
∫
Ω

|ui|4dx ≤ ε

2

∫
Ω

|ui|2dx+
1

2ε

∫
Ω

|ui|6dx, i = 1, . . . , n.

From the Talenti-Sobolev Theorem (see [25] with m = 3 and p = 2) we have

(3.12)
∫
Ω

|ui|6dx ≤ (ĉ)2
(∫

Ω

|∇ui|2dx
)3

, i = 1, . . . , n.
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Therefore, from (3.11) and (3.12) we obtain

(3.13)
n∑

i=1

∥ui∥44 ≤ ε

2α

n∑
i=1

ξi(t) +
n(ĉ)2

2ε

(
n∑

i=1

ξi(t)

)3

,

where ξi(t) = ∥∇ui(t)∥22 + ∥miui(t)∥22, i = 1, . . . , n. Then, using (3.13) for ε = α
2c1

, the
inequality (3.10) takes the form

(3.14) E(t) ≥ 1

4
γ(t)− n(c1)

2(ĉ)2

α

(
γ(t)

)3
=: G

(
γ(t)

)
,

where γ(t) =
∑n

i=1 ξi(t) and G(γ) = 1
4γ − n(c1)

2(ĉ)2

α γ3. It is not difficult to see that G is
strictly increasing in (0, γ1), strictly decreasing in (γ1,+∞), and G(γ) → −∞ as γ → +∞.
Since E(0) < E1, there exists γ2 > γ1 such that G(γ2) = E(0). Therefore, by (3.14) we
have

G(γ(0)) ≤ E(0) = G(γ2).

Thus, γ(0) ≥ γ2. To show (3.8) we suppose that there exists t0 > 0 such that γ(t0) ≤ γ2
and by continuity of γ(.) we can choose t0 such that γ1 < γ(t0). Since G is decreasing on
(γ1,+∞) we have G

(
γ(t0)

)
≥ G(γ2) = E(0) and by (3.14) we know that G

(
γ(t0)

)
≤ E(t0)

which yields E(t0) ≥ E(0) and this contradicts (2.4). Hence (3.8) holds. To show (3.9), we
use definition of the energy functional and (2.4) to obtain

E(0) + a

n∑
i=1

∥ui(t)∥44 + 2b
∥∥∥ n∏

i=1

ui(t)
∥∥∥2
2
≥ 1

2
γ(t).

Then, by (3.8) we have

a

n∑
i=1

∥ui(t)∥44 + 2b
∥∥∥ n∏

i=1

ui(t)
∥∥∥2
2
≥ 1

2
γ2 − E(0)

≥ 1

4
γ2 −G(γ2) =

n(c1)
2(ĉ)2

α
γ32 .

Therefore, (3.9) is established. This completes the proof of lemma 3.2. □

Proof of Theorem 3.2. We define

L(t) =
n∑

i=1

∫
Ω

u2i (t)dx,

then

L′(t) = 2

n∑
i=1

∫
Ω

ui(t)∂tui(t)dx,

L′′(t) =− 2

n∑
i=1

(
∥∇ui∥22 + ∥miui∥22

)
− 2

n∑
i=1

∫
Ω

ui∂tui|∂tui|pi−1dx

+ 8

∫
Ω

F (u1, . . . , un)dx+ 8(n− 2)b
∥∥∥ n∏

i=1

ui

∥∥∥2
2
+ 2

n∑
i=1

∥∂tui(t)∥22.
(3.15)
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Using Hölder’s inequality, the left inequality in (A2) and (3.9), for i = 1, . . . , n, we get∣∣∣∣∫
Ω

ui∂tui|∂tui|pi−1dx

∣∣∣∣ ≤ ∥ui∥pi+1∥∂tui∥pi

pi+1 ≤ |Ω|
3−pi

4(pi+1) ∥ui∥4∥∂tui∥pi

pi+1

≤ |Ω|
3−pi

4(pi+1)
1

4
√
c0

(∫
Ω

F (u1, . . . , un)dx

)1/4

∥∂tui∥pi

pi+1

≤ ki

(∫
Ω

F (u1, . . . , un)dx

)1/(pi+1)

∥∂tui∥pi

pi+1,

(3.16)

where

ki =
1

4
√
c0

(
α|Ω|

n(c1)2(ĉ)2γ32

) 3−pi
4(pi+1)

, i = 1, . . . , n.

Applying Young’s inequality to (3.16), for i = 1, . . . , n, we obtain∣∣∣∣∫
Ω

ui∂tui|∂tui|pi−1dx

∣∣∣∣ ≤ ki

{
εpi+1
i

pi + 1

∫
Ω

F (u1, . . . , un)dx

+
pi

pi + 1
ε
− pi+1

pi
i

∫
Ω

|∂tui|pi+1dx

}
,

(3.17)

where εi > 0 will be specified later. Therefore, from (3.17) the equality (3.15) turns into
the following inequality

L′′(t) ≥ 2

n∑
i=1

∥∂tui∥22 − 2

(
n∑

i=1

kiε
pi+1
i

pi + 1

)∫
Ω

F (u1, . . . , un)dx− 2K(t)

− 2

n∑
i=1

(
kipi
pi + 1

ε
− pi+1

pi
i

∫
Ω

|∂tui|pi+1dx

)
+ 8(n− 2)b

∥∥∥ n∏
i=1

ui

∥∥∥2
2
.

(3.18)

By the definition of E(t) we have

(3.19)

−2K(t) ≥ −2K(t) + 2σ(E(t)− E(0))

= σ

n∑
i=1

∥∂tui(t)∥22 + (σ − 2)

n∑
i=1

(
∥∇ui∥22 + ∥miui∥22

)
+ 2(4− σ)

∫
Ω

F (u1, . . . , un)dx− 2σE(0).

where σ > 2 is a constant to be specified later. Hence, by (3.18) and (3.19) we get

L′′(t) ≥ (σ + 2)

n∑
i=1

∥∂tui∥22 + (σ − 2)

n∑
i=1

(
∥∇ui∥22 + ∥miui∥22

)
+ 2

[
4− σ −

(
n∑

i=1

kiε
pi+1
i

pi + 1

)]∫
Ω

F (u1, . . . , un)dx− 2σE(0)

− 2

n∑
i=1

(
kipi
pi + 1

ε
− pi+1

pi
i

∫
Ω

|∂tui|pi+1dx

)
+ 8(n− 2)b

∥∥∥ n∏
i=1

ui

∥∥∥2
2
.

(3.20)

Since E(0) < E1 we can choose σ such that

(3.21)
6E1

3E1 − E(0)
< σ < 4.
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Then, by lemma 3.2, (3.8) and (3.21) we have

(σ − 2)

n∑
i=1

(
∥∇ui∥22 + ∥miui∥22

)
− 2σE(0) > 6E1(σ − 2)− 2σE(0) > 0.

We now fix εi, i = 1, . . . , n small enough such that

µ := 4− σ −

(
n∑

i=1

kiε
pi+1
i

pi + 1

)
> 0.

Integrating (3.20) over (0, t) we obtain

L′(t) >2µ

∫ t

0

∫
Ω

F
(
u1(s), . . . , un(s)

)
dxds

− 2

n∑
i=1

(
kipi
pi + 1

ε
− pi+1

pi
i

∫ t

0

∫
Ω

|∂tui(s)|pi+1dxds

)
+ L′(0).

(3.22)

Taking (3.9) and (2.4) into account and using the fact that E(0)−E(t) < E1, the inequality
(3.22) takes the form

L′(t) >

(
2µnγ32(c1)

2(ĉ)2

α

)
t− 2E1

n∑
i=1

(
kipi
pi + 1

ε
− pi+1

pi
i

)
+ L′(0).(3.23)

Finally, by integrating (3.23) from 0 to t we find

L(t) >
(
µnγ32(c1)

2(ĉ)2

α

)
t2 +

{
L′(0)− 2E1

n∑
i=1

(
kipi
pi + 1

ε
− pi+1

pi
i

)}
t+ L(0).(3.24)

On the other hand by using Hölder’s inequality and (2.4), for i = 1, . . . , n, we have

∥ui(t)∥2 ≤ ∥φi∥2 +
∫ t

0

∥∂tui(s)∥2ds ≤ ∥φi∥2 + Ci

∫ t

0

∥∂tui(s)∥pi+1ds

≤ ∥φi∥2 + CiE
1

pi+1

1 t
pi

pi+1 ,

where Ci, i = 1, . . . , n are some positive constants. Consequently,

∥ui(t)∥22 ≤ ∥φi∥22 + C2
i E

2
pi+1

1 t
2pi

pi+1 , , i = 1, . . . , n,

which contradicts (3.24).
To show (3.7) we define

Φ(t) =

n∑
i=1

∫
Ω

|ui(t)|4dx.

Then,

Φ′(t) = 4

n∑
i=1

∫
Ω

|ui(t)|2ui∂tuidx.

By using the Young’s inequality we obtain

Φ′(t) ≤ 2

n∑
i=1

∫
Ω

|ui(t)|6dx+ 2

n∑
i=1

∫
Ω

|∂tui(t)|2dx.(3.25)
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From (2.4) and (A2) we have
n∑

i=1

∥∂tui(t)∥22 +
n∑

i=1

(
∥∇ui(t)∥22 + ∥miui∥22

)
= 2E(t) + 2

∫
Ω

F (u1, . . . , un)dx

≤ 2E(0) + 2

∫
Ω

F (u1, . . . , un)dx

≤ 2E(0) + 2c1Φ(t).

(3.26)

It follows from (3.25), (3.26) and (3.12) that

Φ′(t) ≤ 2(ĉ)2
n∑

i=1

(∫
Ω

|∇ui|2
)3

+ 4E(0) + 4c1Φ(t)

≤ 2n(ĉ)2
( n∑

i=1

∥∇ui(t)∥22
)3

+ 4E(0) + 4c1Φ(t)

≤ 64n(ĉ)2
(
E3(0) + c31Φ

3(t)
)
+ 4
(
E(0) + c1Φ(t)

)
.

(3.27)

Therefore, integrating (3.27) over (0, t) we arrive at

(3.28) t ≥
∫ Φ(t)

Φ(0)

dζ

64n(ĉ)2
((
E(0)

)3
+ c31ζ

3
)
+ 4
(
E(0) + c1Φ(t)

) .
Since,

∑n
i=1 ∥ui(t)∥22 → +∞ as t → T ⋆−

and ∥ui∥2 ≤ C∥ui∥4 for i = 1, . . . , n and some
C > 0, then we can deduce that

∑n
i=1 ∥ui(t)∥44 → +∞ as t→ T ⋆−

. Hence, (3.7) follows by
letting t→ T ⋆−

in (3.28). This completes the proof of Theorem 3.2.

Example 3.1. (Coupled Nonlinear Klein-Gordon Equations with Nonlinear Damping
Terms) When n = 2 the equations in (1.1) converts to

(3.29)

{
∂2ttu1 −∆u1 +m2

1u1 + |∂tu1|p1−1∂tu1 = f1(u1, u2), in ΩT ,

∂2ttu2 −∆u2 +m2
2u2 + |∂tu2|p2−1∂tu2 = f2(u1, u2), in ΩT ,

where

(3.30) f1(u1, u2) = 4
[
a(u1 + u2)

3 + bu1u
2
2

]
, f2(u1, u2) = 4

[
a(u1 + u2)

3 + bu21u2
]
.

Pişkin in [18] considered (3.29) with the same initial and boundary conditions as in (1.1).
The author proved that if 1 ≤ p1, p2 < 3 then the solution of (3.29) blows up at a finite
time T ⋆ and

T ⋆ ≤ 1− σ

ξσζσ/(1−σ)(0)
, for some ξ > 0,

where 0 < σ ≤ min
{

3−p1

4p1
, 3−p2

4p2
, 14

}
and

ζ(0) =
(
− E(0)

)1−σ

+ ε

∫
Ω

(
ϕ1(x)ψ1(x) + ϕ2(x)ψ2(x)

)
dx, ε > 0.

This blow up result is obtained under the restrictionE(0) < 0 while as Theorem 3.2 shows,
the initial energy dose not need to be necessarily negative.

Example 3.2. (Coupled Nonlinear Klein-Gordon Equations with Linear Damping Terms)
Consider again (3.29) under the initial and boundary conditions in (1.1) when p1 = p2 = 1.
Using a concavity method, a nonexistence result of this problem has been investigated by
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Wu [26] where he proved that the solution with arbitrary positive initial energy blows up
at a finite T ⋆ time in the sense

lim
t↗T⋆

(
∥u1(t)∥22 + ∥u2(t)∥2

)
= +∞.

To obtain this result the author considered the following crucial assumption on the source
terms:

(3.31) u1f1(u1, u2) + u2f1(u1, u2) ≥ (2 + 4δ)F (u1, u2), ∀(u1, u2) ∈ R× R,
for some positive constant δ. As an example (see Example 3.6 in [26]) the author showed
that for 0 < δ ≤ 1/2 the solutions of (3.29) with the source terms (3.30) blow up. Restric-
tions similar to (3.31) have been imposed on source terms in different problems of type
(1.1) to obtain blow up results such as (1.3) in [31] by Zhou and Mu or the assumption
(A4) in [8] or the condition (3.16) in [7] by Li and Tsai. However, as the Theorem 3.6
indicates, we can neglect these kind of restrictions.
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