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Multiple positive solutions to a (2m) th-order boundary
value problem

HABIBA BOULAIKI, TOUFIK MOUSSAOUI and RADU PRECUP

ABSTRACT. The aim of the present paper is to study the existence, localization and multiplicity of positive
solutions for a (2m)th-order boundary value problem subject to the Dirichlet conditions. Our approach is based
on critical point theory in conical shells and Harnack type inequalities.

1. INTRODUCTION

The aim of this paper is to obtain existence, localization and multiplicity results for
positive solutions of the following two-point boundary value problem

(1.1)
{

(−1)mu(2m)(t) = f(t, u(t)), t ∈ (0, 1),
u(i)(0) = u(i)(1) = 0, i = 0, . . . ,m− 1,

where m is an integer, m ≥ 1.
Throughout this paper, we assume that f : [0, 1] × R → R is a Carathéodory function

with f ([0, 1]× R+) ⊂ R+, and that there exist θ > 0 and two nonnegative functions
a, b ∈ L2(0, 1) such that

(1.2) |f(t, s)| ≤ a(t) + b(t) |s|θ for all s ∈ R and a.e. t ∈ [0, 1].

Higher order two-point boundary value problems have been extensively studied in
the literature by using fixed point techniques. For example, Graef and Henderson [6]
have studied (2m)th-order focal boundary value problems and they have proved the exis-
tence of at least two positive solutions by using a fixed point theorem owed to Avery and
Henderson [1]. Also, Shi and Chen [12] have studied a singular boundary value prob-
lem of Lidstone type where the nonlinearity is superlinear and depends on the deriva-
tives of even order, proving the existence of a positive solution by using Krasnosel’skii’s
compression-expansion theorem. The same equation has been studied by Chyan and
Henderson [5], but under different boundary conditions and for both superlinear and
sublinear nonlinearities. Krasnosel’skii’s fixed point theorem has been also used by Liu
[8] for (2m)th-order equations with Dirichlet boundary conditions. Multiple symmetric
positive solutions for a class of Lidstone-type higher order boundary value problems have
been obtained by Graef, Qian and Yang [7], while concave solutions for a (2m)th-order
problem with Dirichlet conditions have been obtained by Al Twaty and Eloe [13] using
an extension of the Leggett-Williams fixed point theorem. Multiple positive solutions for
(p, n− p) focal boundary value problems has been presented in Chapter 10 of the book by
O’Regan and Precup [9], using instead of fixed point index arguments, a more elementary
approach based on essential and inessential mappings.
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A variational alternative to the fixed point approach for the localization and multiplic-
ity of positive solutions has been recently proposed in [10], [11] and applied to several
classes of nonlinear problems having a variational structure. Such an application is pre-
sented in [3] for a fourth order boundary value problem. We would like to emphasize the
advantage of the variational approach compared to the fixed point one, which consists in
underlining additional properties of the solutions with respect to the energy functional of
the problem, for instance of being a local or a global minimum, or a saddle point of the
energy functional.

The aim of this paper is to show that the variational technique of localization and mul-
tiplicity developed in [11] also applies to higher order boundary value problems. One
of the main ingredients in this respect is a Harnack type inequality, which is helpful for
establishing lower estimations of solutions.

The paper is organized as follows: In Section 2 we shortly present the abstract critical
point theory for localization and multiplicity of solutions. Also we give the fixed point
formulation of the boundary value problem in terms of Green’s function, and the varia-
tional formulation of the problem. The main results are contains in Section 3. First we
obtain a Harnack type inequality associated to the problem and then we state and prove
the existence and localization in conical shells of two critical points (a minimum and a
saddle point) of the energy functional, Theorem 3.3. As a consequence, we have the mul-
tiplicity result, Theorem 3.4. An example is given to illustrate the results.

2. PRELIMINARIES

2.1. Critical point theorems in conical shells. We first recall some general critical point
results from [11] which are the main tool of this paper.

For any real Hilbert spaceH with inner product (·, ·)H and norm | · |H , letH ′ be its dual
space. Denoting by ⟨·, ·⟩ the duality between H and H ′, i.e. ⟨u∗, u⟩ = u∗(u) for u∗ ∈ H ′

and u ∈ H, according to the Riesz representation theorem, one can consider the canonical
isomorphism LH : H → H ′, given by

(2.3) (u, v)H = ⟨LH u, v⟩ for all u, v ∈ H ,

and its inverse JH : H ′ → H for which

(JHu, v)H = ⟨u, v⟩ for u ∈ H ′ , v ∈ H .

Using this isomorphism, the spaces H with H ′, are identified by letting LHu ≡ u, JHu ≡
u, and so LH = JH = IH (identity map of H) .

Consider now two real Hilbert spaces,X with inner product and norm (·, ·)X , |·|X , and
Y with inner product and norm (·, ·)Y , |·|Y ; assume thatX is continuously embedded into
Y (with |u|Y ≤ c0 |u|X , for u ∈ X) and that Y is identified with Y ′. Then, from X ⊂ Y,
one has Y ′ ⊂ X ′, and therefore

X ⊂ Y ≡ Y ′ ⊂ X ′.

Note that for every u ∈ X, the notation JXu is used to denote the element JXLY u. Also,
if u, v ∈ Y, then according to (2.3) and the identification LY u = u,

⟨u, v⟩ = (u, v)Y .

This is the reason for using the symbol ⟨·, ·⟩ instead of (·, ·)Y . In what follows, the inner
product and norm will be denoted by (·, ·) and ||| · ||| for X, and by ⟨·, ·⟩ and ∥·∥ for Y. Also,
the notations L and J are used instead of LX and JX .

Let K be a wedge in X, i.e. a convex closed nonempty set K, K ̸= {0} , with λu ∈ K
for every u ∈ K and λ ≥ 0. For any two positive numbers R0 and R1, denote by KR0R1
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the conical shell
KR0R1

:= {u ∈ K : ∥u∥ ≥ R0 and |||u||| ≤ R1} .
Such a set may be empty (even if R0 < R1) and may be disconnected. Let ϕ ∈ K \{0} be a
fixed element with |||ϕ||| = 1. If R0 < ∥ϕ∥R1, then µϕ ∈ KR0R1 for every µ ∈ [R0/ ∥ϕ∥ , R1] ,
and µϕ is an interior point of KR0R1 , in the sense that ∥µϕ∥ > R0 and |||µϕ||| < R1, for
µ ∈ (R0/ ∥ϕ∥ , R1) . In particular, any two elements of KR0R1

of the form µϕ, with µ ∈
[R0/ ∥ϕ∥ , R1] , belong to the same connected component of KR0R1

.
Notice that if Y = X, the spaces X and X ′ are identified, so L = J = IX . Also, in this

case, the conical shell KR0R1 is nonempty and simply connected for every R0, R1 with
0 < R0 < R1.

Let E be a C1 functional defined on X. The functional E is said to have a mountain pass
geometry in KR0R1

if there exist u0 and u1 in the same connected component of KR0R1
,

and r > 0 such that |||u0||| < r < |||u1|||, and

max {E (u0) , E (u1)} < inf {E (u) : u ∈ KR0R1 , |||u||| = r} .
In this case one considers the set

(2.4) Γ = {γ ∈ C([0, 1];KR0R1
) : γ(0) = u0, γ(1) = u1} ,

and the number

(2.5) c = inf
γ∈Γ

max
t∈[0,1]

E(γ(t)) .

Finally, the functional E is said to be bounded from below in KR0R1 if

(2.6) m := inf
u∈KR0R1

E (u) > −∞.

Consider the following
(c1): Invariance condition:

J (K) ⊂ K and (I − JE′) (K) ⊂ K, (I is the identity map on X).

(c2): Boundedness condition on the shell boundary: there exists a constant ν0 > 0 such
that

(JE′(u), Ju) ≤ ν0 for all u ∈ K with ∥u∥ = R0;

(JE′(u), u) ≥ −ν0 for all u ∈ K with |||u||| = R1.

(c3): Compactness condition:

the maps J and N = I − JE′ are compact from X to itself.

(c4): Compression condition:

(2.7) JE′ (u)− λJu ̸= 0 for u ∈ KR0R1 , ∥u∥ = R0, λ > 0;

(2.8) JE′ (u) + λu ̸= 0 for u ∈ KR0R1
, |||u||| = R1, λ > 0.

The following theorems give existence and localization of critical points in a conical
shell.

Theorem 2.1. Let the conditions (c1)-(c4) hold. If in addition E is bounded from below inKR0R1

and that there is a ρ > 0 with
E (u) ≥ m+ ρ

for all u ∈ KR0R1 which simultaneously satisfy |||u||| = R1, ∥u∥ = R0, then there exists u ∈
KR0R1

such that
E′ (u) = 0 and E (u) = m.
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Theorem 2.2. Let the conditions (c1)-(c4) hold. If in addition E has the mountain pass geometry
in KR0R1

and that there is a ρ > 0 with

|E (u)− c| ≥ ρ

for all u ∈ KR0R1 which simultaneously satisfy |||u||| = R1, ∥u∥ = R0, then there exists u ∈
KR0R1

such that
E′ (u) = 0 and E (u) = c.

Remark 2.1. Since m < c, if the assumptions of both Theorems 2.1 and 2.2 are satisfied,
then E has two distinct critical points in KR0R1

.

Repeated application of Theorems 2.1 and 2.2 to disjoint conical shells immediately
gives the following multiplicity results.

Theorem 2.3. (10) Let (Ri
0)1≤i≤k, (R

i
1)1≤i≤k (k ≤ ∞) be increasing finite or infinite sequences

with 0 < Ri
0 < ∥ϕ∥Ri

1 and c0Ri
1 < Ri+1

0 for all i. If the assumptions of Theorems 2.1 or 2.2 are
satisfied in each KRi

0R
i
1
, then E has k (or, when k = ∞, an infinite sequence of) distinct critical

points ui, with

(2.9) Ri
0 ≤ ∥ui∥ , |||ui||| ≤ Ri

1.

(20) Let (Ri
0)1≤i≤k, (Ri

1)1≤i≤k (k ≤ ∞) be decreasing finite or infinite sequences with 0 <

Ri
0 < ∥ϕ∥Ri

1 and c0Ri+1
1 < Ri

0 for all i. If the assumptions of Theorems 2.1 or 2.2 are satisfied
in each KRi

0R
i
1
, then E has k (or, when k = ∞, an infinite sequence of) distinct critical points ui

satisfying (2.9).

2.2. Fixed point formulation. According to [4] and [14], for each v ∈ L2 (0, 1) , the prob-
lem

(2.10)

 (−1)mu(2m)(t) = v(t), t ∈ (0, 1),

u(i)(0) = u(i)(1) = 0, i = 0, . . . ,m− 1,

has in H2m (0, 1) a unique solution denoted by Sv, namely

(Sv) (t) =

∫ 1

0

G(t, s)v(s)ds, t ∈ [0, 1],

where G : [0, 1]× [0, 1] → [0, 1] is the corresponding Green’s function

G(t, s) =
1

[(m− 1)!]
2


∫ t(1−s)

0
τm−1 (τ + s− t)

m−1
dτ, if 0 ≤ t ≤ s ≤ 1,∫ s(1−t)

0
τm−1 (τ + t− s)

m−1
dτ, if 0 ≤ s ≤ t ≤ 1.

Then problem (1.1) is equivalent to the integral equation

u (t) =

∫ 1

0

G (t, s) f (s, u(s)) ds, u ∈ C[0, 1],

which is a fixed point equation in C[0, 1].
Note the following properties of Green’s function:

Lemma 2.1. (a) 0 ≤ G(t, s) ≤ 1
[(m−1)!]2

sm(1− s)m, for all t, s ∈ [0, 1].

(b) G(t, s) ≥ 1
2m−1 t

m(1− t)m 1
[(m−1)!]2

sm(1− s)m, for all t, s ∈ [0, 1].
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2.3. Variational formulation of the problem. In order to apply Theorems 2.1 and 2.2 to
our problem (1.1), let us take X = Hm

0 (0, 1) endowed with the inner product and norm

(u, v) =

∫ 1

0

u(m)v(m)dt, |||u||| =
(∫ 1

0

∣∣∣u(m)
∣∣∣2 dt) 1

2

,

and Y = L2(0, 1) with the inner product and norm

⟨u, v⟩ =
∫ 1

0

uvdt, ∥u∥ =

(∫ 1

0

u2dt

) 1
2

.

Recall that (see [2])
Hm

0 (0, 1) ⊂ L2 (0, 1) ⊂ H−m (0, 1) ,

with continuous embeddings, where H−m (0, 1) is the dual space of Hm
0 (0, 1) . We denote

by c0 the embedding constant for Hm
0 (0, 1) ⊂ L2 (0, 1) and L2 (0, 1) ⊂ H−m (0, 1) , i.e.,

∥u∥ ≤ c0|||u||| (u ∈ Hm
0 (0, 1)) and ∥u∥H−m(0,1) ≤ c0∥u∥ (u ∈ L2 (0, 1)).

Also we consider the space C[0, 1] endowed with the norm

∥u∥∞ = max
t∈[0,1]

|u(t)|,

and denote by c∞ the embedding constant for Hm
0 (0, 1) ⊂ C[0, 1], i.e.,

∥u∥∞ ≤ c∞|||u||| (u ∈ Hm
0 (0, 1)).

Remark 2.2. We can take for example

(2.11) c∞ =
2m−1

1 · 3 · 5 · . . . · (2m− 1)
.

Indeed for every u ∈ Hm
0 (0, 1) the Cauchy-Schwarz inequality gives

u(t) =

∫ t

0

∫ s1

0

. . .

∫ sm−1

0

u(m) (sm) dsmdsm−1 . . . ds1(2.12)

≤ |||u|||
∫ t

0

∫ s1

0

. . .

∫ sm−2

0

√
sm−1dsm−1dsm−2 . . . ds1

≤ 2m−1

1 · 3 · 5 · . . . · (2m− 1)
|||u|||.

In this specific case, L : Hm
0 (0, 1) → H−m (0, 1) is given by

(2.13) ⟨Lu, v⟩ = ⟨(−1)mu(2m), v⟩ = (u, v) , for u, v ∈ Hm
0 (0, 1) ,

and its inverse is the continuous operator J : H−m (0, 1) → Hm
0 (0, 1) defined by

(Jv,w) = ⟨v, w⟩, for v ∈ H−m (0, 1) , w ∈ Hm
0 (0, 1) .

Notice that for each v ∈ L2 (0, 1) one has

(Jv) (t) = (Sv) (t) , t ∈ (0, 1).

The energy functional associated to boundary value problem (1.1) is given by

(2.14) E(u) =

∫ 1

0

[
1

2
|u(m)(t)|2 − F (t, u(t))

]
dt,

where F (t, ·) is the primitive of f(t, ·) which vanishes at zero.

Lemma 2.2. Assume that the growth condition (1.2) holds. Then the Nemytskii operatorNf (u)(t) =
f(t, u(t)) is well-defined, continuous and bounded from C[0, 1] into L2 (0, 1) .
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Proof. Let u ∈ C[0, 1]. By (1.2) and Young’s inequality we have

∥Nf (u)∥2 =

∫ 1

0

f(t, u(t))2dt

≤
∫ 1

0

(
a(t) + b(t)|u(t)|θ

)2
dt

≤ 2

∫ 1

0

a(t)2dt+ 2

∫ 1

0

b(t)2|u(t)|2θdt

≤ 2∥a∥2 + 2∥b∥2∥u∥2θ∞ < +∞.

This shows that Nf is well-defined and bounded from C[0, 1] into L2 (0, 1) . To prove that
Nf is continuous, let (un) be a sequence in C[0, 1] such that un → u in the C[0, 1]-norm.
Then there exists R > 0 such that |un(t)| ≤ R for every n ∈ N, |u(t)| ≤ R and un(t) → u(t)
for every t ∈ [0, 1]. Since f(t, .) is continuous for a.e. t ∈ [0, 1], we have f(t, un(t)) →
f(t, u(t)) for a.e. t ∈ [0, 1]. Then Nf (un) → Nf (u) pointwise a.e. Moreover, the growth
condition (1.2) yields

|Nf (un)(t)−Nf (u)(t)|2 ≤ 2
(
|Nf (un)(t)|2 + |Nf (u)(t)|2

)
≤ 2

{(
a(t) + b(t)|un(t)|θ

)2
+
(
a(t) + b(t)|u(t)|θ

)2}
≤ 4

{
a(t)2 + b(t)2|un(t)|2θ + a(t)2 + b(t)2|u(t)|2θ

}
= 8a(t)2 + 4b(t)2

(
|un(t)|2θ + |u(t)|2θ

)
≤ 8a(t)2 + 8b(t)2R2θ.

Since a and b ∈ L2 (0, 1) , we have 8a(t)2 + 8b(t)2R2θ ∈ L1 (0, 1) , and the Lebesgue domi-
nated convergence theorem guarantees that

Nf (un) → Nf (u) in L2 (0, 1) ,

proving the continuity of Nf . □

Remark 2.3. Since the embedding Hm
0 (0, 1) ⊂ C[0, 1] is compact, the operator Nf is com-

pact from Hm
0 (0, 1) to L2 (0, 1) .

Lemma 2.3. Under the growth condition (1.2), the functional E is of class C1, bounded from
bellow on each bounded subset of Hm

0 (0, 1) , and

E′ (u) = Lu−Nf (u) in H−m (0, 1) ,

or equivalently

(2.15) JE′ (u) = u− JNf (u) in Hm
0 (0, 1) .

Proof. Step 1 : The functional E is well-defined. Indeed, for u ∈ Hm
0 (0, 1) , the growth

condition (1.2) implies that

|F (t, u(t))| ≤

∣∣∣∣∣
∫ u(t)

0

|f(t, s)| ds

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ u(t)

0

(
a(t) + b(t)|s|θ

)
ds

∣∣∣∣∣
≤ a(t)|u(t)|+ b(t)

θ + 1
|u(t)|θ+1.
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Then ∣∣∣∣∫ 1

0

F (t, u(t))dt

∣∣∣∣ ≤
∫ 1

0

|F (t, u(t))| dt ≤
∫ 1

0

(
a(t)|u(t)|+ b(t)

θ + 1
|u(t)|θ+1

)
dt

≤ ∥u∥∞
∫ 1

0

a(t)dt+
1

θ + 1
∥u∥θ+1

∞

∫ 1

0

b(t)dt

≤ ∥u∥∞∥a∥+ 1

θ + 1
∥u∥θ+1

∞ ∥b∥.

Then since Hm
0 (0, 1) embeds continuously in C [0, 1] ,

(2.16)
∣∣∣∣∫ 1

0

F (t, u(t))dt

∣∣∣∣ ≤ (
c∞∥a∥+ cθ+1

∞
θ + 1

∥b∥|||u|||θ
)
|||u|||.

Hence E is well-defined.
Step 2 : We prove that E is Fréchet differentiable on Hm

0 (0, 1) and

⟨E′(u), v⟩ =
∫ 1

0

u(m)(t)v(m)(t)dt−
∫ 1

0

f(t, u(t))v(t)dt, for all u, v ∈ Hm
0 (0, 1) .

Indeed, from the mean-value theorem we have for u, v ∈ Hm
0 (0, 1)∣∣∣∣E(u+ v)− E(u)−

∫ 1

0

u(m)(t)v(m)(t)dt+

∫ 1

0

f(t, u(t))v(t)dt

∣∣∣∣
≤ 1

2
|||v|||2 +

∣∣∣∣∫ 1

0

f(t, u(t))v(t)dt−
∫ 1

0

[F (t, u(t) + v(t))− F (t, u(t))]dt

∣∣∣∣
≤ 1

2
|||v|||2 +

∫ 1

0

|f(t, u(t) + η(t)v(t))− f(t, u(t))| |v(t)| dt

≤ 1

2
|||v|||2 + ∥v∥∞

∫ 1

0

|f(t, u(t) + η(t)v(t))− f(t, u(t))| dt

≤ 1

2
|||v|||2 + c∞|||v|||

∫ 1

0

|f(t, u(t) + η(t)v(t))− f(t, u(t))| dt,

for some function 0 < η(t) ≤ 1. Since a, b ∈ L2 (0, 1) ⊂ L1 (0, 1) by the Lebesgue domi-
nated convergence theorem∫ 1

0

|f(t, u+ ηv)− f(t, u)| dt→ 0 as |||v||| → 0.

So E is Fréchet differentiable on Hm
0 (0, 1) and

(2.17) ⟨E′(u), v⟩ =
∫ 1

0

u(m)(t)v(m)(t)dt−
∫ 1

0

f(t, u(t))v(t)dt = (u, v)− ⟨Nfu, v⟩.

Step 3 : We prove that E′ (u) = Lu − Nf (u) in H−m (0, 1) and E′ : Hm
0 (0, 1) →

H−m (0, 1) is continuous. The first assertion follows directly from (2.13) and (2.17). Fur-
thermore, since the embeddings Hm

0 (0, 1) ⊂ C[0, 1] and L2 (0, 1) ⊂ H−m (0, 1) are contin-
uous, by Lemma 2.2,Nf is continuous fromHm

0 (0, 1) toH−m (0, 1) . Finally the continuity
of L from Hm

0 (0, 1) to H−m (0, 1) implies that E′ is continuous. Therefore the functional
E is of class C1.
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Step 4: The functional E is bounded from below on each bounded subset of Hm
0 (0, 1) .

Indeed, if u ∈ Hm
0 (0, 1) , then by using (2.16), we have

E(u) =
1

2
|||u|||2 −

∫ 1

0

F (t, u(t))dt(2.18)

≥ −
∫ 1

0

F (t, u(t))dt(2.19)

≥ −c∞∥a∥|||u||| − 1

θ + 1
cθ+1
∞ ∥b∥|||u|||θ+1

.

Hence, if |||u||| ≤ C, then

E (u) ≥ −c∞∥a∥C − 1

θ + 1
cθ+1
∞ ∥b∥Cθ+1 > −∞.

□

3. MAIN RESULTS

3.1. A Harnack type inequality. Our first result is a Harnack type inequality for the posi-
tive solutions of problem (2.10), whose proof is based on the properties of Green’s function
given by Lemma 2.1. The result is an essential tool for the existence and localization of
critical points of the energy functional (2.14).

Lemma 3.4. For any nonnegative function v ∈ L2 (0, 1) one has

(3.20) (Jv) (t) ≥M(t)∥Jv∥∞, for all t ∈ [0, 1],

and

(3.21) (Jv) (t) ≥M(t)∥Jv∥, for all t ∈ [0, 1],

where M(t) = tm(1− t)m/ (2m− 1) and ∥·∥ is the L2-norm.

Proof. Let v ∈ C[0, 1] be any nonnegative function. For all t, τ ∈ [0, 1], using the properties
of Green’s function, we have

(Jv)(t) =

∫ 1

0

G(t, s)v(s)ds ≥ tm(1− t)m

2m− 1

∫ 1

0

sm(1− s)m

[(m− 1)!]
2 v(s)ds

≥ tm(1− t)m

2m− 1

∫ 1

0

G(τ, s)v(s)ds =
tm(1− t)m

2m− 1
(Jv)(τ).

Then

(Jv)(t) ≥ tm(1− t)m

2m− 1
max
τ∈[0,1]

(Jv)(τ).

Hence

(Jv)(t) ≥ tm(1− t)m

2m− 1
∥Jv∥∞ ,

and (3.20) is proved. Inequality (3.21) is a consequence of (3.20) and of the obvious in-
equality ∥u∥ ≤ ∥u∥∞ for all u ∈ C [0, 1] . □
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3.2. Existence and localization principles. In connection with Harnack inequality (3.21),
we consider a cone K in Hm

0 (0, 1) , defined by

K = {u ∈ Hm
0 (0, 1) : u(t) ≥M(t) ∥u∥ for all t ∈ [0, 1]}.

Obviously, all functions in K are nonnegative. In this case we may take the required ele-
ment ϕ from Section 2.1 to be ϕ = Jv, where v is any fixed nonnegative nonzero function
in L2 (0, 1) . Up to a positive multiplicative constant, we may assume that |||ϕ||| = 1. Also,
for any two positive numbers, we define the conical shell

KR0R1
= {u ∈ K : ∥u∥ ≥ R0, |||u||| ≤ R1}.

Denote

Φ (t) = inf
τ∈[M(t)R0,c∞R1]

f (t, τ) , Ψ(t) = sup
τ∈[M(t)R0,c∞R1]

f (t, τ)

and consider the following hypotheses:

(H1): There exist R0, R1 with 0 < R0 < ∥ϕ∥R1 such that

R0 ≤ ∥JΦ∥ , where (JΦ) (t) =

∫ 1

0

G(t, s)Φ (s) ds,(3.22)

R1 ≥ c∞ ∥Ψ∥L1(0,1) .(3.23)

(H2): There exists ρ > 0 such that

E (u) ≥ m+ ρ for all u ∈ KR0R1
satisfying simultaneously |||u||| = R1, ∥u∥ = R0.

(H3): There exist u0, u1 in the same connected component of KR0R1
and r > 0 such

that |||u0||| < r < |||u1||| and

max{E(u0), E(u1)} < inf{E(u) : u ∈ KR0R1 , |||u||| = r}.

(H4): There exists ρ > 0 such that

|E (u)− c| ≥ ρ for all u ∈ KR0R1
satisfying simultaneously |||u||| = R1, ∥u∥ = R0.

Note that the numbers m and c in (H2) and (H4) are defined by (2.6) and (2.5), respec-
tively.

We have the following principles of existence and localization of solutions.

Theorem 3.4. (10) If the conditions (H1) and (H2) hold, then problem (1.1) has at least one
positive solution um in KR0R1

such that

E(um) = m.

(20) If the conditions (H1), (H3) and (H4) hold, then problem (1.1) has at least one positive
solution uc in KR0R1 such that

E(uc) = c.

(30) If all conditions (H1)-(H4) hold, then problem (1.1) has in KR0R1
at least two distinct

positive solutions, um and uc.

Proof. We apply Theorem 2.1 and 2.2 to the functional E defined on Hm
0 (0, 1) . Thus we

need to check that conditions (c1)-(c4) are fulfilled. First note that from (2.15) one has

N (u) = u− JE′ (u) = JNf (u) ,

with

JNf (u) (t) =

∫ 1

0

G(t, s)f(s, u(s))ds.
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Check of the invariance condition (c1): In view of inequality (3.21), the condition J (K) ⊂
K is trivially satisfied. To prove that (I − JE′) (K) ⊂ K, let u ∈ K be any element of K.
Then u ∈ Hm

0 (0, 1) and u ≥ 0 on [0, 1] . Next, the properties of f guarantee that Nf (u)
is a nonnegative function in L2 (0, 1) , and then Harnack inequality (3.21) implies that
JNf (u) ∈ K. Thus (I − JE′) (u) = JNf (u) ∈ K, as wished.

Check of the boundedness condition (c2): A simple consequence of the fact that JE′ maps
bounded sets into bounded sets.

Check of the compactness condition (c3): The operators J andN are compact fromHm
0 (0, 1)

to itself. Indeed the compactness of J is a consequence of the compactness of the embed-
ding Hm

0 (0, 1) ⊂ L2 (0, 1) , while the compactness of N = JNf follows from Remark 2.3.
Check of the compression condition (c4): First we show that (2.8) holds. Indeed, if we

assume the contrary, then
JE′ (u) + λu = 0

for some u ∈ KR0R1
with |||u||| = R1 and λ > 0. Since N = I − JE′, it follows that N (u) =

(1 + λ)u, and then

(3.24) R2
1 = |||u|||2 = (1 + λ)−1(N (u) , u) < (JNf (u) , u) = ⟨Nf (u) , u⟩.

Since u ∈ KR0R1 , for every t ∈ (0, 1) , we have

M(t)R0 ≤M(t)∥u∥ ≤ u (t) ≤ ∥u∥∞ ≤ c∞|||u||| = c∞R1.

Then

⟨Nf (u) , u⟩ =

∫ 1

0

f (t, u (t))u(t)dt ≤ ∥u∥∞
∫ 1

0

sup
τ∈[M(t)R0,c∞R1]

f (t, τ) dt

≤ c∞|||u|||
∫ 1

0

Ψ(t) dt ≤ c∞R1 ∥Ψ∥L1(0,1) .

This together with (3.24) yields

R1 < c∞ ∥Ψ∥L1(0,1) ,

a contradiction to (3.23). Thus (2.8) holds.
Now we check condition (2.7). Assume that (2.7) does not holds. Then

JE′ (u)− λJu = 0,

for some u ∈ KR0R1
with ∥u∥ = R0 and λ > 0. Hence N (u) + λJu = u, or equivalently

J(Nf (u) + λu) = u. Since u ∈ KR0R1
and ∥u∥ = R0, for all t ∈ (0, 1) , we have

M(t)R0 =M(t)∥u∥ ≤ u (t) ≤ ∥u∥∞ ≤ c∞|||u||| ≤ c∞R1.

Then

u (t) =

∫ 1

0

G (t, s) (f (s, u (s)) + λu (s)) ds >

∫ 1

0

G (t, s) f (s, u (s)) ds

≥
∫ 1

0

G (t, s) inf
τ∈[M(s)R0,c∞R1]

f (s, τ) ds =

∫ 1

0

G (t, s) Φ (s) ds = (JΦ) (t) .

Consequently
R0 = ∥u∥ > ∥JΦ∥ ,

which contradicts (3.22). Thus (2.7) holds.
Notice that the solutions um and uc are distinct since m < c. □
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3.3. Case of nonlinearities with separated variables. It deserves to see how condition
(H1) looks in the particular case of a nonlinearity with separated variables, i.e., when f
has the form

f(t, s) = g(t)h(s),

where h : R → R is a continuous function with h (R+) ⊂ R+ and

(3.25) |h (s)| ≤ a0 + b0 |s|θ for all s ∈ R,

and g is a nonnegative function from L2 (0, 1) . It is clear that under these conditions, f
is a Carathéodory function with f ([0, 1]× R+) ⊂ R+ and satisfies the growth condition
(1.2) with a(t) = a0g(t) and b(t) = b0g(t).

Assume in addition that h is nondecreasing. Then

Φ (t) = g(t)h (M(t)R0) , Ψ(t) = g(t)h (c∞R1)

and the compression conditions (3.22) and (3.23) become

(3.26) R0 ≤ ∥J (gh(MR0))∥ , where J (gh(MR0)) (t) =

∫ 1

0

G(t, s)g(s)h(M(s)R0)ds,

(3.27) R1 ≥ c∞h (c∞R1) ∥g∥L1(0,1) .

A sufficient condition for (3.26) to hold is

(3.28) R0 ≤ h(M̃R0)
∥∥J (

gχ[a1,b1]

)∥∥ ,
where a1, b1 are numbers from (0, 1) , M̃ = min{M(a1),M(b1)} and χ[a1,b1] is the charac-
teristic function of the interval [a1, b1]. Also a sufficient condition for (3.27) to hold is

ψ(R1)

R1
≤ 1, where ψ(τ) = c∞a0 ∥g∥L1(0,1) + cθ+1

∞ b0 ∥g∥L1(0,1) τ
θ.

Notice that if we choose [a1, b1] = [σ, 1 − σ] with some σ ∈ (0, 1/2), then condition (3.28)
reads as

R0 ≤ h(M(σ)R0)
∥∥Jgχ[σ,1−σ]

∥∥ .
For nonlinearities with separated variables we have the following existence result.

Theorem 3.5 (Existence). Assume that f(t, s) = g(t)h(s), with g ∈ L2 (0, 1;R+) and h :
R+ → R+, continuous, nondecreasing, and satisfying (3.25) for some θ ∈ (0, 1) . In addition
assume that

(3.29) lim
τ→0

h (τ)

τ
= ∞.

Then (1.1) has at least one positive solution in K.

Proof. From (3.29) it follows that condition (3.26) holds for every R0 sufficiently small.
Next, since 0 < θ < 1, one has limτ→+∞

h(τ)
τ = 0 and so condition (3.27) holds for every

R1 > 0 sufficiently large. Furthermore, from (2.18), one has

E(u) ≥ 1

2
|||u|||2 − 1

θ + 1
cθ+1
∞ ∥b∥|||u|||θ+1 − c∞∥a∥|||u|||

≥ 1

2
|||u|||2 − 1

θ + 1
cθ+1
∞ b0∥g∥|||u|||θ+1 − c∞a0∥g∥|||u|||,(3.30)

which in view of θ < 1, implies that E(u) → +∞ as |||u||| → +∞. Then for a fixed ρ > 0, we
can choose R1 sufficiently large such that

(3.31) E(u) ≥ E (µϕ) + ρ ≥ m+ ρ, for all u ∈ K with |||u||| = R1,
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where µ > 0 is such that ∥µϕ∥ = R0. Hence conditions (H1) and (H2) are satisfied and
Theorem 3.4 applies and yields the conclusion. □

Remark 3.4. The conclusion of Theorem 3.5 remains true if

θ = 1 and c2∞b0∥g∥ < 1.

Indeed, for θ = 1 one has

E(u) ≥ 1

2
|||u|||2 − 1

2
c2∞b0∥g∥|||u|||

2 − c∞a0∥g∥|||u|||

=
1

2

(
1− c2∞b0∥g∥

)
|||u|||2 − a0∥g∥|||u|||.

Then E(u) → +∞ as |||u||| → +∞ and (3.31) holds for R1 sufficiently large. Furthermore,
for θ = 1 we have

lim
τ→+∞

h(τ)

τ
≤ b0 <

1

c2∞b0∥g∥
.

Hence, since ∥g∥ ≥ ∥g∥L1(0,1), (3.27) holds for R1 sufficiently large.

Theorem 3.6 (Multiplicity). Assume that f(t, s) = g(t)h(s), with g ∈ L2 (0, 1;R+) and
h : R+ → R+, continuous, nondecreasing, and satisfying (3.25) for some θ ∈ (0, 1) . Let
(Ri

0)1≤i≤k, (Ri
1)1≤i≤k (k ≤ ∞) be increasing sequences of positive numbers satisfying the fol-

lowing conditions

(3.32) Ri
0 < ∥ϕ∥Ri

1, for i = 1, 2, . . . , k;

(3.33) c0R
i
1 < Ri+1

0 , for i = 1, 2, . . . , k − 1;

(3.34) R0 ≤ h(M̃R0)
∥∥J (

gχ[a1,b1]

)∥∥ , for i = 1, 2, . . . , k.

Then, if R1
1 is large enough, problem (1.1) has at least k distinct solutions ui with ∥ui∥ ≥ Ri

0 and
|||ui||| ≤ Ri

1, i = 1, 2, . . . , k.

Proof. First, condition (3.32) guarantees that the set KRi
0R

i
1

is nonempty. Also, (3.33) im-
plies that the sets KRi

0R
i
1

are disjoint. Indeed, from (3.33) we have the inclusion

KRi
0R

i
1
⊂ {u ∈ K : ∥u∥ ≤ Ri+1

0 },

since for every u ∈ KRi
0R

i
1
, ∥u∥ ≤ c0|||u||| ≤ c0R

i
1 < Ri+1

0 . Let us show that conditions (H1)
and (H2) of Theorem 3.4 are satisfied for each set KRi

0R
i
1
. Since θ < 1, limτ→+∞ ψ (τ) /τ =

0 and the function ψ (τ) /τ is decreasing on (0,+∞). So, there exists τ0 > 0 such that
ψ (τ) /τ ≤ 1 for all R1

1 ≥ τ0, and ψ
(
Ri

1

)
/Ri

1 ≤ 1 for i = 2, 3, . . . , k. According to (3.34),
(H1) holds for each KRi

0R
i
1

for R1
1 large enough. Next, let u ∈ KRi

0R
i
1

with |||u||| = Ri
1. From

(3.30) we have

E (u) ≥ ω (|||u|||) , where ω(τ) =
1

2
τ2 − 1

θ + 1
cθ+1
∞ b0∥g∥τθ+1 − c∞a0∥g∥τ.

Note that since θ < 1, then for each B ∈ (0, 1), there exists τ1 > 0 such that

ω(τ) ≥ B2

2
τ2 for all τ ≥ τ1.

Let B = max1≤i≤k R
i
0/

(
∥ϕ∥Ri

1

)
. From (3.32), one has B ∈ (0, 1). Then, if R1

1 ≥ τ1,

E (u) ≥ ω
(
Ri

1

)
≥ B2

2
(Ri

1)
2 ≥ (Ri

0)
2

2 ∥ϕ∥2
= E (µiϕ) + ρi
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for all i, where ∥µiϕ∥ = Ri
0 and ρi =

∫ 1

0
F (t, µiϕ)dt. Hence conditions (H1) and (H2)

hold for each set KRi
0R

i
1
, i = 1, 2, . . . , k provided that R1

1 ≥ max{τ0, τ1}, and Theorem 3.4
applies to each set KRi

0R
i
1
, i = 1, 2, . . . , k. □

3.4. Example. Let g ∈ L2 (0, 1;R+) with g (t) > 0 for a.e. t ∈ [0, 1], and let h : R → R be
an even function with

h(s) =

 α
√
s, if 0 ≤ s ≤ 1,

αs2, if 1 < s ≤ β,
α
(√
s− β + β2

)
, if s > β,

where α > 0 and β > 2 are chosen below. Then the problem (1.1) with f(t, s) = g(t)h(s),
has at least two positives solutions.

It is clear that h is continuous, nondecreasing on R+ and h (R+) ⊂ R+. In addition we
can find a0, b0 > 0 depending on α and β such that

|h (s)| ≤ a0 + b0s
2, s ∈ R.

Hence condition (1.2) holds with θ = 2, a (t) = a0g (t) and b (t) = b0g (t) .
Fulfillment of condition (H3): Choose r = 2. Then

inf
u∈K, |||u|||=r

E(u) >
1

2
.

Indeed, for u ∈ K with |||u||| = 2, using (2.12) with c∞ given by (2.11), and observing that
c∞ ≤ 1, we find

0 ≤ u(t) ≤ ∥u∥∞ ≤ c∞|||u||| = 2c∞ ≤ 2.

Then

F (t, u(t)) = g (t)

∫ u(t)

0

h (s) ds ≤ g (t)

∫ 2

0

h (s) ds = 3αg (t) .

Hence

E (u) =
1

2
|||u|||2 −

∫ 1

0

F (t, u(t))dt ≥ 2− 3α

∫ 1

0

g (t) dt ≥ 2− 3α ∥g∥ .

So, for α > 0 sufficiently small, we have

E(u) ≥ 1

2
for all u ∈ K with |||u||| = 2.

Next, let u0 ∈ K be any function satisfying |||u0||| = 1. Clearly |||u0||| < r = 2, and

E(u0) =
1

2
−
∫ 1

0

F (t, u0(t))dt <
1

2
.

Now we look for an element u1 ∈ K such that |||u1||| > 2 and E (u1) < 1/2. Let

u1 = β
u0

∥u0∥∞
.

One has |||u1||| = β/ ∥u0∥∞ , and if we choose β > 2 ∥u0∥∞ , then |||u1||| > 2. Also, since
u1(0) = u1(1) = 0 and ∥u1∥∞ = β > 2, the level set (u > 1) is nonempty and is a proper
subset of [0, 1]. Hence

E (u1) =
β2

2 ∥u0∥2∞
−
∫ 1

0

F (t, u1(t)) dt

≤ β2

2 ∥u0∥2∞
−
∫
(u1>1)

F (t, u1(t)) dt.
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In view of 0 ≤ u1(t) ≤ β for all t ∈ [0, 1], on the level set (u1 > 1) we have

F (t, u1(t)) = g (t)

(
2

3
α+

α

3
(u1 (t)

3 − 1)

)
≥ α

3
g (t)u1 (t)

3
.

Thus

E (u1) ≤ β2

2 ∥u0∥2∞
− α

3

∫
(u1>1)

g (t)u1 (t)
3
dt

≤ β2

2 ∥u0∥2∞
− α

3

β3

∥u0∥3∞

∫
(u1>1)

g (t)u0 (t)
3
dt.

Since the level set (u1 > 1) enlarges as β increases, we deduce that

β2

2 ∥u0∥2∞
− α

3

β3

∥u0∥3∞

∫
(u1>1)

g (t)u0 (t)
3
dt→ −∞ as β → +∞.

Thus we can find a β sufficiently large to have E (u1) < 1/2. With this choice of α and β,
condition (H3) is fulfilled.

Fulfillment of condition (H1): Since

lim
τ→0

h(τ)

τ
= +∞ and lim

τ→+∞

h(τ)

τ
= 0,

we may find R0, R1 such that u0, u1 ∈ KR0R1
and (3.26), (3.27) (and consequently (H1))

hold for every R1 ≥ R1.
Fulfillment of conditions (H2) and (H4): Since c > m, it suffices to prove that there exists

ρ > 0 such that

(3.35) E (u) ≥ c+ ρ, for all u ∈ KR0R1
with |||u||| = R1 and ∥u∥ = R0 .

Let us fix R0 and seek R1 ≥ R1 such that (3.35) holds. Denote by ΓR1 and cR1 the corre-
sponding Γ and c as given by (2.4) and (2.5), respectively. It is clear that if R1 ≥ R1, then
ΓR1

⊂ ΓR1 and cR1 ≤ cR1
. Hence to have (3.35) it suffices to find an R1 ≥ R1 such that

E (u) ≥ cR1
+ ρ for all u ∈ KR0R1 , with |||u||| = R1 and ∥u∥ = R0.

We can show even more, namely

(3.36) E (u) ≥ cR1
+ ρ for all u ∈ K with |||u||| = R1.

Let u ∈ K with |||u||| = R1. We have∫
(u≤β)

F (t, u(t))dt =

∫
(u≤β)

g(t)

(
2α

3
+
α

3

(
u(t)3 − 1

))
dt

≤
(
2α

3
+
α

3

(
β3 − 1

))
∥g∥
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and ∫
(u≥β)

F (t, u(t))dt

=

∫
(u≥β)

g(t)

{
2α

3
+
α

3

(
β3 − 1

)
+

2α

3
(u(t)− β)

3/2
+ αβ2u(t)− αβ3

}
dt

≤
(
2α

3
+
α

3

(
β3 − 1

)
− αβ3

)
∥g∥+ 2α

3

∫ 1

0

g(t)u(t)3/2dt+ αβ2

∫ 1

0

g(t)u(t)dt

≤
(
2α

3
+
α

3

(
β3 − 1

)
− αβ3

)
∥g∥+ 2α

3
∥u∥3/2∞ ∥g∥+ αβ2 ∥u∥∞ ∥g∥

≤
(
2α

3
+
α

3

(
β3 − 1

)
− αβ3

)
∥g∥+ 2α

3
c3/2∞ |||u|||3/2 ∥g∥+ αβ2c∞|||u||| ∥g∥ .

Then

E(u) =
1

2
|||u|||2 −

∫ 1

0

F (t, u(t))dt

=
1

2
|||u|||2 −

∫
(u≤β)

F (t, u(t))dt−
∫
(u≥β)

F (t, u(t))dt

≥ 1

2
|||u|||2 − α

3

(
2− β3

)
− 2α

3
c3/2∞ |||u|||3/2 ∥g∥ − αβ2c∞|||u||| ∥g∥

=
1

2
R2

1 −
α

3

(
2− β3

)
− 2α

3
c3/2∞ ∥g∥R3/2

1 − αβ2c∞ ∥g∥R1.

Since the expression in the right side of the last inequality tends to +∞ as R1 → +∞, we
can find R1 ≥ R1 such that (3.36) holds, as desired. Hence conditions (H2) and (H4) are
fulfilled.
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BABEŞ-BOLYAI UNIVERSITY

CLUJ-NAPOCA, ROMANIA

Email address: r.precup@math.ubbcluj.ro


