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Solution of the singular Cauchy problem for a general
inhomogeneous Euler–Poisson–Darboux equation

ELINA SHISHKINA

ABSTRACT. In this paper, we solve Cauchy problem for a general form of an inhomogeneous Euler–Poisson–
Darboux equation, where Bessel operator acts instead of the each second derivative. In the classical formula-
tion, the Cauchy problem for this equation is not correct. However, for a specially selected form of the initial
conditions, the equation has a solution. The general form of the Euler–Poisson–Darboux equation with such
conditions we will call the singular Cauchy problem.

1. INTRODUCTION

In this paper we give a solution of the singular Cauchy problem

(1.1) Lu(x, t) =

[
∂2

∂t2
+
k

t

∂

∂t
−

n∑
i=1

(
∂2

∂x2i
+
γi
xi

∂

∂xi

)]
u(x, t) = f(x, t),

(1.2) u(x, 0) = φ(x), tkut(x, t)|t=0 = ψ(x).

where x = (x1, ..., xn), k ∈ (0, 1), γi > 0, xi > 0, i = 1, 2, ..., n, t > 0. We will call the
equation (1.1) general inhomogeneous Euler–Poisson–Darboux equation. It is compli-
cated to mention all publications on the Cauchy problem for the equation (1.1) with initial
conditions

(1.3) u(x, 0) = φ(x), ut(x, 0) = 0,

when γi=0 for i=1, ..., n. We just mention that a solution to (1.1)–(1.3) when f=0, γi=0
for i=1, ..., n in the classical sense was obtained in [30]–[33] and in [7]–[6] in the distri-
butional sense. Solution to (1.1) when u(x, 0) = 0, ut(x, 0) = 0, k, γi=0 for i=1, ..., n in
terms of Riezs potential have been established in [21]. When f = 0 a solution to the
equation (1.1) with conditions (1.3) was obtained in [9, 22]. This problem has been ex-
tended in [23] for the more general equation Lu = c2u, c ∈ R. Solution to the equation
Lu = 0 with conditions u(x, 0)=φ(x), tkut(x, 0)=ψ(x) was obtained in [24]. The abstract
Euler–Poisson–Darboux equation (when in the right hand of (1.1) an arbitrary closed lin-
ear operator is presented) was studied in [11]–[13]. An equation of the form (1.1) is solved
for the first time. It improves results obtaining in [21] when u(x, 0) = 0, ut(x, 0) = 0,
k, γi=0 for i=1, ..., n.

Throughout this paper we make extensive use of the techniques of transmutation op-
erators developed for the Bessel operator (Bν)t =

∂2

∂t2 + ν
t

∂
∂t in [25]–[14].
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2. BASIC DEFINITIONS

In this section, we give some basic definitions and notions needed for our further con-
siderations.

We deal with the subset of the Euclidean space

Rn+1
+ ={(t, x)=(t, x1, . . . , xn) ∈ Rn+1, t > 0, x1>0, . . . , xn>0}.

Let x = (x1, ..., xn), |x| =
√

n∑
i=1

x2i and Ω be finite or infinite open set in Rn+1 symmetric

with respect to each hyperplane t = 0, xi=0, i = 1, ..., n, Ω+ = Ω∩Rn+1
+ and Ω+ = Ω∩Rn+1

+

where
R n+1

+ ={(t, x)=(t, x1, . . . , xn) ∈ Rn+1, t > 0, x1≥0, . . . , xn≥0}.
Consider the class Cm(Ω+) consisting of m times differentiable on Ω+ functions and de-
note by Cm(Ω+) the subset of functions from Cm(Ω+) such that all derivatives of these
functions with respect to t and xi for any i = 1, ..., n are continuous up to t = 0 and
xi=0. Function f ∈ Cm(Ω+) we will call even with respect to t and xi, i = 1, ..., n if
∂2k+1f
∂t2k+1

∣∣∣∣
t=0,x=0

= 0, ∂2k+1f

∂x2k+1
i

∣∣∣∣
t=0,x=0

= 0 for all nonnegative integer k ≤ m−1
2 (see [15],

p. 21). Class Cm
ev(Ω+) consists of functions from Cm(Ω+) even with respect to each vari-

able t and xi, i = 1, ..., n. In the following we will denote Cm
ev(R

n+1
+ ) by Cm

ev . Let
◦
Cm

ev(Ω+)

be the space of all functions f∈Cm(Ω+) with a compact support. We set

C∞
ev (Ω+) =

⋂
Cm

ev(Ω+)

with intersection taken for all finite m and C∞
ev (R

n+1
+ ) = C∞

ev .
The space Sev is the subspace of the space of rapidly decreasing functions:

Sev = Sev(Rn+1
+ ) =

f ∈ C∞
ev : sup

(t,x)∈Rn+1
+

∣∣∣tα0xαDβ0

t Dβf(x)
∣∣∣ <∞

 ,

where α = (α1, ..., αn), β = (β1, ..., βn), α0, α1, ..., αn, β0, β1, ..., βn are integer nonnegative
numbers, xα = xα1

1 xα2
2 . . . xαn

n , Dβ = Dβ1
x1
...Dβn

xn
, Dxj

= ∂
∂xj

.
We will deal with the singular Bessel differential operator Bν (see, for example, [15],

p. 5):

(Bν)t =
∂2

∂t2
+
ν

t

∂

∂t
=

1

tν
∂

∂t
tν
∂

∂t
, t > 0,

and the elliptical singular operator or the Laplace-Bessel operator △γ :

(2.4) △γ = (△γ)x =

n∑
i=1

(Bγi
)xi

=

n∑
i=1

(
∂2

∂x2i
+
γi
xi

∂

∂x

)
=

n∑
i=1

1

xγi

i

∂

∂xi
xγi

i

∂

∂xi
.

The operator (2.4) belongs to the class of B–elliptic operators by I. A. Kipriyanovs’ clas-
sification (see [15]). Operator (□k,γ)t,x = (Bk)t − (∆γ)x is B–hyperbolic by the same
classifications.

The B–polyharmonic of order p function f = f(x) is the function f∈C2m
ev (Rn

+) such
that

(2.5) ∆m
γ f = 0,

where ∆γ is operator (2.4). The operator (2.5) was considered in [15]. The B-polyharmonic
of order 1 function we will call B–harmonic.
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The symbol jν is used for the normalized Bessel function:

jν(t) =
2νΓ(ν + 1)

tν
Jν(t),

where Jν(t) is the Bessel function of the first kind of order ν (see [29]). The function jν(t)
is even by t. Using formulas 9.1.27 from [1] we obtain

(2.6) (Bν)tj ν−1
2
(τt) = −τ2j ν−1

2
(τt).

We deal with multi-index γ=(γ1, . . ., γn) which consists of positive fixed reals γi > 0,
i=1, ..., n, |γ|=γ1+. . .+γn.

The operator kT τ
t for k > 0 is generalized translation acts by a variable t defined by

the next formula (see [16], p. 122, formula (5.19))

(2.7) kT τ
t f(t, x)=

Γ
(
k+1
2

)
√
πΓ
(
k
2

) π∫
0

f(
√
t2 + τ2 − 2tτ cosφ, x) sink−1 φdφ

and γTy
x=

γ1T y1
x1
...γnT yn

xn
is multidimensional generalized translation, where each of the

one–dimensional generalized translations γiT yi
xi

acts by a variable xi for i=1, ..., n accord-
ing to the formula (2.7).

Based on the multidimensional generalized translation γTy
x the weighted spherical

mean Mγ
r [f(x)] of a suitable function is constructed by the formula

(2.8) Mγ
r [f(x)] =

1

|S+
1 (n)|γ

∫
S+
1 (n)

γTrθ
x f(x)θ

γdS,

where θγ=
n∏

i=1

θγi

i , S
+
1 (n)={θ:|θ|=1, θ∈Rn

+} and |S+
1 (n)|γ =

n∏
i=1

Γ( γi+1

2 )

2n−1Γ(n+|γ|
2 )

. It is easy to see

that

(2.9) lim
r→0

Mγ
r [f(x)] = f(x), lim

r→0

∂

∂r
Mγ

r [f(x)] = 0.

3. SOLUTION OF THE CAUCHY PROBLEMS FOR HOMOGENEOUS
EULER–POISSON–DARBOUX EQUATION

Here we give solutions to Cauchy problems for linear homogeneous Euler–Poisson–
Darboux equation and some auxiliary results.

In [22] the next basic lemma was proven.

Lemma 3.1. The weighted spherical mean Mγ
r [f(x)] is the transmutation operator (see [25])

intertwining (∆γ)x and (Bn+|γ|−1)r for the twice continuously differentiable function f even
with respect to each of the independent variables:

Mγ
r [(∆γ)xf(x)] = (Bn+|γ|−1)rM

γ
r [f(x)].

Using this lemma, the Hadamard descent method, B–polyharmonic functions and re-
currence formulas, a solution to the Cauchy problem for the multidimensional Euler–
Poisson–Darboux equation wherein the Bessel operator acts in each of the variables:

(3.10) (□k,γ)t,xu(t, x) = 0, −∞ < k <∞, u = u(t, x), (t, x) ∈ Rn+1
+

was obtained. We will call (3.10) the general Euler–Poisson–Darboux equation.
The next theorem gives solution to the (3.10) with conditions u(0, x)=φ(x), ut(0, x)=0

for any k ∈ R (see [22]).
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Theorem 3.1. In the case k > n+ |γ| − 1, φ(x) ∈ C2
ev(Rn

+) solution to

(3.11) (□k,γ)t,xu(t, x) = 0,

(3.12) u(0, x) = φ(x), ut(0, x) = 0,

is

(3.13) u(t, x) = A(n, γ, k) t1−k

t∫
0

(t2 − r2)
k−n−|γ|−1

2 rn+|γ|−1Mγ
r [φ(x)]dr,

where

A(n, γ, k) =
2Γ
(
k+1
2

)
Γ
(

n+|γ|
2

)
Γ
(

k−n−|γ|+1
2

) .
Letφ ∈ C

[n+|γ|−k
2 ]+2

ev (Rn
+). Then the solution to (3.11)–(3.12) for k<n+|γ|−1, k ̸=−1,−3,−5, ...

is

(3.14) u(t, x) = t1−k

(
∂

t∂t

)m

(tk+2m−1v(t, x)),

wherem is a minimum integer such thatm ≥ n+|γ|−k−1
2 and v(t, x) is the solution to the Cauchy

problem

(3.15) (Bk+2m)tv = (∆γ)xv,

(3.16) v(0, v) =
φ(x)

(k + 1)(k + 3)...(k + 2m− 1)
, vt(0, x) = 0.

If φ is B–polyharmonic of order 1−k
2 and even with respect to each variable then one of the

solutions of the Cauchy problem (3.11)–(3.12) for the k=−1,−3,−5, ... is given by

(3.17) u(t, x) = f(x), k = −1,

(3.18) u(t, x) = φ(x) +

− k+1
2∑

h=1

∆h
γφ

(k + 1)...(k + 2h− 1)

t2h

2 · 4 · .... · 2h
, k = −3,−5, ...

The solution to (3.11)–(3.12) is unique for k ≥ 0.

The next theorem gives solution to the (3.10) with conditions u(0, x)=0, tkut(0, x)=ψ(x)
for any k < 1 (see [24]).

Theorem 3.2. If ψ ∈ C
[n+|γ|+k−1

2 ]
ev (Rn

+) then the solution u = u(t, x)) of

(3.19) (□k,γ)t,xu(t, x) = 0,

(3.20) u(0, x) = 0, tkut(0, x) = ψ(x)

is given by

u(t, x) =
Γ
(

3−k+2q
2

)
Γ
(
1−k
2

)
Γ
(

3−k+2q−n−|γ|
2

)
Γ
(

n+|γ|
2

) q∑
s=0

Cs
q t

1−k+2s

2sΓ
(
3−k
2 + s

)×

(3.21) ×
1∫

0

(1− r2)
1−k+2q−n−|γ|

2 rn+|γ|−1

(
1

t

∂

∂t

)s

Mγ
tr[ψ(x)]dr.
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if n+ |γ|+ k is not an odd integer and

u(t, x) =
2−qΓ

(
3−k
2

)
(1− k)Γ

(
3−k+2q

2

) (1

t

∂

∂t

)q (
tn+|γ|−2Mγ

t [ψ(x)]
)
.

if n + |γ| + k is an odd integer, where q ≥ 0 is the smallest positive integer number such
that 2− k + 2q ≥ n+ |γ| − 1.

4. RIESZ HYPERBOLIC B-POTENTIAL AND THE SOLUTION TO THE CAUCHY PROBLEMS
FOR NONHOMOGENEOUS EULER–POISSON–DARBOUX EQUATION

In this section we deal with Riesz hyperbolic B-potential and its analytic continuations,
associated with the operator

(□k,γ)t,x = (Bk)t − (∆γ)x, (Bk)t =
∂2

∂t2
+
k

t

∂

∂t
, (∆γ)x =

n∑
i=1

(
∂2

∂x2i
+
γi
xi

∂

∂xi

)
.

Using hyperbolic Riesz B–potential we give the solution to the Cauchy problem for the
inhomogeneous general Euler–Poisson–Darboux equation in a unique formula implying
an analytic continuation with respect to the parameter α. The main difficulty concerning
the analytic continuation was to prove that hyperbolic Riesz B–potential for α = 0 is the
identity operator.

The negative real powers (□k,γ)
−α

2 , α > 0 will be Riesz potential Iα□k,γ
with Lorentz

distance generated by generalized translation operator

(4.22) (Iα□k,γ
f)(t, x) =

1

Hn,k,γ(α)

∫
K+

(τ2−|y|2)
α−n−1−k−|γ|

2 ( kT τ
t

γTy
xf(t, x))τ

kyγdτdy,

where yγ=
n∏

i=1

yγi

i ,

Hn,k,γ(α) =
2α−n−1

π
sin

(
k+1

2
π

)
Γ

(
k+1

2

) n∏
i=1

Γ

(
γi+1

2

)
Γ
(α
2

)
Γ

(
α+1−n−k−|γ|

2

)
,

K+ = {(t, y)∈Rn+1
+ : t2≥|y|2}. The potential (4.22) is called the hyperbolic Riesz B–

potential.
It is easy to see that when f∈Sev the integral in (4.22) converges absolutely for α>n+k+

|γ|−1. (cf. [22]).

Lemma 4.2. Let λ > 0, p = 1, 2, ..., (t, x1, ..., xn) ∈ Rn+1
+ and (□k,γ)t,x = (Bk)t−(∆γ)x, then

((□k,γ)t,x)
p
(t2 − |x|2)λ+p =

(4.23) = 4p(λ+1)...(λ+p)

(
n+|γ|+k+1

2
+λ

)
...

(
n+|γ|+k+1

2
+λ+p−1

)
(t2−|x|2)λ.

Proof. Let verify the formula (4.23) for p = 1:

((Bk)t − (∆γ)x) (t
2 − |x|2)λ+1 = (Bk)t(t

2 − |x|2)λ+1 − (∆γ)x(t
2 − |x|2)λ+1 =

=
1

tk
∂

∂t
tk
∂

∂t
(t2 − |x|2)λ+1 −

n∑
i=1

1

xγi

i

∂

∂xi
xγi

i

∂

∂xi
(t2 − |x|2)λ+1 =

= 2(λ+ 1)
1

tk
∂

∂t
tk+1(t2 − |x|2)λ +

n∑
i=1

2(λ+ 1)
1

xγi

i

∂

∂xi
xγi+1
i (t2 − |x|2)λ =
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= 2(λ+ 1)
1

tk
((k + 1)tk(t2 − |x|2)λ + 2λtk+2(t2 − |x|2)λ−1)+

+

n∑
i=1

2(λ+ 1)
1

xγi

i

((γi + 1)xγi

i (t2 − |x|2)λ − 2λxγi+2
i (t2 − |x|2)λ−1) =

= 2(λ+ 1)
[
(k + 1)(t2 − |x|2)λ + 2λt2(t2 − |x|2)λ−1+

+

n∑
i=1

(γi + 1)(t2 − |x|2)λ − 2λx2i (t
2 − |x|2)λ−1)

]
=

= 2(λ+ 1)
[
(k + 1)(t2 − |x|2)λ + 2λt2(t2 − |x|2)λ−1+

+(n+ |γ|)(t2 − |x|2)λ − 2λ|x|2(t2 − |x|2)λ−1)
]
=

= 2(λ+ 1)((n+ |γ|+ k + 1 + 2λ)(t2 − |x|2)λ).
So we get

(4.24) ((Bk)t − (∆γ)x) (t
2 − |x|2)λ+1 = 4(λ+ 1)

(
n+ |γ|+ k + 1

2
+ λ

)
(t2 − |x|2)λ.

Applying formula (4.24) p–times we obtain (4.23). □

Lemma 4.3. If n+ |γ| − 2 < α and p ∈ N, then

(4.25) Iα+2p
□k,γ

(□k,γ)
pf = Iα□k,γ

f,

for any f ∈ Sev , such that ∂mf
∂tm = 0 ∂mf

∂xm
i

= 0 when (t, x1, ..., xn) = (0, 0, ..., 0), m = 0, .., 2p.

Proof. From the integral representation (4.22) using the formula 1.8.3 from [15] of the form
γiT yi

xi
(Bγi

)xi
= (Bγi

)γi
yi
T yi
xi

we obtain

(Iα+2p
□k,γ

(□k,γ)
pf)(t, x) =

=
1

Hn,k,γ(α+ 2p)

∫
K+

(τ2−|y|2)
α+2p−n−1−k−|γ|

2 ( kT τ
t

γTy
x(□k,γ)

p
t,xf(t, x))τ

kyγdτdy =

=
1

Hn,k,γ(α+ 2p)

∫
K+

(τ2−|y|2)
α+2p−n−1−k−|γ|

2

[
(□k,γ)

p
τ,y(

kT τ
t

γTy
xf(t, x))

]
τkyγdτdy.

Recall that ∂mf
∂tm = 0 ∂mf

∂xm
i

= 0 when (t, x1, ..., xn) = (0, 0, ..., 0), m = 0, .., 2p. Then applying
the integration by parts formula we find

(Iα+2p
□k,γ

(□k,γ)
pf)(t, x) =

=
1

Hn,k,γ(α+ 2p)

∫
K+

[
(□k,γ)

p
τ,y(τ

2−|y|2)
α+2p−n−1−k−|γ|

2

]
( kT τ

t
γTy

xf(t, x))τ
kyγdτdy.

Applying (4.23) we get

(□k,γ)
p
τ,y(τ

2−|y|2)
α−n−1−k−|γ|

2 +p = 4p
(
α− n− 1− k − |γ|

2
+ 1

)
...

...

(
α− n− 1− k − |γ|

2
+p

)(α
2

)
...
(α
2
+ p− 1

)
(t2−r2)

α−n−1−k−|γ|
2 .

The result (4.25) follows from the

4p
(

α−n−1−k−|γ|
2 + 1

)
...
(

α−n−1−k−|γ|
2 +p

) (
α
2

)
...
(
α
2 + p− 1

)
Hn,k,γ(α+ 2p)

=
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=
π4p

(
α−n−1−k−|γ|

2 + 1
)
...
(

α−n−1−k−|γ|
2 +p

) (
α
2

)
...
(
α
2 + p− 1

)
2α+2p−n−1 sin

(
k+1
2 π

)
Γ
(
k+1
2

) n∏
i=1

Γ
(
γi+1
2

)
Γ
(
α
2 + p

)
Γ
(

α+1−n−k−|γ|
2 + p

) =
1

Hn,k,γ(α)
.

□

Now we prove that the integral Iα□k,γ
can be analytically continued to all values α > −1

and that for these values it is a holomorphic function of α for f ∈ Sev . Moreover we show
that I0□k,γ

is the identity operator for f ∈ Sev .

Theorem 4.3. Let f ∈ Sev , n+|γ|−k>0, k is not odd, then hyperbolic Riesz B–potential

(Iα□k,γ
f)(t, x) =

1

Hn,k,γ(α)

∫
K+

(τ2−|y|2)
α−n−1−k−|γ|

2 ( kT τ
t

γTy
xf(t, x))τ

kyγdτdy

can be analytically continued to all values α > −1 and (I0□k,γ
f)(t, x) = f(t, x).

Proof. Let (τ, y) ∈ Rn+1
+ , δ > 0 and τ + |y| = δ is a part of a cone with the vertex at

(δ, 0, ..., 0). We denote K+
δ the area bounded by a part of a cone τ + |y| = δ from above

by τ = |y| from below and by τ = 0, yi = 0, i = 1, . . . n, including boundary. Then
K+ = K+

δ ∪ (K+ \K+
δ ).

Let consider first (Iα□k,γ
f)(O), where O = (0, .., 0) ∈ Rn+1

+ . Dividing domain K+ into
two parts K+

δ and K+ \K+
δ we can write

(Iα□k,γ
f)(O) =

1

Hn,k,γ(α)

∫
K+

(τ2−|y|2)
α−n−1−k−|γ|

2 f(τ, y)τkyγdτdy = Iα1 + Iα2 ,

where

Iα1 =
1

Hn,k,γ(α)

∫
K+

δ

(τ2−|y|2)
α−n−1−k−|γ|

2 f(τ, y)τkyγdτdy,

Iα2 =
1

Hn,k,γ(α)

∫
K+\K+

δ

(τ2−|y|2)
α−n−1−k−|γ|

2 f(τ, y)τkyγdτdy.

We will show that Iα1 and Iα2 are holomorphic for α > −1 and I01 = f(O), I02 = 0 which
gives that (Iα□k,γ

f)(O) = f(O).
Consider Iα1 . Expressing integral by y in spherical coordinates y = ρθ we obtain

Iα1 =
1

Hn,k,γ(α)

∫
K+

δ

ρn+|γ|−1(τ2 − ρ2)
α−n−1−k−|γ|

2 f(τ, ρθ)τkθγdSdρdτ.

Changing variables τ and ρ by formulas

(4.26) ρ =
1

2
σ(1− χ), τ =

1

2
σ(1 + χ),

noticing that ∂(τ,ρ)
∂(σ,χ) =

1
2σ and (τ, y) = (τ, ρθ) = σ(b+ χc), where b, c ∈ Rn+1

+ we obtain

Iα1 =
1

2n+k+|γ|Hn,k,γ(α)

∫
S+
1 (n)

θγdS

δ∫
0

σα−1dσ×
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×
1∫

0

χ
α−n−1−k−|γ|

2 (1 + χ)k(1− χ)n+|γ|−1f(σ(b+ χc))dχ.

We develop f(σ(b+ χc)) by the Teylor formula in χ:

f(y) = f(σ(b+ χc)) =

N−1∑
p=0

χp

p!
Fp(σ, θ) +RN (χ),

where

Fp(σ, θ) =
∂p

∂χp
f(σ(b+ χc))

∣∣∣∣
χ=0

and

RN (χ) =
1

(N − 1)!

χ∫
0

∂N

∂χN
f(σ(b+ χ̃c)) (χ− χ̃)N−1dχ̃.

Then

Iα1 =
1

2n+k+|γ|Hn,k,γ(α)

N−1∑
p=0

1

p!

∫
S+
1 (n)

θγdS

δ∫
0

Fp(σ, θ)σ
α−1dσ×

×
1∫

0

χ
α−n−1−k−|γ|

2 +p(1 + χ)k(1− χ)n+|γ|−1dχ+

(4.27) +

∫
S+
1 (n)

θγdS

δ∫
0

σα−1dσ

1∫
0

χ
α−n−1−k−|γ|

2 (1 + χ)k(1− χ)n+|γ|−1RN (χ)dχ

 .

Integral
1∫

0

χ
α−n−1−k−|γ|

2 +p(1 + χ)k(1− χ)n+|γ|−1dχ

is integral representation of the Gauss hypergeometric function

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

1∫
0

tb−1(1− t)c−b−1(1− tz)−a dt,

for b = α−n+1−k−|γ|
2 + p > 0, c− b = n+ |γ| > 0. It is known that 2F1(a, b; c; z) is defined

for z = −1 when c − a − b > 0. Since in our case c − a − b = n + |γ| + k > 0 it can be
analytically continued to α−n+1−k−|γ|

2 + p ≤ −1 as the power series. So we have

1∫
0

χ
α−n−1−k−|γ|

2 +p(1 + χ)k(1− χ)n+|γ|−1dχ =
Γ
(

α−n+1−k−|γ|
2 + p

)
Γ(n+ |γ|)

Γ
(

α+n+1+|γ|−k
2 + p

) ×

× 2F1

(
−k, α− n+ 1− k − |γ|

2
+ p;

α+ n+ 1 + |γ| − k

2
+ p;−1

)
.

It means that we have analytic continuation of Iα1 to all α > 0. Integrating by parts the
integral by σ in (4.27) we obtain analytic continuation of Iα1 to all α > −1.



General form of the Euler–Poisson–Darboux equation 263

Let

Kp(α) =
π

2k+|γ|+α−1 sin
(
k+1
2 π

)
Γ
(
k+1
2

) n∏
i=1

Γ
(
γi+1
2

)
Γ
(

α+1−n−k−|γ|
2

)×

×
Γ
(

α−n+1−k−|γ|
2 +p

)
Γ(n+|γ|)

Γ
(

α+n+1+|γ|−k
2 + p

) ×2F1

(
−k, α− n+1−k −|γ|

2
+ p;

α+ n+1 +|γ| − k

2
+ p;−1

)
.

The most important term in (4.27) is the term with p = 0 has the form

(4.28)
K0(α)

Γ
(
α
2

) ∫
S+
1 (n)

θγdS

δ∫
0

f(σb)σα−1dσ.

Using formula 15.1.21 from [1] of the form

2F1(a, b; a− b+ 1;−1) =

√
πΓ(a− b+ 1)

2aΓ
(
1 + a

2 − b
)
Γ
(
a+1
2

) , a− b+ 1 ̸= 0,−1,−2, ...

and taking into account the Euler’s reflection formula

Γ(1− z)Γ(z) =
π

sin (πz)
, z ̸∈ Z

we get for k+1
2 /∈ Z

(4.29) K0(0) =

√
πΓ(n+ |γ|)

2|γ|−1Γ
(

n+|γ|+1
2

) n∏
i=1

Γ
(
γi+1
2

) .
Now we carry out the analytic continuation of the expression (4.28). The factor K0(α)

has no singularity at α = 0 and for k+1
2 /∈ Z and the formula (4.29) is valid for K0(0).

Integrating
δ∫
0

f(σb)σα−1dσ by parts we get

1

Γ
(
α
2

) δ∫
0

f(σb)σα−1dσ =
1

αΓ
(
α
2

)
f(σb)σα

∣∣∣∣δ
σ=0

−
δ∫

0

f ′σ(σb)σ
αdσ


=

1

2Γ
(
α
2 + 1

)
f(δb)δα −

δ∫
0

f ′σ(σb)σ
αdσ

 .

Then, since ∫
S+
1 (n)

θγdS =

n∏
i=1

Γ
(
γi+1
2

)
2n−1Γ

(
n+|γ|

2

)
using the formula

Γ(z) Γ

(
z +

1

2

)
= 21−2z

√
π Γ(2z)

we obtain

lim
α→0

K0(α)

Γ
(
α
2

) ∫
S+
1 (n)

θγdS

δ∫
0

f(σb)σα−1dσ =
K0(0)

2

f(δb)− δ∫
0

f ′σ(σb)dσ

 ∫
S+
1 (n)

θγdS =
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= f(δb)− f(δb) + f(0) = f(0).

Now we show that for p = 1, 2, ... all summands in (4.27) are equal to zero. Applying
formula Γ(z+m+1) = z(z+1) · · · (z+m)Γ(z), m ∈ N to Γ

(
α−n+1−k−|γ|

2 + p
)

we obtain

Kp(α) =
πΓ(n+ |γ|)

(
1− n+1+k+|γ|−α

2

)(
2− n+1+k+|γ|−α

2

)
...
(
p− n+1+k+|γ|−α

2

)
2k+|γ|+α−1 sin

(
k+1
2 π

)
Γ
(
k+1
2

)
Γ
(

α+n+1+|γ|−k
2 + p

) n∏
i=1

Γ
(
γi+1
2

) ×

× 2F1

(
−k, α− n+ 1− k − |γ|

2
+ p;

α+ n+ 1 + |γ| − k

2
+ p;−1

)
.

That means that Kp(0) has no singularity at α = 0. For any positive integer p we have

(4.30)
∂p

∂τp
f(σ(b+ τc)) = σp

(
n∑

k=1

ck∂k

)p

f,

where ∂k = ∂
∂yk

, y = σ(b+ τc). Hence all intergals

δ∫
0

Fp(σ, θ)σ
α−1dσ,

δ∫
0

σα−1dσ

1∫
0

χ
α−n−1−k−|γ|

2 (1 + χ)k(1− χ)n+|γ|−1RN (χ)dχ

converge for α > −1 when p = 1, 2, ..., Kp(0) is finite and lim
α→0

1

Γ(α
2 )

= 0 we get that all

summands in (4.27) for p = 1, 2, ... are equal to zero.
Now we consider Iα2 . Expressing integral by y in spherical coordinates y = ρθ we

obtain

Iα2 =
1

Hn,k,γ(α)

∫
K+\K+

δ

ρn+|γ|−1(τ2 − ρ2)
α−n−1−k−|γ|

2 f(τ, ρθ)τkθγdSdρdτ.

Making the change of variables (4.26) in the last expression we obtain

Iα2 =
1

2n+k+|γ|Hn,k,γ(α)

∫
S+
1 (n)

θγdS×

×
1∫

0

χ
α−n−1−k−|γ|

2 (1 + χ)k(1− χ)n+|γ|−1dχ

∞∫
δ

σα−1f(σ(b+ χc))dσ.

Since f ∈ Sev and δ > 0 then the function G(χ, θ, α) =
∞∫
δ

σα−1f(σ(b + χc))dσ is in Sev by

χ as well as by θ and holomorphic in α. Assuming
π

2α+k+|γ|−1 sin
(
k+1
2 π

)
Γ
(
k+1
2

) n∏
i=1

Γ
(
γi+1
2

) (1 + χ)k(1− χ)n+|γ|−1G(χ, θ, α)=W (χ)

we get

Iα2 =
1

Γ
(
α
2

)
Γ
(

α+1−n−k−|γ|
2

) ∫
S+
1 (n)

θγdS

1∫
0

χ
α−n−1−k−|γ|

2 W (χ)dχ.
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The expression 1

Γ(α+1−n−k−|γ|
2 )

1∫
0

χ
α−n−1−k−|γ|

2 W (χ)dχ can be continued analytically as a

holomorphic function of α to any α > α0 by integrating by parts, where α0 is arbitrary. So

1

Γ
(

α+1−n−k−|γ|
2

) ∫
S+
1 (n)

θγdS

1∫
0

χ
α−n−1−k−|γ|

2 W (χ)dχ

is a holomorphic function for α > −1 and since Iα2 contains a factor 1

Γ(α
2 )

it vanishes

when α→ 0. This completes the proof of the fact that (Iα□k,γ
f)(0) = f(0). Taking g(t, x) =

( kT τ
t

γTy
xf(t, x)) instead of f(t, x) we can write (Iα□k,γ

f)(t, x) = f(t, x) that means that
I0□k,γ

is the identity operator. □

Now consider the Cauchy problem when n+|γ|−k>0, k is not odd

(4.31) (□k,γ)t,xu(t, x) = f(t, x), f ∈ Sev,

(4.32) u(0, x) = 0, ut(0, x) = 0.

Applying operator Iα+2
□k,γ

to the (4.31), using Lemma 4.3 and Theorem 4.3 and passing to
the limit with α→ 0 we obtain that the solution to the problem (4.31)–(4.32) is

u(t, x) = (I2□k,γ
f)(t, x),

where f is from the Lemma 4.3
So we can write next theorem.

Theorem 4.4. The solution u ∈ Sev of the problem

(4.33) (□k,γ)t,xu(t, x) = f(t, x),

(4.34) u(x, 0) = φ(x), tkut(x, 0) = ψ(x),

where k ∈ (0, 1), (t, x) ∈ Rn+1
+ and f is from the Lemma 4.3 is

u(t, x) = u1(t, x) + u2(t, x) + (I2□k,γ
f)(t, x)

where u1(t, x) is given in Theorem 3.1, u2(t, x) is given in Theorem 3.2 and I2□k,γ
is hyperbolic

Riesz B–potential (4.22) or its analytic continuation given by Theorem 4.3.

Example. Consider a Cauchy problem

(4.35)
(
∂2

∂t2
+

2

t

∂2

∂t2
− (∆γ)x

)
u(t, x) = t2e−tjγ(x; b),

(4.36) u(0, x) = 3jγ(x; b), ut(0, x) = 0,

where n+ |γ| ≥ 2, jγ(x; ξ) =
n∏

i=1

j γi−1

2
(xiξi) γ1 > 0, ..., γn > 0, b = (b1, ..., bn), |b| = 1.

A solution to (4.35)–(4.36) is

u(t, x) =
1

2
e−t(t2 + 3t+ 3)jγ(x; b).

Checking we have

(∆γ)xe
−t(t2 + 3t+ 3)jγ(x; b) = −1

2
e−t(t2 + 3t+ 3)jγ(x; b),

(B2)t e
−t(t2 + 3t+ 3)jγ(x; b) =

1

2
e−t(t2 − 3t− 3)jγ(x; b)
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and
((B2)t − (∆γ)x) e

−t(t2 + 3t+ 3)jγ(x; b) = t2e−tjγ(x; b),

u(0, x) = 3jγ(x; b), ut(0, x) = 0.
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[3] Bateman, H. and Erdélyi, A., Tables of Integral Transforms, Vol. 2. McGraw-Hill, New York, 1954
[4] Blum, E. K., The Euler–Poisson–Darboux equation in the exceptional cases, Proc. Amer. Math. Soc., 5 (1954),

511–520
[5] Bresters, D. W., On the equation of Euler–Poisson–Darboux, SIAM J. Math. Anal., 4 (1973), No. 1, 31–41
[6] Bresters, D. W., On a generalized Euler–Poisson–Darboux equation, SIAM J. Math. Anal., 9 (1978), No. 5, 924–

934
[7] Carroll, R. W. and Showalter, R. E., Singular and Degenerate Cauchy problems, Academic Press, New York,

1976
[8] Diaz, J. B. and Weinberger, H. F., A solution of the singular initial value problem for the Euler–Poisson–Darboux

equation, Proc. Amer. Math. Soc., 4 (1953), 703–715
[9] Fox, D. N., The solution and Huygens principle for a singular Cauchy problem, J. Math. Mech., 8 (1959), 197–219

[10] Gel’fand, I. M. and Shilov, G. E., Generalized functions. Vol. I: Properties and operations, MA: Academic Press,
Boston, 1964

[11] Glushak, A. V. and Pokruchin, O. A., Criterion for the solvability of the Cauchy problem for an abstract Euler-
Poisson-Darboux equation, Translation of Differ. Uravn., 52 (2016), No. 1, 41?59. Differ. Equ., 52 (2016), No. 1,
39–57

[12] Glushak, A. V., Abstract Euler–Poisson–Darboux equation with nonlocal condition, Russian Mathematics 60
(2016), No. 6, 21–28

[13] Glushak, A. V. and Popova, V. A., Inverse problem for Euler–Poisson–Darboux abstract differential equation,
Journal of Mathematical Sciences 149 (2008), No. 4, 1453–1468

[14] Katrakhov, V. V. and Sitnik, S. M., Composition method for constructing B–elliptic, B–hyperbolic, and B–parabolic
transformation operators, Russ. Acad. Sci., Dokl. Math., 50 (1995), No. 1, 70–77

[15] Kipriyanov, I. A., Singular Elliptic Boundary Value Problems, Nauka, Moscow, 1997
[16] Levitan, B. M., Expansion in Fourier Series and Integrals with Bessel Functions, Uspehi Matem. Nauk (N.S.) 6

(1951), No. 2 (42), 102–143
[17] Levitan, B. M., Theory of generalised translations operators, Nauka, Moscow, 1973
[18] Lyakhov, L. N., Polovinkin, I. P., and Shishkina, E. L., Formulas for the solution of the Cauchy problem for a

singular wave equation with Bessel time operator, Doklady Mathematics, 90 (2014), No. 3, 737–742
[19] Lyakhov, L. N., Polovinkin, I. P., and Shishkina, E. L., On a Kipriyanov problem for a singular ultrahyperbolic

equation, Differ. Equ., 50 (2014), No. 4, 513–525
[20] Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I., Integrals and Series, Vol. 2, Special Functions, Gordon

& Breach Sci. Publ., New York, 1990
[21] M. Riesz, L’integrale de Riemann-Liouville et le probleme de Cauchy, Acta Mathematica, 81 (1949) 1-223
[22] Shishkina, E. L. and Sitnik, S. M., General form of the Euler-Poisson-Darboux equation and application of the

transmutation method, Electron. J. Differential Equations, 177 (2017), 1–20
[23] Shishkina, E. L., Generalized Euler–Poisson–Darboux equation and singular Klein–Gordon equation, Journal of

Physics: Conference Series, 973 (2018), No. 1, 1–20
[24] Shishkina, E. L., Singular Cauchy problem for the general Euler-Poisson-Darboux equation, Open Mathematics,

16 (2018), 23–31
[25] Sitnik, S. M., Transmutations and applications: A survey, arXiv:1012.3741v1
[26] Sitnik, S. M., Transmutations and applications, Contemporary studies in mathematical analysis, Vladikavkaz,

(2008) 226–293
[27] Sitnik, S. M., Factorization and estimates of the norms of Buschman–Erdelyi operators in weighted Lebesgue spaces,

Soviet Mathematics Dokladi, 44 (1992), No. 2, 641–646
[28] Tersenov, S. A., An introduction in the theory of equations degenerating on a boundary, Novosibirsk state univer-

sity, USSR, 1973
[29] Watson, G. N. A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922
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