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Some coincidence point theorems in ordered metric spaces
via w-distances

CHIRASAK MONGKOLKEHA' and YEOL JE CHO??

ABSTRACT. The purpose of this paper is to prove some existence theorems of coincidence points for gener-
alized weak contractions in the setting of partially ordered sets with a metric via w-distances and give some
example to illustrate our main results.

1. INTRODUCTION

In 1996, Kada et al. [7] introduced the generalized metric, which called the w-distance,
and gave some examples of the w-distance. Also, they improved Caristi’s fixed point theo-
rem, Ekeland’s variational principle and the nonconvex minimization theorem according
to the results of Takahashi [11].

On the other hand, in 1997, Alber and Guerre-Delabriere [1] introduced the concept of
weak contractions in Hilbert spaces. Later, in 2001, Rhoades [9] showed that the results
of Alber and Guerre-Delabriere are also valid in complete metric spaces. In 2008, Dutta
and Choudhury [3] extended the notion of weak contractions by using the concept of two
altering distance functions. In 2012, Imdad and Rouzkard [5] proved some fixed point
theorems in complete metric spaces equipped with a partial order via the w-distance.
Recently, in 2014, Roshan et. al. [10], using the concept of weak contractions, proved
some existence theorems of coincidence points for some generalized contractions in the
framework of ordered b-metric spaces.

In this paper, we prove some existence theorems of coincidence points for generalized
weak contractions in the setting of partially ordered sets with a metric via the w-distance.
Also, we give some example to illustrate our main result.

2. PRELIMINARIES
First, we give some definitions, some examples and lemmas for our main results.

Definition 2.1. Let X be an nonempty set and f,g : X — X be two mappings. A point
x € X is called a coincidence point of f and g if fx = gz, where C(f, g) denote the sets of
coincidence points of f and g.

Definition 2.2. [6] Let (X, d) be a metric space and f,g : X — X be two mappings.
The pair (f, g) is said to be compatible if lim,,_, o d(fgx,, gfz,) = 0 whenever {z,} is a
sequence in X such that lim;,—, o fz, = lim, o gz, = 2 for some z € X.

Definition 2.3. Let (X, <) be a partially ordered set. The elements =,y € X are said to be
comparable with respect to < if either x <yory < z.
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Definition 2.4. [2] A triple (X, d, <) is called an ordered metric space if (X, d) is a metric
space with the partial order <.

Let X< C X x X be defined by X< = {(z,y) e X x X 12 <yory <z}

Definition 2.5. [4] (1) An ordered metric space (X,d, <) is said to have the sequential
g-monotone property if it satisfies the following properties:
(a) if {z,, } is a non-decreasing sequence and lim,,_, o =, = z, then gz, < gx for all
m>1;
(b) if {ym} is a non-increasing sequence and lim,,,_, ym = Yy, then gy, > gy for all
m > 1.
(2) If g is the identity mapping, then (X, d, <) is said to have the sequential monotone
property.
In 1984, Khan et al. [8] introduced the concept of an altering distance function as fol-
lows:

Definition 2.6. [8] A function ¢ : [0,00) — [0, 00) is called an altering distance function if
the following properties are satisfied:

(a) 9 is continuous and monotone nondecreasing;
(b) ¥(t) =0if and only if t = 0.

Now, ¥ denotes the family of all altering distance functions and we give some exam-
ples of the altering distance function as follow:

Example 2.1. For each i € {1,2}, let ¢; : [0,00) — [0, c0) be a function defined by

(1) p1(t) =t* forallt € [0, 00), for any k > 0;
(p2) pa2(t) =a* —1forallt € [0,00),for any a > 0 with a # 1.

Then ¢, is an altering distance function for each i € {1, 2}.

Now, we recall the concept of w-distances and some useful lemmas for the main results.

Definition 2.7. [7] Let (X, d) be a metric space. A functionp : X x X — [0, c0) is called a
w-distance on X if the following are satisfied:

@) p(z,2) < p(z,y) +py,2) forall z,y, z € X;

(b) for any z € X,p(z,-) : X — [0,00) is lower semi-continuous (i.e., if x € X and
yn = y € X, then p(z,y) < liminf, . p(z, yn));

(c) for any € > 0, there exists § > 0 such that p(z,z) < ¢ and p(z,y) < ¢ imply
d(z,y) <e.

Let X be a metric space with the metric d. We recall some example in [12] to show that
the w-distance is a generalization of the metric d.

Example 2.2. Let (X, d) be a metric space. A function p : X x X — [0,00) defined by
p(z,y) = cforall z,y € X is a w-distance on X, where c is a positive real number. But p is
not a metric since p(x,z) = ¢ # 0 for any z € X.

Lemma 2.1. [7, 12] Let (X, d) be a metric space with the w-distance p. Let {x,,} and {y.} be two
sequences in X, whereas {a, } and {3, } be two sequences in [0, c0) converging to zero. Then the
following conditions hold: forall x,y,z € X,

1) Ifp(zn,y) < apand p(z,,z) < By, foralln > 1, then y = z. In particular, if p(z,y) = 0
and p(x,z) =0, theny = z;

(2) If p(@n,yn) < ap and p(zy, z) < By forallm > 1, then {y,, } converges to z;

QB) If p(@n, ym) < o forall n,m > 1 with m > n, then {x,,} is a Cauchy sequence;
(y, ) < au, forall m > 1, then {x,,} is a Cauchy sequence.
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Lemma 2.2. [7] Let (X, d) be a metric space with the w-distance p. Let {x,,} be sequences in X
such that, for each € > 0, there exists N. € N such that m > n > N, implies p(zy, Tm) < € OF
limy, oo P(@n, Tm) = 0. Then {x,,} is a Cauchy sequence.

Next, we give the concept of compatible mappings in metric space with the w-distance.

Definition 2.8. Let (X, d) be a metric space with the w-distance p. The mappings f,g :
X — X are said to be compatible if

lim fgx, = lim gfx,

n—o0 n— oo
with lim,, 00 p(f92n, 9fxn) = limy, o0 p(9f2n, fgx,) whenever {z,} is a sequence in X
such that lim,, o, fx, = lim, .o, gz, = 2z for some z € X.

Remark 2.1. If p = d, then Definition 2.8 become to Definition 2.2.

3. MAIN RESULTS

In this section, we establish some existence theorems of coincidence points for gener-
alized weak contractions in partially ordered metric spaces via the w-distances. Also, we
give some example to illustrate our main results.

Theorem 3.1. Let (X, d, <) be a complete ordered metric space equipped with the w-distance
pand f,g : X — X be two mappings such that f has the mixed g-monotone property on X,
f(X) C g(X) and g is continuous and compatible with f. Assume that there exist 1), o € U such
that

(3.1) U(p(fz, fy)) < v (M(,9)) — ¢ (Mj(z, 1))
forall x,y € X, where

M (x,y) = max{p(gz, gy), min{p(gz, fz),p(gy, fy), p(fz,92),p(fy, 9y)}}
forany (gx, gy) € X<, and one of the following holds:
(a) f is continuous;
(b) X has the sequential g-monotone property.

Suppose that there exist xo € X such that (g(x¢), f(z0)) € X<. Then f and g have at least one
coincidence point. Furthermore, If the sequence {gx,, } converges to a point x, € X, then

lim p(gfan, fze) =0 = lim p(fgz,, gz.).
n—oo n— 00

Proof. 1f we have g(z¢) = f(xo) for some zy € X, then there is nothing to prove. Suppose
that 2o € X such that g(zo) # f(zo) and (g(x0), f(z0)) € X<. Since f(X) C g(X),
it follows that there exits 21 € X such that f(z¢) = g(x1) and so (g(z0),g(z1)) € X<.
By the mixed g-monotone property of f, we have (f(zo), f(z1)) € X<. Again, since
f(X) C g(X), there exits x2 € X such that f(z1) = g(x2) and hence (g(x1), g(x2)) € X<.
Continuing this way, we have a sequence {gz,, } such that (¢z,, gx.,) € X< forany m,n €
N.
Now, we show that

(3.2) lim p(gn, gtns1) = 0.
n— 00
For any n € N, by (3.1), we have

Y(p(frn, frni1))

(3.3) P(P(9Tn+1,9Tn12)) =
= v (Mg(l‘n, $n+1)) - ¢ (Mg(xnvxn+1)) .
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Note that
Mzg;(l'm Tni1) = max{p(gTn, gTni1), min{p(gan, fTn), P(9Tnt1, [Tni1),
p(f:cmgfcn),p(fxn+1,gxn+1)}}
= max{p(9Tn, 9Tpn+1), min{p(g2n, gTn+1), P(9Tn+1, 9Tn+2),
p(gx7z+1, gxn)7p(gxn+27gxn—i—l)}}-
Case L. If

min{p(gzn, 9Tn+1), P(9Tn+1, 9Tn+2), P(9Tn+1, 9%n), P(9Tn+2, 9Tn+1)} = P(9Tn; GTn1),
then we have MY (2, Znt1) = p(9%n, 9Tny1)-
Case II. If
min{p(g2n, 9Tn+1), P(9Tn+1, 9Tnt2), P(9Tn+1, 9Tn), P(9Tn+2, GTn+1)}
# p(9Tn, 9Tnt1),
then we have
min{p(9zn, 9Tn+1), P(9Tn+1, 9Tn+2), P(9Tn+1, 9Tn ), P(9Tn+2, GTn+1)}
< p(92n; 9Tn41)
and hence M§(zy,, p11) = p(gZn, gTn+1). Therefore, by Cases I, Il and (3.3), we have
Y(P(9Tnt1, 9Tny2)) < V(P(92n, 9Tn11)) — ©(P(92n, 9Tn11))
< P(P(9Tn, gTn+1))-

By the property of ¢, the sequence {p(gz,, gxn+1)} is non-increasing and converges to
some 7 > 0. Taking n — oo in the above inequality, we have

P(r) < o(r) —o(r) < 9(r),
which implies that = 0 and hence (3.2) hold. Using the same method, we can see that

(3.4) Jim p(gani1,92n) = 0.
Next, we claim that, for any m,n € N,
(35) lim p(ga,, gm) = 0.
n—o0

Suppose that (3.5) does not hold. Then there exists > 0 for which we can find subse-
quences {gz,, } and {gz,, } of {gx, } with ny > my > k such that

(3.6) P(9Tmyr 9Tn,) =6
and ny is the smallest number such that (3.6) holds, but
(37) p(gxm;C 3 gl'nk—l) < d.

This, in view of (3.6) and (3.7), gives that

6 < d(grm,, 9Tn,)
< d(gxmkvgxnk—l) +p(g'rnk—lagxnk)
< 6+d(gl‘nk_1,g.rnk).
Then, by using (3.2), we have limy_, o p(gZm,,; §Tn, ) = 9.
Next, we prove that
(38) lim Supp(gajnzk-‘rlagmnk-&-l) < 4.
k—o0
If limy s 00 SUP P(9Tmy+1, 9Tn,+1) > O, then there exists a subsequence {k,} of {k : k > 1}
such that
lim p(gxmk,,—&-lagxnkr-i-l) =e2>0.
r—> 00
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Since (g9zn, gTm) € X<, by (3.1), we have

'(/)(p(gxmkr-l-lvgxnkr-i-l)) = ,(/J(p(fxmkr7fxnkr))
(39) S (M (xmk,. ’ x”k,. )) - <P(M§($mk,, ) gx”km,. ))
< MG (@m,, s Tny,)-
Note that

M}% (Imkr ’ xnk,,.)
= Inax{p(gwmk,‘ » 9Tny,,. ), min{p(gmmkr ) fxmm )s p(gxnk,‘ ) fl'nkr )s
p(fxmz% y 9Ty, )7p(f-75nkr y 9Tny,,. )}}
= max{p(gxmkr y 9y, )7 min{p(gxmkr ) gmmerrl)?p(gxnkr ’ gxnkr+1)7
p(g'rmkr'f‘l?gxmkr)5p(gxnkr+1’ gxnkr)}}'

Then we have

(3.10) lim MJ (2, , Tn,, ) = max{d, min{0,0,0,0}} = 4.

700

Letting r — oo in (3.9) and using (3.10), we have
Y(e) < ¥(6) — p(d) < (d).

So, we have § = 0, which is a contradiction and hence (3.8) hold.
Thus, from (3.6), (3.2) and (3.4), it follows that

0 limg 00 d(9Tmy > 9Tny)

liHlk—)oo d(gxm;C ) gmkarl) + 11mk~>oo p(gxmk+1; gxnk+1)
+1limy 00 P(9Tn,+1, 9T, )

< limgeo Supp(gmmk-‘rl’ gmnk+1)

< 6,

INIA

which is a contradiction and thus we obtain the claim (3.5). By Lemma 2.2, the sequence
{gz,} is a Cauchy sequence. Since X is a complete ordered metric space, the sequence
{9z} converges to a point z, € X and

(3.11) lim fx,_ 1= hm 0 gLy = Ty

n—oo

If f is continuous, since g is continuous and the pair (f,g) compatible, then we have
gz, = lim gfx, = lim fgx, = fx,, thatis, 2, is a coincidence of f and g.
n—oo n—oo

Suppose that the assumption (b) holds. Since (gz,,—1, gz,) € X<, it follows from (3.1)
that

U(p(fgzn—1, fgrn) < VM (gTn-1,92n)) — (M} (92n-1, gn))
and
M (gan-1,97n) = max{p(ggrn—1, 992y, min{p(992n—1, fgTn-1),P(992n, fg2n),
p(f9Tn-1,99Tn-1),p(f9Tn, 992n)}}.
By (3.11), the pair (f, g) compatible and the mapping g is continuous, we have
Jim M (g2n—1, gn)
= lim max{p(g9zn—1,99%n), min{p(992n—1, f9Ln-1), P(99n, fg2n),

P(f9Tn—1,99Cn—1),p(f9Tn, 99Tn)}}

= lim max{p(ggrn_1,99%y), min{p(ggrn_1,9fTn-1),0(99%n, gf2n),
P(gfrn_1,99n-1),p(9fn, 992n)}}

= max{p(gx., gz,), min{p(gz,, gz.), (92, g.)}}

= p(gz., gzs).
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Hence we have
¢(p(g$*7996*)) = lim 1p<p<gfxnflagfxn)
(n(

n—oo

lim ¢ (p(fgxn—1, fgx,)
n— o0

< lim (M (g2n-1,920)) — 9(MF(g2n-1,970)))
= Y(p(97+, 97+)) — ©(P(97x, gT))
< Y(p(gas, 974))-

So, we have p(gx,, gz+) = 0. Furthermore, we have

lim p(fgan, gz.) = lim p(gfen, go.) = p(gzs, gz

n—oo

Let
(3.12) P(f92n, grs) < ap

for a sequence {a, } converging to zero. On the other hand, since {gz, } converges to x,,
by the assumption (b), we have (ggx,, gz.) € X< for any n € N. Then we have

(3.13) Y(p(fgrn, fre) < PMY(gTn, 74)) — (M (gTn, 74))
and
M;’;(Ql“m r,) = max{p(ggrn,, gr., min{p(ggr,), fgTn), P(9Tx, fTi),
P(f97n, g9n), p(fx, grs)}}-
Since
lim MY (gzp, 24)
n— o0
= lim max{p(ggzn, gz.), min{p(ggan, fgxn), p(g2s, f2.),

p(f97n, 9970), P(fTx, gT4)}}
= lim max{p(ggzn, gz.), min{p(g9xn, 9/ ), p(g2., f1.),

P(9fTn, 9920 ), P(f2s; 974)}}
= nleréomax{p(gx*,gx*),min{p(gm*,gx*),p(9$*7fx*)a

p(gm*,gﬂi*),p(fx*, gI*)}}
= max{0, min{0, p(gzs, f4),0, p(fx,, gzs)}}
= 0’

by taking n — oo in (3.13), we have
1 O(p(fan. f2.) < $(0) — 0(0) < (0),

which implies that lim p(fgx,, fr.) = 0 and thus let p(fgz,, fz.) < S, for a sequence
n—oo

{Bn} converging to zero. Therefore, by Lemma 2.1 (1), we have fz, = gx,. This completes
the proof. O

If we have M3 (z,y) = p(gz, gy) in Theorem 3.1, then we obtain the following:

Corollary 3.1. Let (X,d, <) be a complete ordered metric space equipped with the w-distance
pand f,g : X — X be two mappings such that f has the mixed g-monotone property on X,
f(X) C g(X) and g is continuous and compatible with f. Assume that there exist 1, o € W such
that

(3.14) Y(p(fz, fy)) < (p(9z, gy)) — ¢ (p(gz, gy)))

forall z,y € X for which (gx, gy) € X< and one of the following hold:
(a) f is continuous;
(b) X has the sequential g-monotone property.
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Suppose that there exist xo € X such that (g(x¢), f(z0)) € X<. Then f and g have at least one
coincidence point.

Next, we give an example to illustrate Theorem 3.1.

Example 3.3. Let X = [0, co) with the Euclidean metric and the usual order equipped with
the w-distance p define by p(z,y) = y for all z,y € X. Let f and g be the self-mappings
on X defined by

f(z) =sinh™! g, g(z) = sinh(2x)
forall z € X. Then f and g are continuous and, furthermore, f(X) C g(X). Let z, € X
be such that lim gz, = =, = lim fz,. Then we have
n—oo n— oo

sinh(2,) = nli_{rgogxn =z, = nll)ngofxn = sinh ™! 3%"

Further, by the continuity of f and g, we have
. h71
L lim z,, = 2sinh x,,
2 n—oo
which gives sinh ™1 z, = 4sinh z,. From
sinh ™! T, =4sinhz, < z,=0,

it follows that

lim fgx, = f( lim g:cn) = fx, =gz, = g( lim fxn) = lim gfx,.

n— oo n— o0 n—oo n—oo

Now, we show that f and g satisfy (3.1) with the altering distance functions ¥, ¢ :
[0,00) — [0, 00) defined by ¢ (t) = At and p(t) = (A—1)tforallt € [0, 00), where A € (1,2).
Let z,y € X be such that (z,y) € X<. Then we have

A A
< 7(2y) < 7sinh(2y) < p(gz. gy) < Mi(,y)

= p(My(z,y)) — p(M(z,y)).
Therefore, all the conditions of Theorem 3.1 are satisfied. Moreover, 0 € X is a coincidence
point of f and g.
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