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Some coincidence point theorems in ordered metric spaces
via w-distances

CHIRASAK MONGKOLKEHA1 and YEOL JE CHO2,3

ABSTRACT. The purpose of this paper is to prove some existence theorems of coincidence points for gener-
alized weak contractions in the setting of partially ordered sets with a metric via w-distances and give some
example to illustrate our main results.

1. INTRODUCTION

In 1996, Kada et al. [7] introduced the generalized metric, which called the w-distance,
and gave some examples of thew-distance. Also, they improved Caristi’s fixed point theo-
rem, Ekeland’s variational principle and the nonconvex minimization theorem according
to the results of Takahashi [11].

On the other hand, in 1997, Alber and Guerre-Delabriere [1] introduced the concept of
weak contractions in Hilbert spaces. Later, in 2001, Rhoades [9] showed that the results
of Alber and Guerre-Delabriere are also valid in complete metric spaces. In 2008, Dutta
and Choudhury [3] extended the notion of weak contractions by using the concept of two
altering distance functions. In 2012, Imdad and Rouzkard [5] proved some fixed point
theorems in complete metric spaces equipped with a partial order via the w-distance.
Recently, in 2014, Roshan et. al. [10], using the concept of weak contractions, proved
some existence theorems of coincidence points for some generalized contractions in the
framework of ordered b-metric spaces.

In this paper, we prove some existence theorems of coincidence points for generalized
weak contractions in the setting of partially ordered sets with a metric via the w-distance.
Also, we give some example to illustrate our main result.

2. PRELIMINARIES

First, we give some definitions, some examples and lemmas for our main results.

Definition 2.1. Let X be an nonempty set and f, g : X → X be two mappings. A point
x ∈ X is called a coincidence point of f and g if fx = gx, where C(f, g) denote the sets of
coincidence points of f and g.

Definition 2.2. [6] Let (X, d) be a metric space and f, g : X → X be two mappings.
The pair (f, g) is said to be compatible if limn→∞ d(fgxn, gfxn) = 0 whenever {xn} is a
sequence in X such that limn→∞ fxn = limn→∞ gxn = z for some z ∈ X .

Definition 2.3. Let (X,≤) be a partially ordered set. The elements x, y ∈ X are said to be
comparable with respect to ≤ if either x ≤ y or y ≤ x.
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Definition 2.4. [2] A triple (X, d,≤) is called an ordered metric space if (X, d) is a metric
space with the partial order ≤.

Let X≤ ⊂ X ×X be defined by X≤ = {(x, y) ∈ X ×X : x ≤ y or y ≤ x}.

Definition 2.5. [4] (1) An ordered metric space (X, d,≤) is said to have the sequential
g-monotone property if it satisfies the following properties:

(a) if {xm} is a non-decreasing sequence and limm→∞ xm = x, then gxm ≤ gx for all
m ≥ 1;

(b) if {ym} is a non-increasing sequence and limm→∞ ym = y, then gym ≥ gy for all
m ≥ 1.

(2) If g is the identity mapping, then (X, d,≤) is said to have the sequential monotone
property.

In 1984, Khan et al. [8] introduced the concept of an altering distance function as fol-
lows:

Definition 2.6. [8] A function ψ : [0,∞) → [0,∞) is called an altering distance function if
the following properties are satisfied:

(a) ψ is continuous and monotone nondecreasing;
(b) ψ(t) = 0 if and only if t = 0.

Now, Ψ denotes the family of all altering distance functions and we give some exam-
ples of the altering distance function as follow:

Example 2.1. For each i ∈ {1, 2}, let φi : [0,∞) → [0,∞) be a function defined by
(φ1) φ1(t) = tk for all t ∈ [0,∞), for any k > 0;
(φ2) φ2(t) = at − 1 for all t ∈ [0,∞),for any a > 0 with a ̸= 1.

Then φi is an altering distance function for each i ∈ {1, 2}.

Now, we recall the concept ofw-distances and some useful lemmas for the main results.

Definition 2.7. [7] Let (X, d) be a metric space. A function p : X ×X → [0,∞) is called a
w-distance on X if the following are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X ;
(b) for any x ∈ X, p(x, ·) : X → [0,∞) is lower semi-continuous (i.e., if x ∈ X and

yn → y ∈ X , then p(x, y) ≤ lim infn→∞ p(x, yn));
(c) for any ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ε.

Let X be a metric space with the metric d. We recall some example in [12] to show that
the w-distance is a generalization of the metric d.

Example 2.2. Let (X, d) be a metric space. A function p : X × X → [0,∞) defined by
p(x, y) = c for all x, y ∈ X is a w-distance on X , where c is a positive real number. But p is
not a metric since p(x, x) = c ̸= 0 for any x ∈ X .

Lemma 2.1. [7, 12] Let (X, d) be a metric space with the w-distance p. Let {xn} and {yn} be two
sequences in X , whereas {αn} and {βn} be two sequences in [0,∞) converging to zero. Then the
following conditions hold: for all x, y, z ∈ X ,

(1) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ≥ 1, then y = z. In particular, if p(x, y) = 0
and p(x, z) = 0, then y = z;

(2) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for all n ≥ 1, then {yn} converges to z;
(3) If p(xn, ym) ≤ αn for all n,m ≥ 1 with m > n, then {xn} is a Cauchy sequence;
(4) If p(y, xn) ≤ αn for all n ≥ 1, then {xn} is a Cauchy sequence.
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Lemma 2.2. [7] Let (X, d) be a metric space with the w-distance p. Let {xn} be sequences in X
such that, for each ε > 0, there exists Nε ∈ N such that m > n > Nε implies p(xn, xm) < ε or
limm,n→∞ p(xn, xm) = 0. Then {xn} is a Cauchy sequence.

Next, we give the concept of compatible mappings in metric space with the w-distance.

Definition 2.8. Let (X, d) be a metric space with the w-distance p. The mappings f, g :
X → X are said to be compatible if

lim
n→∞

fgxn = lim
n→∞

gfxn

with limn→∞ p(fgxn, gfxn) = limn→∞ p(gfxn, fgxn) whenever {xn} is a sequence in X
such that limn→∞ fxn = limn→∞ gxn = z for some z ∈ X .

Remark 2.1. If p = d, then Definition 2.8 become to Definition 2.2.

3. MAIN RESULTS

In this section, we establish some existence theorems of coincidence points for gener-
alized weak contractions in partially ordered metric spaces via the w-distances. Also, we
give some example to illustrate our main results.

Theorem 3.1. Let (X, d,≤) be a complete ordered metric space equipped with the w-distance
p and f, g : X → X be two mappings such that f has the mixed g-monotone property on X ,
f(X) ⊆ g(X) and g is continuous and compatible with f . Assume that there exist ψ,φ ∈ Ψ such
that

(3.1) ψ(p(fx, fy)) ≤ ψ
(
Mg

p(x, y))
)
− φ

(
Mg

p(x, y))
)

for all x, y ∈ X , where

Mg
p(x, y) = max{p(gx, gy),min{p(gx, fx), p(gy, fy), p(fx, gx), p(fy, gy)}}

for any (gx, gy) ∈ X≤, and one of the following holds:
(a) f is continuous;
(b) X has the sequential g-monotone property.

Suppose that there exist x0 ∈ X such that (g(x0), f(x0)) ∈ X≤. Then f and g have at least one
coincidence point. Furthermore, If the sequence {gxn} converges to a point x⋆ ∈ X , then

lim
n→∞

p(gfxn, fx⋆) = 0 = lim
n→∞

p(fgxn, gx⋆).

Proof. If we have g(x0) = f(x0) for some x0 ∈ X , then there is nothing to prove. Suppose
that x0 ∈ X such that g(x0) ̸= f(x0) and (g(x0), f(x0)) ∈ X≤. Since f(X) ⊆ g(X),
it follows that there exits x1 ∈ X such that f(x0) = g(x1) and so (g(x0), g(x1)) ∈ X≤.
By the mixed g-monotone property of f , we have (f(x0), f(x1)) ∈ X≤. Again, since
f(X) ⊆ g(X), there exits x2 ∈ X such that f(x1) = g(x2) and hence (g(x1), g(x2)) ∈ X≤.
Continuing this way, we have a sequence {gxn} such that (gxn, gxm) ∈ X≤ for any m,n ∈
N.

Now, we show that

(3.2) lim
n→∞

p(gxn, gxn+1) = 0.

For any n ∈ N, by (3.1), we have

(3.3)
ψ(p(gxn+1, gxn+2)) = ψ(p(fxn, fxn+1))

≤ ψ
(
Mg

p(xn, xn+1)
)
− φ

(
Mg

p(xn, xn+1)
)
.
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Note that
Mg

p(xn, xn+1) = max{p(gxn, gxn+1),min{p(gxn, fxn), p(gxn+1, fxn+1),
p(fxn, gxn), p(fxn+1, gxn+1)}}

= max{p(gxn, gxn+1),min{p(gxn, gxn+1), p(gxn+1, gxn+2),
p(gxn+1, gxn), p(gxn+2, gxn+1)}}.

Case I. If

min{p(gxn, gxn+1), p(gxn+1, gxn+2), p(gxn+1, gxn), p(gxn+2, gxn+1)} = p(gxn, gxn+1),

then we have Mg
p(xn, xn+1) = p(gxn, gxn+1).

Case II. If
min{p(gxn, gxn+1), p(gxn+1, gxn+2), p(gxn+1, gxn), p(gxn+2, gxn+1)}
̸= p(gxn, gxn+1),

then we have
min{p(gxn, gxn+1), p(gxn+1, gxn+2), p(gxn+1, gxn), p(gxn+2, gxn+1)}
< p(gxn, gxn+1)

and hence Mg
p(xn, xn+1) = p(gxn, gxn+1). Therefore, by Cases I, II and (3.3), we have

ψ(p(gxn+1, gxn+2)) ≤ ψ(p(gxn, gxn+1))− φ(p(gxn, gxn+1))

≤ ψ(p(gxn, gxn+1)).

By the property of ψ, the sequence {p(gxn, gxn+1)} is non-increasing and converges to
some r ≥ 0. Taking n→ ∞ in the above inequality, we have

ψ(r) ≤ ψ(r)− φ(r) ≤ ψ(r),

which implies that r = 0 and hence (3.2) hold. Using the same method, we can see that

(3.4) lim
n→∞

p(gxn+1, gxn) = 0.

Next, we claim that, for any m,n ∈ N,

(3.5) lim
n→∞

p(gxn, gxm) = 0.

Suppose that (3.5) does not hold. Then there exists δ > 0 for which we can find subse-
quences {gxmk

} and {gxnk
} of {gxn} with nk > mk ≥ k such that

(3.6) p(gxmk
, gxnk

) ≥ δ

and nk is the smallest number such that (3.6) holds, but

(3.7) p(gxmk
, gxnk−1) < δ.

This, in view of (3.6) and (3.7), gives that

δ ≤ d(gxmk
, gxnk

)
≤ d(gxmk

, gxnk−1) + p(gxnk−1, gxnk
)

< δ + d(gxnk−1, gxnk
).

Then, by using (3.2), we have limk→∞ p(gxmk
, gxnk

) = δ.
Next, we prove that

(3.8) lim
k→∞

sup p(gxmk+1, gxnk+1) < δ.

If limk→∞ sup p(gxmk+1, gxnk+1) ≥ δ, then there exists a subsequence {kr} of {k : k ≥ 1}
such that

lim
r→∞

p(gxmkr+1, gxnkr+1) = ε ≥ δ.
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Since (gxn, gxm) ∈ X≤, by (3.1), we have

(3.9)
ψ(p(gxmkr+1, gxnkr+1)) = ψ(p(fxmkr

, fxnkr
))

≤ ψ(Mg
p(xmkr

, xnkr
))− φ(Mg

p(xmkr
, gxnkr

))
≤ ψ(Mg

p(xmkr
, xnkr

)).

Note that

Mg
p(xmkr

, xnkr
)

= max{p(gxmkr
, gxnkr

),min{p(gxmkr
, fxmkr

), p(gxnkr
, fxnkr

),
p(fxmkr

, gxmkr
), p(fxnkr

, gxnkr
)}}

= max{p(gxmkr
, gxnkr

),min{p(gxmkr
, gxmkr+1), p(gxnkr

, gxnkr+1),
p(gxmkr+1, gxmkr

), p(gxnkr+1, gxnkr
)}}.

Then we have

(3.10) lim
r→∞

Mg
p(xmkr

, xnkr
) = max{δ,min{0, 0, 0, 0}} = δ.

Letting r → ∞ in (3.9) and using (3.10), we have

ψ(ε) ≤ ψ(δ)− φ(δ) < ψ(δ).

So, we have δ = 0, which is a contradiction and hence (3.8) hold.
Thus, from (3.6), (3.2) and (3.4), it follows that

δ ≤ limk→∞ d(gxmk
, gxnk

)
≤ limk→∞ d(gxmk

, gxmk+1) + limk→∞ p(gxmk+1, gxnk+1)
+ limk→∞ p(gxnk+1, gxnk

)
≤ limk→∞ sup p(gxmk+1, gxnk+1)
< δ,

which is a contradiction and thus we obtain the claim (3.5). By Lemma 2.2, the sequence
{gxn} is a Cauchy sequence. Since X is a complete ordered metric space, the sequence
{gxn} converges to a point x⋆ ∈ X and

lim
n→∞

fxn−1 = lim
n→∞

gxn = x⋆.(3.11)

If f is continuous, since g is continuous and the pair (f, g) compatible, then we have
gx⋆ = lim

n→∞
gfxn = lim

n→∞
fgxn = fx⋆, that is, x⋆ is a coincidence of f and g.

Suppose that the assumption (b) holds. Since (gxn−1, gxn) ∈ X≤, it follows from (3.1)
that

ψ(p(fgxn−1, fgxn) ≤ ψ(Mg
p(gxn−1, gxn))− φ(Mg

p(gxn−1, gxn))

and

Mg
p(gxn−1, gxn) = max{p(ggxn−1, ggxn,min{p(ggxn−1, fgxn−1), p(ggxn, fgxn),

p(fgxn−1, ggxn−1), p(fgxn, ggxn)}}.

By (3.11), the pair (f, g) compatible and the mapping g is continuous, we have

lim
n→∞

Mg
p(gxn−1, gxn)

= lim
n→∞

max{p(ggxn−1, ggxn),min{p(ggxn−1, fgxn−1), p(ggxn, fgxn),

p(fgxn−1, ggxn−1), p(fgxn, ggxn)}}
= lim

n→∞
max{p(ggxn−1, ggxn),min{p(ggxn−1, gfxn−1), p(ggxn, gfxn),

p(gfxn−1, ggxn−1), p(gfxn, ggxn)}}
= max{p(gx⋆, gx⋆),min{p(gx⋆, gx⋆), p(gx⋆, gx⋆)}}
= p(gx⋆, gx⋆).
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Hence we have
ψ(p(gx⋆, gx⋆)) = lim

n→∞
ψ(p(gfxn−1, gfxn)

= lim
n→∞

ψ(p(fgxn−1, fgxn)

≤ lim
n→∞

(
ψ(Mg

p(gxn−1, gxn))− φ(Mg
p(gxn−1, gxn))

)
= ψ(p(gx⋆, gx⋆))− φ(p(gx⋆, gx⋆))
≤ ψ(p(gx⋆, gx⋆)).

So, we have p(gx⋆, gx⋆) = 0. Furthermore, we have

lim
n→∞

p(fgxn, gx⋆) = lim
n→∞

p(gfxn, gx⋆) = p(gx⋆, gx⋆)

Let

(3.12) p(fgxn, gx⋆) ≤ αn

for a sequence {αn} converging to zero. On the other hand, since {gxn} converges to x⋆,
by the assumption (b), we have (ggxn, gx⋆) ∈ X≤ for any n ∈ N. Then we have

ψ(p(fgxn, fx⋆) ≤ ψ(Mg
p(gxn, x⋆))− φ(Mg

p(gxn, x⋆))(3.13)

and
Mg

p(gxn, x⋆) = max{p(ggxn, gx⋆,min{p(ggxn), fgxn), p(gx⋆, fx⋆),
p(fgxn, ggxn), p(fx⋆, gx⋆)}}.

Since
lim
n→∞

Mg
p(gxn, x⋆)

= lim
n→∞

max{p(ggxn, gx⋆),min{p(ggxn, fgxn), p(gx⋆, fx⋆),
p(fgxn, ggxn), p(fx⋆, gx⋆)}}

= lim
n→∞

max{p(ggxn, gx⋆),min{p(ggxn, gfxn), p(gx⋆, fx⋆),
p(gfxn, ggxn), p(fx⋆, gx⋆)}}

= lim
n→∞

max{p(gx⋆, gx⋆),min{p(gx⋆, gx⋆), p(gx⋆, fx⋆),
p(gx⋆, gx⋆), p(fx⋆, gx⋆)}}

= max{0,min{0, p(gx⋆, fx⋆), 0, p(fx⋆, gx⋆)}}
= 0,

by taking n→ ∞ in (3.13), we have

lim
n→∞

ψ(p(fgxn, fx⋆) ≤ ψ(0)− φ(0) ≤ ψ(0),

which implies that lim
n→∞

p(fgxn, fx⋆) = 0 and thus let p(fgxn, fx⋆) ≤ βn for a sequence

{βn} converging to zero. Therefore, by Lemma 2.1 (1), we have fx⋆ = gx⋆. This completes
the proof. □

If we have Mg
p(x, y) = p(gx, gy) in Theorem 3.1, then we obtain the following:

Corollary 3.1. Let (X, d,≤) be a complete ordered metric space equipped with the w-distance
p and f, g : X → X be two mappings such that f has the mixed g-monotone property on X ,
f(X) ⊆ g(X) and g is continuous and compatible with f . Assume that there exist ψ,φ ∈ Ψ such
that

(3.14) ψ(p(fx, fy)) ≤ ψ (p(gx, gy))− φ (p(gx, gy)))

for all x, y ∈ X for which (gx, gy) ∈ X≤ and one of the following hold:
(a) f is continuous;
(b) X has the sequential g-monotone property.
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Suppose that there exist x0 ∈ X such that (g(x0), f(x0)) ∈ X≤. Then f and g have at least one
coincidence point.

Next, we give an example to illustrate Theorem 3.1.

Example 3.3. LetX = [0,∞) with the Euclidean metric and the usual order equipped with
the w-distance p define by p(x, y) = y for all x, y ∈ X . Let f and g be the self-mappings
on X defined by

f(x) = sinh−1 x

2
, g(x) = sinh(2x)

for all x ∈ X . Then f and g are continuous and, furthermore, f(X) ⊆ g(X). Let x⋆ ∈ X
be such that lim

n→∞
gxn = x⋆ = lim

n→∞
fxn. Then we have

sinh(2xn) = lim
n→∞

gxn = x⋆ = lim
n→∞

fxn = sinh−1 xn
2
.

Further, by the continuity of f and g, we have

sinh−1 x⋆
2

= lim
n→∞

xn = 2 sinhx⋆,

which gives sinh−1 x⋆ = 4 sinhx⋆. From

sinh−1 x⋆ = 4 sinhx⋆ ⇐⇒ x⋆ = 0,

it follows that

lim
n→∞

fgxn = f
(
lim
n→∞

gxn
)
= fx⋆ = gx⋆ = g

(
lim
n→∞

fxn
)
= lim

n→∞
gfxn.

Now, we show that f and g satisfy (3.1) with the altering distance functions ψ,φ :
[0,∞) → [0,∞) defined by ψ(t) = λt and φ(t) = (λ−1)t for all t ∈ [0,∞), where λ ∈ (1, 2).
Let x, y ∈ X be such that (x, y) ∈ X≤. Then we have

ψ(p(fx, fy)) = ψ
(
sinh−1 y

2

)
= λ sinh−1 y

2
≤
λ

2
(y)

≤
λ

4
(2y) ≤

λ

4
sinh(2y) ≤ p(gx, gy) ≤ Mg

p(x, y)

= ψ(Mg
p(x, y))− φ(Mg

p(x, y)).

Therefore, all the conditions of Theorem 3.1 are satisfied. Moreover, 0 ∈ X is a coincidence
point of f and g.
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