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A new approach to optimality in a class of nonconvex
smooth optimization problems

TADEUSZ ANTCZAK

ABSTRACT. In this paper, a new approximation method for a characterization of optimal solutions in a class
of nonconvex differentiable optimization problems is introduced. In this method, an auxiliary optimization
problem is constructed for the considered nonconvex extremum problem. The equivalence between optimal
solutions in the considered differentiable extremum problem and its approximated optimization problem is
established under (®, p) -invexity hypotheses.

1. INTRODUCTION

In optimization, several methods give a characterization of optimality for a constrained
extremum problem by the help of solving an auxiliary optimization problem associated
to the original extremum problem. These methods rely on the relationship between the
minimum point in the original mathematical programming problem and the optimal so-
lution in its associated approximated optimization problem. In recent years, considerable
attention has been given to devising new methods by the help of which solvability of the
original mathematical programming problem is characterized by solvability of its associ-
ated optimization problem (see, for example, [1], [2], [3], [7], [9], [10], [11], [12], [14], and
others).

The aim of the present work is to introduce a new method of a characterization of
optimal solutions in the considered nonconvex differentiable optimization problem. By
using the new approximation technique, we construct at the given feasible solution Z an
auxiliary optimization problem for the original nonconvex differentiable minimization
problem. We prove that if the functions constituting the considered differentiable opti-
mization problem are (®, p)-invex functions (not necessarily with respect to the same p),
then there is a equivalence between an optimal solution 7 in the original optimization
problem and a minimizer 7 in its associated optimization problem constructed in the in-
troduced approximation method. This result is illustrated by an example of a nonconvex
optimization problem involving (®, p)-invex functions. Further, it turns out that, in some
cases, an auxiliary optimization problem constructed in the introduced approximation
method is linear or convex although the original optimization problem is nonlinear or
nonconvex. Also such a case is illustrated by an example of a nonconvex optimization
problem involving (®, p)-invex functions.
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2. (@, p)-INVEXITY NOTION AND THE CONSIDERED CONSTRAINED OPTIMIZATION
PROBLEM

In this section, we provide some definitions and some results that we shall use in the
sequel. Let us assume that X is a nonempty open subset of R". We now give the definition
of a differentiable (®, p)-invex function introduced by Caristi et al. [8].

Definition 2.1. Let f : X — R be a differentiable function on X and u € X. If there exist a
function ® : X x X x R"*! — R, where ® (z,u, (-,-)) is convex on R"*1, ® (x,u, (0,a)) > 0
for every z € X and any a € R, and a real number p such that the following inequality

2.1 f@) = fu) =2 @ (z,u, (Vf(u),p)) (>),

holds for all z € X, then f is said to be (®, p)-invex (strictly (®, p)-invex) at u on X.
If inequality (2.1) is satisfied at any point u, then f is said to be a (®, p)-invex (strictly
(®, p)-invex) function on X.

Remark 2.1. Note that the concept of (®, p)-invexity generalizes and extends several gen-
eralized convexity notions, earlier introduced in the literature (see Remark 2.1 [4] in the
nondifferentiable case). For other properties of a class of scalar differentiable (®, p)-invex
functions, the readers are advised to consult Caristi et al.[8].

In the paper, consider the following differentiable constrained optimization problem:

f(z) — min P
st.gi () <0, jeJ={1,...m}, z€X, ®)
where f : X — Rand g; : X = R, j € J, are differentiable functions on a nonempty open
convex set X C R™. Let D := {x € X : g;(x) <0, j € J} be the set of all feasible solutions
for the problem (P). Further, we denote by J (%) = {j € J : g; () = 0} the set of indices of
inequality constraints that are active at the arbitrary feasible point Z € D.

The generalized Slater constraint qualification. It is said that the generalized Slater
constraint qualification is satisfied at Z € D for the considered optimization problem (P) if
there exists a feasible solution Z such that g; (z) < 0, j € J () and, moreover, g;, j € J (T),
are (®, py, )-invex at 7 on D.

Theorem 2.1. Let T be an optimal solution of the considered optimization problem (P) and the
generalized Slater constraint qualification be satisfied at T. Then, there exist Lagrange multipliers
§; >0, j=1,...,m, such that

(2.2) V@) + Y V(@) =0,
j=1

2.3) £9;@ =0, j=1,.,m.
3. AN AUXILIARY OPTIMIZATION PROBLEM AND OPTIMALITY

In this section, for the considered optimization problem (P), we introduce a definition
of an auxiliary optimization problem (P ,) (7)) at the given feasible solution 7 € D.
Further, we prove the equivalence between optimization problems (P) and (P(q,,) (7))
under assumption that the functions constituting the problem (P) are (®, p)-invex at T on
D (with respect to, not necessarily, the same p).

Let T be the given feasible solution of the considered minimization problem (P). Fur-
ther, assume that there exist ® : X x X x R"*! — R, where ® (2,7, (-,-)) is convex
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on R""!, & (2,7,(0,a)) > 0 forall z € X and any a € R, and, moreover, real num-
bers py, pgys -y Pg.,- We denote p = (pf, pgys - Pg,n) € R™TL. Then, for the considered
minimization problem (P), we define the following approximation optimization problem
(P(,p) (7)) as follows:

f(f) +@ (2,7, (Vf (’) 7)) = min
9j @ (2,7, (Vyg; (T),pg,)) <0, j€J, (P(a,p) (7))
z € X.

Further, let us denote by Q7 the set of all feasible solutions of the problem (P (¢ ,) (Z)).
First, we prove that, if the constraint function g is (®, p,)-invex at 7 on D, then any feasible
solution in the original constrained minimization problem is also feasible in its associated
approximated optimization problem (P (g , (7)).

Lemma 3.1. Let T be a given feasible solution of the considered optimization problem (P). Assume,
furthermore, that each g;, j € J, is (tI), pgj)—invex at T on D. Then any feasible solution in the
considered optimization problem (P) is also feasible in its associated approximated optimization
problem (P g , (T)).

Proof. Proof of this lemma follows directly from Definition 2.1. O

Theorem 3.2. Let T be a feasible solution in the considered minimization problem (P) and the
Karush-Kuhn-Tucker optimality conditions (2.2)-(2.3) be satisfied at T with Lagrange multipliers
Ej >0, j € J. Further, assume that there exist ® : X x X x R"*! — R, where ® (2,7, (-, "))
is convex on R"*!, & (7,7, (-,-)) = 0, ® (2,7, (0,a)) > 0 for every x € X and any a € Ry and
real numbers py, pg, -, Pg,, Such that py + 377" &;pg, > 0. Then T is an optimal solution in
an approximated optimization problem (P (s , (T)) associated to the problem (P).

Proof. Let T be the given feasible solution of the considered minimization problem (P) and
the Karush-Kuhn-Tucker optimality conditions (2.2)-(2.3) be satisfied at T with Lagrange
multipliers Ej >0, j € J,. Further, assume that there exist ® : X x X x R"t! — R, where
® (z,7,-) is convex on R"*, & (2,7, (-,+)) =0, ® (,7, (0,a)) > 0 for every z € X and any
a € R, and real numbers py, pg, , ..., pg,, such that

m
(3:4) pf+ Zgjpgj 2 0.
j=1
Let us denote

1 .
(3.5) o= ———= l;j = ——2——,j=1,..,m.
1+Zj 1§ ! 1+Z]:1§]
By (3.5), it follows that
(3.6) o+ Y Ty =1.

Using (3.5) in the Karush-Kuhn-Tucker optimality condition (2.2), we get
(3.7) oV f(T) + Z 7;Vg; (T
Combining (3.4) and (3.5), we obtain

(3.8) Tlops + > Tijpg, > 0.

j=1
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By assumption, ® (z, %, (0,a)) > 0 for every z € X . Hence, by (3.7) and (3.8), it follows,
therefore, that the inequality

(3.9) o ( (rof +Zu]ng T), o s +Zujpgj>) >0

j=1 j=1

is satisfied for all z € X. By assumption, ® (z,7, (+,-)) is convex on R"*!. Thus, by (3.6)
and the definition of a convex function, it follows that

@ (0,7, (Ao VI (@) + S5y 7,99, (7). Fops + S gpg, ) ) <
@ (2,7, (VF(@), pr)) + 2721 ;@ (2,7, (Vg;(T), pg, ) -
By (3.9) and (3.10), it follows that the inequality

m

(3.11) T, ® (2,7, (V£ (T), pf) +ZMJ z, (Vg;(E), pg,)) = 0

(3.10)

holds for all z € X. Therefore, by (3.5), (3.11) implies that the following inequality
(3.12) O (2,7, (V@) p5) + > &2 (2,7, (Vg;(T), pg,)) >0
j=1
holds for all z € X. We proceed by contradiction. Suppose, contrary to the result, that T

is not optimal of problem (P4 ,) (Z)). Then, there exists = € X satisfying the constraint of
(P(<I>,p) (f)), that is,

(3.13) 9; (@) + @ (2,7, (Vg; (T), pg,)) <0, j€J,

and, moreover,

(3.14) f@) + 27,7, (Vf(T),0p) < (@) + 2 @,T,(V(Z),pf)) -
By ® (7,7, (-,-)) = 0, (3.14) yields

(3.15) ¢ (z,z,(Vf(T),pr)) <O.

Multiplying (3.13) by £; > 0, j € J, we get
;95 (T) + ;@ (7,7, (Vg; (), pg;)) <0, j€J.
By the Karush-Kuhn-Tucker necessary optimality condition (2.3), it follows that
(3.16) £ (7.7, (Vg; () ,p5,)) <0, j€J.
Adding both sides of (3.15) and (3.16), we obtain that the following inequality

O (Z,7,(VF@), p5) + > & (7,7, (Vg5 (T) 1 pg,)) <O,
j=1
holds, which contradicts (3.12). This means that Z is optimal in the approximated opti-

mization problem (P(¢,,) (Z)) associated to the problem (P) and completes the proof of
this theorem. g

Remark 3.2. Note that we prove Theorem 3.2 without any (®, p)-invexity hypothesis im-
posed on the functions constituting the considered optimization problem (P).

The following result follows directly from Theorem 3.2.
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Corollary 3.1. Let T be an optimal solution of the considered extremum problem (P). Further,
assume that all hypotheses of Theorem 3.2 are fulfilled. Then T is also optimal of the approximated
optimization problem (P (g ) (T)) associated to the problem (P).

In order to prove the converse result, some (®, p)-invexity hypotheses are imposed on
the functions constituting the considered optimization problem (P).

Theorem 3.3. Let T be optimal in the approximated optimization problem (P(g ) (T)) associ-
ated to the considered extremum problem (P). Further, assume that the objective function f is
(®, py)-invex at T on D and each constraint function g;, j € J, is (®, py, )-invex at T on D. If
o (Z,Z, (-,-)) = 0, then T is optimal in the considered optimization problem (P).

Proof. We proceed by contradiction. Suppose, contrary to the result, that T is not optimal
in the considered optimization problem (P). Then there exists € D such that

(3.17) f @) < f(@).

By assumption, T is an optimal solution in an approximation optimization problem
(P(a,p) (T)) associated to the problem (P). Then, the inequality

(3.18) f@) +@ (2,7, (V@) ) = f (@) + (7,7, (V@) pr))

is satisfied for all z € D. By assumption, each constraint function g;, j € J, is (®, g, )-
invex at T on D. Hence, by Lemma 3.1, it follows that D C Q. Therefore, (3.18) is also
satisfied for x = € D. Thus, (3.18) yields

(3.19) f@)+@ @7, (Vf@),pr) = f (@) + 2 (@,7, (V@) pr)) -

Since @ (Z, 7, (-, -)) = 0, the inequality (3.19) gives

(3.20) @ (z,7,(Vf(®),05)) 2 0.

By assumption, f is (®, ps)-invex at Z on X. Thus, by Definition 2.1, it follows that
(3.21) F@) — £@) = © @7 (VF (@) 0))

By (3.20) and (3.21), it follows that the inequality f () > f(Z) holds, contradicting (3.17).
This means that 7 is optimal in the considered optimization problem (P). O

Example 3.1. Consider the following nonconvex optimization problem

f(x) =In (23 + 23 +1) + €T + 21 + e~ arctan (23) + 23 + €* — min
z) =—x122 <0,
g91(x) 1T2 = (P1)
g2(x) = —arctan (z1) <0,

g3(x) = —arctan (z3) < 0.
Note that D = {:U = (21,72) € R? : —arctan (z1) < 0 A —arctan (z2) < 0A —z122 < 0} and
Z = (0,0) is optimal in the problem (P1). Further, it can be proved by Definition 2.1 that the

objective function f is (®, py)-invex at T on D and the constraint functions g;, j = 1,2, 3,
are (@, py, )-invex at 7 on D, where

D (2,7, (9,p)) = 01 (w1 = T1) + 0 (w2 = T2) + p (21 = 71)° + (w2 — 7)°]

1 1 1
pr=1 pg==5, Pg = =5 Pg = 35
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We use the approximation method presented in the paper for solving the considered op-
timization problem (P1). Therefore, as it follows from its definition, we construct the
following approximation optimization problem (P14 ,) (7)) associated to problem (P1)

2+ 11 + 79 + 23 + 23 — min
—x] — % (x% + x%) <0, Pls,,) (7))
—T9 — % (1% +x§) <0.

Note that the Karush-Kuhn-Tucker necessary optimality conditions are satisfied at 7 =
(0,0)with the following Lagrange multipliers £, = 0, §, = 1, §& = 1. Thus, py +
Z?Zl €;pg, > 0. Hence, all hypotheses of Theorem 3.2 are satisfied and, therefore, 7 =
(0,0) is also optimal in the approximated optimization problem (P1(q,,) (Z)) defined above.
Now, we consider the converse case. Namely, note that all hypotheses of Theorem 3.3 are
also fulfilled. Therefore, 7 = (0,0), which is optimal of the problem (P14 , (%)), is also
optimal in the considered optimization problem (P). Furthermore, by Theorem 1 [5], the
constraint function g; is not invex at 7 = (0,0) on R? with respect to any function n de-
fined by n : R? x R? — R?. Therefore, it is not possible to use the n-approximation method
introduced by Antczak [1] for solving invex optimization problems. Since the constraint
function g; is not r-invex at 7 = (0,0) on R? with respect to any real number r, the 7-
approximation method can not be used also for solving such nonconvex optimization
problems in which the involved functions are r-invex (see [2]).

In some cases, the approximated optimization problem constructed in the introduced
approximation method for a nonlinear nonconvex extremum problem is linear or convex.

Example 3.2. Consider the following nonconvex optimization problem

f(#) =In (z? + 1) + arctan® z + = — min 2)
g (x) = 22 + arctan? z — arctanx < 0.

Note that D = {z € R : 2* + arctan® z — arctanz < 0} and Z = 0 is a feasible solution of
the problem (P2). Let us define

@(m,f,(q?,p)):ﬁ(x—f)—i—p(m—E)Q,

1
Pr=75s pg =1

Note that the Karush-Kuhn-Tucker necessary optimality conditions are satisfied atZ = 0
with the Lagrange multiplier = 1. Thus, ps+£p, > 0. Further, it can be shown by Defini-
tion 2.1 that the involved functions are (®, p)-invex at T on D. We use the approximation
method introduced in the paper for solving the considered extremum problem (P2) and,
therefore, we construct the following approximation optimization problem (P24 ) (7))
associated to the considered minimization problem (P2)

f(z) = 32* + 2 — min

g(a) =22 -z <0, (P2s,,) (7))

which is convex. The property of the introduced approximation method illustrated in
this example is important form the practical point of view since a complex nonconvex
extremum problem can be replaced and, therefore, solved by the help of a convex (or
linear) optimization problem.
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