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A new Halpern-type algorithm for a generalized mixed
equilibrium problem and a countable family of generalized
nonexpansive-type maps

C. E. CHIDUME and M. O. NNAKWE

ABSTRACT. Let K be a nonempty closed and convex subset of a uniformly smooth and uniformly convex
real Banach space with dual space E∗. In this paper, a new iterative algorithm of Halpern-type is constructed
and used to approximate a common element of a generalized mixed equilibrium problem and a common fixed
points for a countable family of generalized nonexpansive-type maps. Application of our theorem, in the case of real
Hilbert spaces, complements, extends and improves several important recent results. Finally, we give numerical
experiments to illustrate the convergence of our sequence.

1. INTRODUCTION

Let E be a uniformly convex and uniformly smooth real Banach space with dual space E∗.
Let K be a nonempty closed and convex subset of E such that JK is closed and convex
where J : E → E∗ is the normalized duality map on E. Let χ : JK → R be a map,
Θ : JK × JK → R be a bifunction and B : K → E∗ be a nonlinear map. The generalized
mixed equilibrium problem is to find an element u ∈ K such that

(1.1) Θ(Ju, Jz) + χ(Jz)− χ(Ju) + ⟨Bu, z − u⟩ ≥ 0, ∀ z ∈ K.

The set of solutions of the generalized mixed equilibrium problem is given by
GMEP (Θ, B, χ). It is well known that the class of generalized mixed equilibrium prob-
lems contains, as special cases, numerous important classes of nonlinear problems such
as equilibrium problems, optimization problems, variational inequality problems, and so
on (see e.g., Browder et al. [3], Onjai-Uea and Kumam [13] and the references contained
in them).

Let E be a real normed space with dual space E∗. A map B : E → 2E
∗

is called monotone
if for each u, v ∈ E, the following inequality holds: ⟨η − γ, u − v⟩ ≥ 0, η ∈ Bu, γ ∈
Bv. Consider, for example, the following: Let g : E → R be a convex functional. The
subdifferential of g, ∂g : E → 2E

∗
, is defined for each u ∈ E by ∂g(u) = {u∗ ∈ E∗ :

⟨v − u, u∗⟩ ≤ g(v)− g(u), ∀ v ∈ E}. It is easy to see that ∂g is a monotone map on E and
that 0 ∈ ∂g(u) if and only if u is a minimizer of g. Setting ∂g = B, it follows that solving
the inclusion 0 ∈ Bu, in this case, is equivalent to solving for a minimizer of g.
A map B : E → E is called accretive if for each u, v ∈ E, there exists j(u − v) ∈ J(u − v)
such that ⟨Bu−Bv, j(u−v)⟩ ≥ 0. For solving the equation Bu = 0, where B is an accretive
operator, Browder introduced a map, T : E → E defined by T := I −B, where I is the
identity map on E. He called such a map pseudocontractive. It is clear that solutions of
Bu = 0, in this case, correspond to fixed points of T . Consequently, approximating zeros
of accretive operators is equivalent to approximating fixed points of pseudocontractive
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maps, assuming existence. This fixed point technique, for obvious reasons, is not applica-
ble in the case where B : E → E∗ is a monotone map.
Motivated by the need to develop a fixed point technique for approximating a solution of
the equation Bu = 0 when B is monotone, a new notion of fixed points for maps from E to
E∗ called J-fixed points has recently been introduced and studied (see e.g., Zegeye [17], Liu
[10], Chidume and Idu [4], Chidume et al. [7], Chidume et al. [5]). This notion turns out to
be very useful and applicable. For example, Chidume and Idu [4] introduced the concept
of J-pseudocontractive maps and proved a strong convergence theorem for approximating
J-fixed points of a J-pseudocontractive map. As an application of their theorem, they
proved a strong convergence theorem for approximating a zero of an m-accretive operator
(Corollary 4.1 of [4]).

It is our purpose in this paper to continue the study of J-fixed points and some of their
applications. Here, we study a new Halpern-type algorithm and prove a strong conver-
gence theorem for obtaining a common element in the solutions of a generalized mixed
equilibrium problem and common fixed points for a countable family of generalized-J-
nonexpansive maps in a uniformly smooth and uniformly convex real Banach space. In
the special case of a real Hilbert space, our theorem complements, extends and improves
the results of Martinez-Yanes and Xu [11], Nakajo and Takahashi [12], Pen and Yao [14],
Qin and Su [15], Tada and Takahashi [16], and a host of other recent results. Finally, we
give numerical experiments to illustrate the convergence of our sequence.

2. PRELIMINARES

Let E be a real normed space with dual space E∗. Consider a map ϕ : E×E → R defined
by ϕ(x, y) = ||x||2 − 2⟨x, Jy⟩+ ||y||2, for all x, y ∈ E. This map which was introduced by
Alber [1] will play a central role in the sequel.

The following lemmas will be needed in the sequel.

Lemma 2.1. (Alber, [1]) Let C be a nonempty closed and convex subset of a smooth, strictly
convex and reflexive Banach space E. Then, the following are equivalent.
(i) C is a sunny generalized nonexpansive retract of E,
(ii) C is a generalized nonexpansive retract of E and, (iii) JC is closed and convex.

Lemma 2.2. (Alber, [1]) Let C be a nonempty closed and convex subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from
E onto C. Then, the following hold: (i) z = Rx iff ⟨y − z, Jz − Jx⟩ ≥ 0, for all y ∈ C and, (ii)
ϕ(x,Rx) + ϕ(Rx, z) ≤ ϕ(x, z), for all z ∈ C.

Lemma 2.3. (Kamimura and Takahashi, [9]) Let E be a uniformly convex and uniformly
smooth real Banach space and {xn}, {yn} be sequences in E such that either {xn} or {yn} is
bounded. If lim

n→∞
ϕ(xn, yn) = 0, then, lim

n→∞
||xn − yn|| = 0.

Definition 2.1. (Chidume and Idu, [4]) A point x∗ ∈ C is called a J-fixed point of T if and
only if Tx∗ = Jx∗. The set of J-fixed points of T will be denoted by FJ(T ).

Lemma 2.4. (Chidume et al., [6]) Let E be a uniformly convex and uniformly smooth real Banach
space with dual space E∗. Let C be a closed subset of E such that JC is closed and convex. Let T
be a generalized-J-nonexpansive map from C to E∗ with FJ(T ) ̸= ∅. Then, FJ(T ) is closed and
JFJ(T ) is closed and convex.

Lemma 2.5. (Chidume et al., [6]) Let E be a smooth, strictly convex and reflexive real Banach
with dual space E∗. Let C be a closed subset of E such that JC is closed and convex. Let T be a
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generalized-J-nonexpansive map from C to E∗ such that FJ(T ) ̸= ∅. Then, FJ(T ) is a sunny
generalized-J-nonexpansive retract of E.

Remark 2.1. (Chidume et al., [6]) From lemma 2.4 we have that JFJ(T ) and JGMEP are
closed and convex. Since J is one-to-one, we have that J(FJ(T ) ∩ GMEP (f,A, φ)) =
JFJ(T ) ∩ JGMEP (f,A, φ). By lemma 2.1, we obtain that FJ(T ) ∩ GMEP (f,A, φ) is a
sunny generalized-J-nonexpansive retract of E.

Basic Assumptions. Let K be a nonempty closed subset of a smooth, strictly convex and
reflexive real Banach space E with dual space E∗ such that JK is closed and convex.
Let χ : JK → R be a lower semi-continuous and convex function. Let B : K → E∗

be continuous and monotone. For solving the generalized mixed equilibrium problems,
(1.1), we assume that the bifunctional Θ : JK×JK → R satisfies the following conditons:
(B1) Θ(u∗, u∗) = 0, for all u∗ ∈ JK
(B2) Θ is monotone, i.e. Θ(u∗, v∗) + Θ(v∗, u∗) ≤ 0, for all u∗, v∗ ∈ JK,
(B3) lim sup

λ↓0
Θ(u∗ + λ(z∗ − u∗), v∗) ≤ Θ(u∗, v∗), for all u∗, v∗, z∗ ∈ JK,

(B4) Θ(u∗, ·) is convex and lower semi-continuous, for all u∗ ∈ JK.

3. MAIN RESULTS

Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly
convex real Banach space E with dual space E∗. Let J and J−1 be the normalized duality
maps on E and E∗, respectively. Clearly, J−1 = J∗ exists under this setting.

Definition 3.2. (Chidume et al. [6]) A map T : C → E∗ is called generalized-J-nonexpansive
if FJ(T ) ̸= ∅ and ϕ((J−1oT )x, p) ≤ ϕ(x, p), for all x ∈ C, for all p ∈ FJ(T ).

NST-Condition. Let {Sn} and Υ be two families of generalized-J-nonexpansive maps
from C into E∗ such that ∩∞

n=1FJ(Sn) = FJ(Υ) ̸= ∅, where FJ(Sn) is the set of J-fixed
points of Sn and FJ(Υ) is the set of J-fixed points of Υ. A sequence {Sn} from C to E∗ is
said to satisfy the NST-condition with Υ if for each bounded sequence {xn} ⊂ C,
lim

n→∞
||Jxn − Snxn|| = 0 =⇒ lim

n→∞
||Jxn − Sxn|| = 0, ∀ S ∈ Υ.

We now prove the following theorem.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth real Banach space with dual
space E∗. Let K be a nonempty closed and convex subset of E such that JK is closed and convex.
Let χ : JK → R be a lower semi-continuous and convex function. Let B : K → E∗ be
a continuous and monotone map. Let Θ : JK × JK → R be a bifunction satisfying conditions
(B1)−(B4). Let Sn : K → E∗, n = 1, 2, · · · be a countable family of generalized-J-nonexpansive
maps and Υ be a family of closed and generalized-J-nonexpansive maps from K to E∗ such that
∩∞
n=1FJ(Sn)∩GMEP (Θ, B, χ) = FJ(Υ)∩GMEP (Θ, B, χ) ̸= ∅, βn ∈ (0, 1) with limβn = 0

and {rn} ⊂ [a,∞) for some a > 0. Let {xn} be generated by:

(3.2)



x1 = x ∈ K, K1 = K,

zn = βnx+ (1− βn)(J
−1oSn)xn,

un = Trnzn,

Kn+1 =
{
v ∈ Kn : ϕ(un, v) ≤ βnϕ(x, v) + (1− βn)ϕ(xn, v)

}
,

xn+1 = RKn+1x, ∀ n ≥ 1.

Assume that {Sn} satisfies the NST-condition with Υ, then {xn} converges strongly to
RFJ (Υ)∩GMEP (Θ,B,χ)x, where RFJ (Υ)∩GMEP (Θ,B,χ) is the sunny generalized-J-nonexpansive
retraction of E onto FJ(Υ) ∩GMEP (Θ, B, χ).
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Proof. The proof is divided into 5 steps.
Step 1: The sequence {xn} is well defined and FJ(Υ) ∩GMEP (Θ, B, χ) ⊂ Kn.
First, we show that JKn is closed and convex. Clearly K1 = K is closed and convex.
Assume that Kn is closed and convex for some n ≥ 1, applying the definition of Kn+1, it
is clear that Kn+1 = {v ∈ Kn : 2⟨βnx+ (1− βn)xn − un, Jv⟩ ≤ βn||x||2 + (1− βn)||xn||2 −
||un||2}. Thus, Kn+1 is closed and convex. Hence JKn is closed and convex. By lemma 2.1,
Kn is a sunny generalized-J-nonexpansive retract of E. Hence, {xn} is well defined. Next,
we show that FJ(Υ) ∩GMEP (Θ, B, χ) ⊂ Kn, ∀n ≥ 1. Clearly FJ(Υ) ∩GMEP (Θ, B, χ)
is a subset of K1. Assume that FJ(Υ) ∩GMEP (Θ, B, χ) ⊂ Kn for some n ≥ 1. Let
q ∈ FJ(Υ) ∩GMEP (Θ, B, χ). By a result of Zhang [18] and definition of Sn, we have that

ϕ(un, q) = ϕ(Trnzn, q) ≤ ϕ(zn, q)

= ||βnx+ (1− βn)(J
−1oSn)xn||2 − 2

〈
βnx+ (1− βn)(J

−1oSn)xn, Jq
〉
+ ||q||2

≤ βnϕ(x, q) + (1− βn)ϕ((J
−1oSn)xn, q) ≤ βnϕ(x, q) + (1− βn)ϕ(xn, q).(3.3)

This implies that q ∈ Kn+1. Hence, FJ(Υ) ∩GMEP (Θ, B, χ) ⊂ Kn, ∀ n ≥ 1.

Step 2: lim
n→∞

xn = x∗, lim
n→∞

un = x∗ and lim
n→∞

zn = x∗.

First, we show that {xn} is bounded. From the definition of {xn} and lemma 2.2, (ii), we
have that ϕ(x, xn) = ϕ(x,RKn

x) ≤ ϕ(x, q)− ϕ(RKn
x, q) ≤ ϕ(x, q), for every q in

FJ(Υ) ∩GMEP (Θ, B, χ) ⊂ Kn. This implies that {ϕ(x, xn)} is bounded. It follows from
the definition of ϕ that {xn} is bounded. Since xn+1 = RKn+1x ∈ Kn+1 ⊂ Kn and
xn = RKn

x, we have that ϕ(x, xn) ≤ ϕ(x, xn+1) and this implies that {ϕ(x, xn)} is nonde-
creasing. Hence, lim

n→∞
ϕ(x, xn) exists. Also, for m > n, from lemma 2.2 and xn = RKn

x,

we have that

ϕ(xn, xm) = ϕ(RKn
x,RKm

x) ≤ ϕ(x,RKm
x)− ϕ(x,RKn

x)

= ϕ(x, xm)− ϕ(x, xn) → 0 (as n → ∞).

Hence, lim
n→∞

ϕ(xn, xm) = 0. It follows from a Lemma 2.3 that lim
n→∞

||xn − xm|| = 0. Hence

{xn} is a Cauchy sequence in K. Thus, there exists x∗ ∈ K such that lim
n→∞

xn = x∗. From
inequality (3.3) and using the fact that lim

n→∞
βn = 0 by assumption, it follows that

ϕ(un, xm) ≤ βnϕ(x, xm) + (1 − βn)ϕ(xn, xm) → 0 (as n → ∞). By Lemma 2.3, we have
that

(3.4) lim
n→∞

||un − xm|| = 0. Hence, lim
n→∞

||un − xn|| = 0. This implies that lim
n→∞

un = x∗.

From inequality (3.3), a result of Zhang [18] and equation (3.4), we get that

ϕ(zn, un) = ϕ(zn, Trnzn) ≤ ϕ(zn, q)− ϕ(un, q)

≤ βnϕ(x, q) + (1− βn)ϕ(xn, q)− ϕ(un, q)

≤ βnϕ(x, q) + ϕ(xn, q)− ϕ(un, q) → 0.

By Lemma 2.3, it follows that lim
n→∞

||un − zn|| = 0. Thus, lim
n→∞

zn = x∗. Using this and
equation (3.4), we conclude that lim

n→∞
xn = x∗, lim

n→∞
un = x∗ and lim

n→∞
zn = x∗.

Step 3: lim
n→∞

||Jxn − Sxn|| = 0, ∀ S ∈ Υ.
From equation (3.1), we obtain that

(3.5) (1− βn)||xn − (J−1oSn)xn|| ≤ ||xn − zn||+ βn||x1 − xn||.
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First, we observe that {(J−1oSn)xn} is bounded in E. Using step 2 and the fact that
lim
n→∞

βn = 0 by assumption in inequality (3.5), we obtain that lim
n→∞

||xn−(J−1oSn)xn|| = 0.

By uniform continuity of J on bounded subset of E, we get that lim
n→∞

||Jxn − Snxn|| = 0.

Since {Sn} satisfies the NST-condition with Υ, we conclude that lim
n→∞

||Jxn − Sxn|| = 0,

∀ S ∈ Υ.

Step 4: x∗ ∈ FJ(Υ) ∩GMEP (Θ, B, χ).
From step 3, we have that lim

n→∞
||Jxn − Sxn|| = 0, ∀ S ∈ Υ. We also proved that xn →

x∗ ∈ K. Since S is closed, we conclude that x∗ ∈ FJ(Υ). Furthermore, from step 2 and the
property of J on E, we get that lim

n→∞
||Jzn−Jun|| = 0. Since {rn} ⊂ [a,∞) by assumption,

we obtain that lim
n→∞

||Jzn−Jun||
rn

= 0. Since un = Trnzn in equation (3.2) and by a result of
Zhang [18], we have that

(3.6) F (Jun, Jz) +
1

rn

〈
z − un, Jun − Jzn

〉
≥ 0, ∀ z ∈ K.

By B2, we have that 1
rn

〈
z−un, Jun−Jzn

〉
≥ F (Jz, Jun). Since z 7→ F (Ju, Jz) is convex

and lower semi-continuous, we obtain from the above inequality that 0 ≥ F (Jz, Jx∗),
∀ z ∈ K. For λ ∈ (0, 1] and z ∈ K, letting z∗λ = λJz + (1− λ)Jx∗, then z∗λ ∈ JK since JK
is closed and convex. Hence, 0 ≥ F (z∗λ, Jx

∗), ∀ z ∈ K. By B1, we have that

0 = F (z∗λ, z
∗
λ) ≤ λF (z∗λ, Jz) + (1− λ)F (z∗λ, Jx

∗) ≤ F (Jx∗ + λ(Jz − Jx∗), Jz).

Letting λ ↓ 0, by B3, we obtain that F (Jx∗, Jz) ≥ 0. Hence, x∗ ∈ GMEP (Θ, B, χ). Using
this and the fact that x∗ ∈ FJ(Υ), we conclude x∗ ∈ FJ(Γ) ∩GMEP (Θ, B, χ).

Step 5: lim
n→∞

xn = RFJ (Υ)∩GMEP (Θ,B,χ)x. From Lemma 2.2, we obtain that

(3.7) ϕ(x,RFJ (Υ)∩GMEP (Θ,B,χ)x) ≤ ϕ(x, x∗).

Also, for x∗ ∈ FJ(Υ) ∩GMEP (Θ, B, χ) ⊂ Kn+1, xn+1 = RKn+1
x, and by Lemma 2.2, we

have that ϕ(x, xn+1) ≤ ϕ(x,RFJ (Υ)∩GMEP (Θ,B,χ)x). Since lim
n→∞

xn = x∗, we get that

ϕ(x, x∗) ≤ ϕ(x,RFJ (Υ)∩GMEP (Θ,B,χ)x). Using this and inequality (3.7), we get that
ϕ(x, x∗) = ϕ(x,RFJ (Υ)∩GMEP (Θ,B,χ)x). By uniqueness of RFJ (Υ)∩GMEP (Θ,B,χ)x, we con-
clude that x∗ = RFJ (Υ)∩GMEP (Θ,B,χ)x. The proof is complete. □

4. AN EXAMPLE

Let E = lp, 1 < p < ∞, 1
p + 1

q = 1, K = Blp(0, 1) = {u ∈ lp : ||u||lp ≤ 1}.
Consider the following maps:
χ : JK → R defined by χ(u∗) = ||u∗||, ∀ u∗ ∈ JK;

Θ : JK × JK → R defined by Θ(u∗, v∗) = ⟨J−1u∗, v∗ − u∗⟩, ∀ v∗ ∈ JK;
B : K → lq defined by Bu = J(u1, u2, u3, · · · ), ∀ u = (u1, u2, u3, · · · ) ∈ K;

S : K → lq defined by Su = J(0, u1, u2, u3, · · · ), ∀ u = (u1, u2, u3, · · · ) ∈ K;
Sn : K → lq defined by Snu = J(αnu+ (1−αn)J

−1oSu), ∀ n ≥ 1, u ∈ K and αn ∈ (0, 1),
lim inf αn(1− αn) > 0.

Let βn := 1
n+1 , ∀ n ≥ 1, {rn} ⊂ [1,∞), ∀ n ≥ 1 and Υ = S. Then,
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(a) E, K, JK, χ, Θ and B satisfy all the conditions of Theorem 3.1. In particular, Θ satis-
fies conditions (B1) to (B4) as follows: conditions (B1) and (B4) follow easily from direct
computation; (B2) follows from the monotonicity of the normalized duality map J−1, and
condition (B3) follows from the continuity of J−1. Furthermore, 0 ∈ GMEP (Θ, B, χ).

(b) Sn is a generalized-J-nonexpansive map and satisfies the NST-condition with Υ.
FJ(S) = FJ(Sn) = FJ(Υ) = {0}, ∀ n ≥ 1. Moreover, FJ(Υ) ∩GMEP (Θ, B, χ) = {0}.

Hence, by Theorem 3.1, the sequence {xn} generated by equation (3.2) converges strongly
to an element of F (Υ) ∩GMEP (Θ, B, χ). This completes the example. □

Remark 4.2. Theorem 3.1 is applicable in Lp, lp and Wm
p (Ω) spaces, 1 < p < ∞, where

Wm
p (Ω) denote the usual Sobolev space, since these spaces are uniformly convex and uni-

formly smooth. For the analytical representations of J and J−1 in these spaces where
p−1 + q−1 = 1, the reader is referred to Theorem 3.3, of Alber and Ryazantseva [2]; page
36.

In the case that E is a real Hilbert space, we have the following corollary.

Corollary 4.1. Let H be a real Hilbert space. Let K be a nonempty closed and convex subset
of H . Let χ : K → R be a lower semi-continuous and convex function. Let B : K → H be
a continuous and monotone map. Let Θ : K × K → R be a bifunction satisfying conditions
(B1) − (B4). Let Sn : K → H, n = 1, 2, · · · be a countable family of generalized nonexpansive
maps and Υ be a family of closed and generalized nonexpansive maps from K to H such that
∩∞
n=1F (Sn)∩GMEP (Θ, B, χ) = F (Υ)∩GMEP (Θ, B, χ) ̸= ∅, βn ∈ (0, 1) with lim

n→∞
βn = 0

and {rn} ⊂ [a,∞) for some a > 0. Let {xn} generated by:

(4.8)



x1 = x ∈ K, K1 = K,

zn = βnx+ (1− βn)Snxn,

un = Trnzn,

Kn+1 =
{
v ∈ Kn : ||un − v||2 ≤ βn||x− v||2 + (1− βn)||xn − v||2

}
,

xn+1 = PKn+1
x, ∀ n ≥ 1.

Assume that {Sn} satisfies the NST-condition with Υ, then, {xn} converges strongly to
PF (Υ)∩GMEP (Θ,B,χ)x.

Proof. In a Hilbert space, J is the identity map and ϕ(y, z) = ||y − z||2, ∀ y, z ∈ H . The
result follows from Theorem 3.1. □

Remark 4.3. Theorem 3.1 extends and improves the theorem of Martinez-Yanes and Xu
[11], Nakajo and Takahashi [12], in the sense that these theorems are special cases of Theo-
rem 3.1 in which E is a real Hilbert space. Furthermore, in the theorem of Martinez-Yanes
and Xu [11], T is a single self-map on C ⊂ E while in Theorem 3.1, {Sn} is a family
of maps from a subset C ⊂ E to the dual space E∗. Finally, in theorem 3.1, generalized
mixed equilibrium problem is also studied which is not the case in either the theorem of
Martinez-Yanes and Xu [11] or that of Nakajo and Takahashi [12].

Remark 4.4. Corollary 4.1 improves significantly the result in Pen and Yao [14], Qin and
Su [15], Tada and Takahashi [16] in the following sense:

(1) In Corollary 4.1, the set of generalized mixed equilibrium problem is studied
which is not considered in Pen and Yao [14], Qin and Su [15], Tada and Takahashi
[16].
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(2) Corollary 4.1 extends the result in Pen and Yao [14], Qin and Su [15], Tada and
Takahashi [16] from a nonexpansive self-map to a countable family of generalized
nonexpansive non self-maps.

(3) The iteration process of Corollary 4.1 is more efficient than that considered in Pen
and Yao [14] which requires more arithmetic at each stage to implement because
of the extra yn and zn terms involved in the iteration process.

(4) Finally, the sequence of Halpern-type algorithm considered in theorem 4.1 requires
less computation time at each step of the iteration process than the sequence of
Mann-type algorithm studied in Pen and Yao [14], Qin and Su [15], Tada and Taka-
hashi [16], thereby reducing computational cost.

5. NUMERICAL EXPERIMENTS

Here, we present numerical examples to illustrate the convergence of our sequence {xn}
in Theorem 3.1.

Example 5.1. Let E = R, K = [α, β], α, β ∈ R. Clearly, x ∈ R,

(5.9) PKx


α, if x < α,

x, if x ∈ [α, β],

β, if x > β.

Now, set K = [−1, 3] and Sx = sin(x) in Theorem 3.1. Clearly, S is generalized nonex-
pansive with 0 as its unique fixed point. With x1 = −1

3 and x1 = 1
2 in K respectively, by

Theorem 3.1, the sequence generated by algorithm (3.2) converges strongly to zero. The
numerical results are sketched in figure (1) with initial point x1 = −1

3 and figure (2) with
initial point x1 = 1

2 , respectively, where the y-axis represents the value of |xn − 0| while
the x-axis represents the number of iterations (n).

Numerical example with x1 =
−1

3
Numerical example with x1 =

1

2

All computations and graphs were implemented in python 3.6 using some abstractions
developed at AUST and other open source python library such as numpy and matplotlib
on Zinox with intel core i7 processor.
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