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On weighted Strand’s iteration

D. CARP1 , C. POPA1, T. PRECLIK2 and U. RÜDE2

ABSTRACT. In this paper we present a generalization of Strand’s iterative method for numerical approxima-
tion of the weighted minimal norm solution of a linear least squares problem. We prove convergence of the
extended algorithm, and show that previous iterative algorithms proposed by L. Landweber, J. D. Riley and G.
H. Golub are particular cases of it.

1. INTRODUCTION

Let us consider the linear least squares problem: find x∗ ∈ IRn such that

(1.1) ∥ Ax∗ − b ∥= min{∥ Ax− b ∥, x ∈ IRn} ⇔ ∥ Ax∗ − b ∥= min!,

where A is an m× n matrix, b ∈ IRm, ⟨·, ·⟩, ∥ · ∥ will denote the Euclidean scalar product
and norm, and PS will stand for the orthogonal projection onto a vector subspace S; also
N (A),R(A) denote the null space and range of the matrix A. Let LSS(A; b) be the set of all
solutions of (1.1) and xLS its (unique) minimal Euclidean norm one. It is well known that
(1.1) can be expressed as a classical linear system through its associated normal equation

(1.2) ATAx∗ = AT b.

Let also

(1.3) A = UΣV T , Σ = diag(σ1, . . . , σr, 0, . . . , 0), σ1 ≥ · · · ≥ σr > 0,

be a Singular Value Decomposition of A (SVD, for short), where

(1.4) U = col(U1, . . . , Um), V = col(V 1, . . . , V n)

are orthogonal matrices. In the paper [9] O.N. Strand proposed an iterative method for
solving (1.2), which in the finite dimensional case of IRn can be written as follows

(1.5) x0 ∈ IRn, xk = xk−1 + FAT (b−Axk−1), k ≥ 1,

where F is an n× n matrix that satisfies

(1.6) F V i = piV
i, ∀ i = 1, . . . , r,

V i are the right singular vectors from (1.4), and λi, pi are defined by

(1.7) λi = σ2
i , 0 < piλi < 2, ∀ i = 1, . . . , r.

The convergence of the algorithm (1.5) was analyzed in [9] and is presented in the follow-
ing result.
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Theorem 1.1. ([9]) In the above hypothesis (1.6) - (1.7), ∀x0 ∈ IRn the sequence (xk)k≥0 gener-
ated by (1.5) converges and its limit is given by

(1.8) lim
k→∞

xk = PN (A)(x
0) + xLS ∈ LSS(A; b).

The author observes in [9] that particular matrices F which satisfies (1.6) can be either
a polynomial in ATA, i.e.

(1.9) F = α0I + α1A
TA+ · · ·+ αq(A

TA)q

or a rational function on ATA as e.g.

(1.10) F = (sI +ATA)−1, s > 0.

Remark 1.1. For the choice F = ωI , with I the unit n × n matrix and ω > 0 (see (1.9)),
(1.5) becomes Landweber’s iteration from [3], whereas for the choice (1.10) we find the
algorithm

(1.11) x0 ∈ IRn, (sI +ATA)xk = sxk−1 +AT b, k ≥ 0,

first considered by Riley in [8] for A square and invertible, and then generalized by Golub
in [1], for A arbitrary rectangular.

But in many practical problems, instead of LSS(A; b) and xLS we are interested in
”weighted” minimal norm solutions of (1.1) (or (1.2)), i.e. a vector xD

LS ∈ LSS(A; b) which
satisfies

(1.12) ∥ D
1
2xD

LS ∥2= min{∥ D
1
2x ∥2, such that ∥ Ax− b ∥= min!},

whrere D is a given symmetric and positive definite matrix (see e.g. the rigid body dy-
namics problems in [5]).
In the present paper we propose a generalization of Strand’s algorithm (1.5), which will
include its original version, together with Landweber, Riley and Golub methods. The
paper is organized as follows: in section 2 we present some technical results about the
weighted least squares solutions of (1.1). The generalization of algorithm (1.5) together
with its convergence proof are presented in section 3. Applications are presented in the
last section of the paper.

2. WEIGHTED SOLUTIONS OF THE PROBLEM (1.1)

For the theoretical analysis of the generalization of algorithm (1.5) we we will use the
Generalized Singular Value Decomposition (GSVD, for short) of the pair (A,D

1
2 ), pre-

sented in Theorem 2.2 below, (see e.g. the basic papers [10], [4]).

Theorem 2.2. (GSVD) If A and D are as before, the following equalities hold

UTAX = DA = diag(α1, . . . , αr, 0, . . . , 0),

(2.13) V TD
1
2X = DB = diag(β1, . . . , βn),

with U : m × m and V : n × n orthogonal, X : n × n invertible, DA : m × n, DB : n × n,
r = rank(A),

1 > α1 ≥ · · · ≥ αr > 0, 0 < β1 ≤ · · · ≤ βr < βr+1 = · · · = βn = 1,

(2.14) α2
i + β2

i = 1, i = 1, . . . , r,

and the ratios αi

βi
, i = 1, . . . , r are the nonzero singular values of the matrix AD− 1

2 .

We will now present some results about the least squares solutions LSS(A; b) in terms
of the GSVD from Theorem 2.2.
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Lemma 2.1. (i) The set LSS(A; b) is characterized by

LSS(A; b) = {x∗ = Xz, zi =
wi

αi
, i = 1, . . . , r, zr+1, . . . , zn ∈ IR} =

(2.15) {
r∑

i=1

wi

αi
Xi +

n∑
i=r+1

ziX
i, zr+1, . . . , zn ∈ IR},

where Xi denotes the i-th column of the matrix X and w = UT b ∈ IRm.
(ii) The unique minimal D-norm element from LSS(A; b), denoted by xD

LS (see (1.12) ) and the
null space of A, denoted by N (A) are given by

(2.16) xD
LS =

r∑
i=1

wi

αi
Xi, N (A) = {z =

n∑
i=r+1

ziX
i, zi ∈ IR},

and

(2.17) ⟨xD
LS , z⟩D = ⟨xD

LS , Dz⟩ = 0, ∀z ∈ N (A).

Proof. (i) An element x∗ from LSS(A; b) is a solution of the normal equation (1.2). Ac-
cording to the GSVD decomposition (2.13) - (2.14) it results

(2.18) ATA = X−TDT
ADAX

−1, D = (D
1
2 )TD

1
2 = X−TD2

BX
−1

and we have the equivalencies

ATAx∗ = AT b ⇔ X−TDT
ADAX

−1x∗ = X−TDT
AU

T b ⇔

(2.19) DT
ADAX

−1x∗ = DT
AU

T b ⇔ DT
ADAz = DT

Aw,

where

(2.20) z = X−1x∗, w = UT b.

From (2.13) and (2.19) we obtain

(2.21) zi =
wi

αi
, i = 1, . . . , r and zi ∈ IR arbitrary , i = r + 1, . . . , n.

Then, (2.15) holds directly from (2.20)-(2.21).
(ii) Let x∗ ∈ LSS(A; b). From (2.13) and (2.15) it holds that

∥ x∗ ∥2D=∥ D
1
2x∗ ∥2=∥ V DBX

−1Xz ∥2=∥ V DBz ∥2=∥ DBz ∥2=

(2.22)
r∑

i=1

(
wi

αi

)2

β2
i +

n∑
i=r+1

(zi)
2β2

i .

The minimal value of the sum in (2.22) is obtained for zi = 0, i = r + 1, . . . , n which
gives us xD

LS from (2.16). For the second equality, we first observe that from (2.13) we get
A = UDAX

−1. Thus

x ∈ N (A) ⇔ Ax = 0 ⇔ DAX
−1x = 0 ⇔ DAz = 0,

for z = X−1x. Thus, if x ∈ N (A), then x = Xz with zi = 0, i = 1, . . . , r and zi, i =
r + 1, . . . , n arbitrary, i.e. x belongs to the set in the right hand side of the second equality
in (2.16). Conversely, if x is an element from that set we have

x =

n∑
i=r+1

ziX
i = X(0, . . . , 0, zr+1, . . . , zn)

T ,
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and

Ax = UDAX
−1X(0, . . . , 0, zr+1, . . . , zn)

T = UDA(0, . . . , 0, zr+1, . . . , zn)
T = 0,

i.e. x ∈ N (A).
The equality (2.17) results by direct computation using the second equality in (2.18) and
the characterizations of N (A) and xD

LS from (2.16). □

Lemma 2.2. (i) For any vector e ∈ IRn it holds that

(2.23) PD
N (A)(e) =

n∑
i=r+1

ēiX
i,

where PD
N (A)(e) is the projection of e onto N (A) with respect to the energy scalar product induced

by the matrix D, and ē ∈ IRn is defined by ē = X−1e.
(ii) We have the equality

(2.24) LSS(A; b) = {PD
N (A)(x) + xD

LS , x ∈ IRn}.

Proof. (i) By introducing the notation y =
∑n

i=r+1 ēiX
i, we have to prove that

(2.25) ⟨e− y, z⟩ = 0, ∀z ∈ N (A).

For an arbitrary z ∈ N (A), from (2.16) we get z =
∑n

i=r+1 ziX
i, for some zi ∈ IR, i =

r + 1, . . . , n, thus (by also using the equality D = X−TD2
BX

−1)

(2.26) Dz = X−TD2
B

n∑
i=r+1

ziX
−1Xi = X−TD2

B(0, . . . , 0, 1, . . . , 1)
T = X−T v

with v ∈ IRn given by

(2.27) v = (0, . . . , 0, β2
r+1zr+1, . . . , β

2
nzn)

T .

From (2.26)-(2.27) we get

(2.28) ⟨y, z⟩D = ⟨X−1y, v⟩ = ⟨(0, . . . , 0, ēr+1, . . . , ēn)
T , v⟩ =

n∑
i=r+1

ēiβ
2
i zi,

and by using the definition of the vector ē

(2.29) ⟨e, z⟩D = ⟨X−1e, v⟩ = ⟨ē, v⟩ =
n∑

i=r+1

ēiβ
2
i zi.

By substracting (2.28) from (2.29) we obtain (2.25).
(ii) If x∗ = PD

N (A)(x) + xD
LS for some x ∈ IRn then, from (2.23), (2.16) and (2.13) we obtain

that x∗ is a solution of the normal equation ATAx∗ = AT b, therefore x∗ ∈ LSS(A; b).
Conversely, if x∗ ∈ LSS(A; b), from (2.15) and (2.16) (first equality) we get x∗ = xD

LS +∑n
i=r+1 ziX

i, with x∗ = Xz, z = (wi

αi
, . . . , wi

αi
, zr+1, . . . , zn)

T ∈ IRn. But z = X−1x∗, which
according to (2.23) gives us that

∑n
i=r+1 ziX

i = PD
N (A)(x

∗) and the proof is complete. □

Remark 2.2. We have to observe that from (2.16), (2.17) and (2.24) do not result that xD
LS ∈

R(AT ), as for the classical Euclidean scalar product case (i.e. D = I in our context);
xD
LS is only the unique element from LSS(A; b) with a minimal D-norm among the other

elements from LSS(A; b); it also has the D-orthogonality property from (2.17).
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3. WEIGHTED STRAND’S ITERATION

According to the GSVD from Theorem 2.2 let

(3.30) V = sp{X1, X2, . . . , Xr},

and F an n× n matrix with the property that I − FATA is convergent on V , i.e.

(3.31) lim
k→∞

(I − FATA)kv = 0, ∀ v ∈ V.

Formally, our weighted version of algorithm (1.5) has exactly the same form, but its con-
vergence will be related to the results from section 2.

Theorem 3.3. If the matrix F satisfies (3.31) then, ∀ x0 ∈ IRn the sequence (xk)k≥0 generated
by (1.5) converges and

(3.32) lim
k→∞

xk = PD
N (A)(x

0) + xD
LS ∈ LSS(A; b).

Proof. We will adapt the main steps from the proof of Theorem 5 in [9]. The weighted
minimal norm solution xD

LS is an element of LSS(A; b) thus (see e.g. [7])

(3.33) AxD
LS = PR(A)(b).

By following the computations in [9], page 807 and the notational convention there we
obtain for the sequence (xk)k≥0 generated by (1.5)

(3.34) xk = x0 +

{
I − (I − FATA)k

FATA

}
FAT (b−Ax0).

Then, by successively using (3.34), (3.33) and the above mentioned notational convention
we get

xk = x0 +

{
I − (I − FATA)k

FATA

}
FAT

(
A(xD

LS − x0) + PN (AT )(b)
)
=

x0 +

{
I − (I − FATA)k

FATA

}
FATA

(
xD
LS − x0

)
=

x0 +
(
I − (I − FATA)k

) (
xD
LS − x0

)
=

(3.35) xD
LS − (I − FATA)k(xD

LS − x0).

Moreover, from (2.16) and (2.23) we have that

(3.36) xD
LS ∈ sp{X1, . . . , Xr} = V, PD

N (A)(z) ∈ sp{Xr+1, . . . , Xn},

for any vector z ∈ IRn, and because xD
LS , x

0 ∈ IRn and {X1, . . . , Xn} is a basis in IRn it
holds that

(3.37) xD
LS − x0 =

n∑
i=1

γiX
i, x0 =

n∑
i=1

ziX
i,

for some scalars γi, zi ∈ IR. From (3.36) and (3.37) we obtain that

(3.38) xD
LS − x0 =

r∑
i=1

γiX
i +

n∑
i=r+1

ziX
i.

Moreover, because X is invertible x0 can be expressed as

(3.39) x0 = Xz,
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which according to (2.23) gives us

(3.40) PD
N (A)(x

0) =

n∑
i=r+1

ziX
i.

Now, from (3.35), (3.38) and (3.40) we obtain

(3.41) xk = xD
LS −

(
I − FATA

)k( r∑
i=1

γiX
i

)
+
(
I − FATA

)k
PD
N (A)(x

0).

Because PD
N (A)(x

0) ∈ N (A) we get that(
I − FATA

)k
PD
N (A)(x

0) = PD
N (A)(x

0),

which together with (3.41), (3.31) and because X is invertible give us (3.32) and completes
the proof. □

Remark 3.3. Following the proofs of theorem 3.3 and the one in Strand’s paper [9], it can
be easily shown that Strand’s result in Theorem 1.1 rests true if we replace assumptions
(1.7)-(1.6) by

(3.42) lim
k→∞

(I − FATA)kv = 0, ∀v ∈ sp{V 1, . . . , V r},

which is similar to our asumption (3.31) and is clearly weaker that (1.7)-(1.6).

4. APPLICATIONS

We will start this section by first identifying, as Strand did in his original paper, two
important classes of functions F which satisfy the assumptions (3.30)-(3.31).

Proposition 4.1. If the matrix F is of the form

(4.43) F = ωD−1

or a rational function as

(4.44) F = (sD +ATA)−1,

then it satisfies the assumptions (3.30)-(3.31).

Proof. According to equalities (2.13) we have D−1 = XD−2
B XT and

(sD +ATA)−1 =
(
X−T (sD2

B +DT
ADA)X

−1
)−1

=

(4.45) Xdiag(
sβ2

1

α2
1 + sβ2

1

, . . . ,
sβ2

r

α2
r + sβ2

r

, 1, . . . , 1)XT .

Let now i ∈ {1, . . . , r} be arbitrary fixed. From (2.13) and (4.45) we get for the matrix
I − FATA that (ei is the i-th vector of the cannonical basis in IRn)

(I − FATA)k =
[
X
(
I −

(
DT

ADA + sD2
B

)−1
DT

ADA

)
X−1

]k
=

X
(
I −

(
DT

ADA + sD2
B

)−1
DT

ADA

)k
X−1 = Xdiag(

(sβ2
1)

k

(sβ2
1 + α2

1)
k
, . . . ,

(sβ2
r )

k

(sβ2
r + α2

r)
k
, 0, . . . , 0)X−1.

Therefore, for 1 ≤ i ≤ r

(I − FATA)kXi = Xdiag(
(sβ2

1)
k

(sβ2
1 + α2

1)
k
, . . . ,

(sβ2
r )

k

(sβ2
r + α2

r)
k
, 0, . . . , 0)ei =
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(4.46) X
(sβ2

i )
k

(sβ2
i + α2

i )
k
ei =

(sβ2
i )

k

(sβ2
i + α2

i )
k
Xei =

(sβ2
i )

k

(sβ2
i + α2

i )
k
Xi −→ 0 for k → ∞,

i.e the equality (3.31).
If F is given by eqfinal, from 14 we get

(I − FATA)k = (X(I − ωD−2
B DT

ADA)X
−1)k = X(I − ωD−2

B DT
ADA)

kX−1 =

Xdiag((1− ω
α2
1

β2
1

)k, . . . , (1− ω
α2
r

β2
r

)k, 1, . . . , 1)X−1.

Therefore, for i ∈ {1, . . . , r} we obtain

(I − FATA)kXi = Xdiag((1− ω
α2
1

β2
1

)k, . . . , (1− ω
α2
r

β2
r

)k, 1, . . . , 1)X−1Xi =

(4.47) Xdiag((1− ω
α2
1

β2
1

)k, . . . , (1− ω
α2
r

β2
r

)k, 1, . . . , 1)ei = (1− ω
α2
i

β2
i

)kXi.

In order to get the assumption (3.30) - (3.31), according to (4.47) we impose the equivalent
condition

(4.48) −1 < 1− ω
α2
i

β2
i

< 1,∀i = 1, . . . , r ⇔ ω ∈ (0,
2

max1≤i≤r
α2

i

β2
i

)

□

Remark 4.4. The case (4.43) corresponds to Landweber iteration, whereas (4.44) to Riley-
Golub one (see Remark 1.1), but for computing xD

LS instead of xLS . Unfortunately in this
weighted case a polynomial expression of F of the type

F = a0I + a1D
−1ATA+ · · ·+ aq(D

−1ATA)q

does not any more satisfy the assumption (3.30) - (3.31) as for the classical (non-weighted)
Strand method (see (1.9)). This is due to the fact that in the GSVD decomposition (2.13)
the invertible matrix X is not also orthogonal (i.e. X−1 ̸= XT ).

We performed numerical experiments with both constructions (4.43) and (4.44) for the
matrix F . In case (4.44) we used four matrices comming from rigid body dynamics prob-
lems (see e.g. [2] and [5]), with dimensions and ranks indicated in the first two columns of
Table 1. We performed in each case 100 iterations and the optimal value of the parameter
s was chosen experimentally. We indicated in each case the 1-norms of the corresponding
errors (i.e. ∥ z ∥1= max1≤i≤n |zi|, z ∈ IRn). The (good) results are presented in Table 1. The
exact value of the weighted solution xD

LS was computed using the pinv Matlab function
with the formula

xD
LS =

 A
√
σD

1
2

+ b
0

 ,

for σ = 10−15 (see for details [5]).
In case (4.43) we used three matrices coming from Electromagnetic geotomography (see
e.g. [6]), with dimensions and ranks indicated in the first two columns of Table 2. The
optimal value of the parameter ω was chosen experimentally. We indicated in each case
the number of iterations used and the 1-norms of the corresponding errors. As expected,
the behavior of the choice (4.43) for F is much less efficient than (4.44).
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Dimension Rank ∥ xLS − xD
LS ∥1 ∥ x100 − x99 ∥1 ∥ x100 − xD

LS ∥1 Opt. s

1155 × 1240 1000 393 10−11 10−6 10−1

1013 × 570 570 393 10−11 10−6 10−1

1200 × 6240 1200 2256 10−13 10−5 10−5

282 × 498 282 583 10−11 10−4 10−5

TABLE 1. Experiments with F = sD +ATA.

Dimension Rank Opt. ω Niter ∥ xLS − xD
LS ∥1 ∥ x100 − x99 ∥1 ∥ x100 − xD

LS ∥1

36 × 144 35 0.01 105 43 10−10 10−6

144 × 144 120 0.01 5 · 105 18 10−6 4

144 × 144 120 0.01 106 18 10−6 2

144 × 144 120 0.01 2 · 106 18 10−7 1

576 × 144 133 0.006 105 35 10−5 6

576 × 144 133 0.006 106 35 10−7 0.3

TABLE 2. Experiments with F = ωD−1.
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