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Coincidence points for multivalued weak Γ-contraction
mappings on metric spaces

M. R. ALFURAIDAN, S. BENCHABANE and S. DJEBALI

ABSTRACT. We present some new coincidence fixed point theorems for generalized multi-valued weak Γ-
contraction mappings. Our outcomes extend several recent results in the framework of complete metric spaces
endowed with a graph. Two illustrative examples are included and some consequences are derived.

1. INTRODUCTION

Fixed point theory plays a key role in nonlinear analysis, particularly in the solvability
of integral equations with many applications in applied mathematics. In this theory, Ba-
nach’s Contraction Principle, dating back to 1922, is one of the most important tool and
stands as the starting point of what is now called metric fixed point theory.

Given a metric space (M,d), we shall denote by CB(M) the family of nonempty closed
bounded subsets of M , by C(M) the family of nonempty closed subsets of M , and by
K(M) the family of nonempty compact subsets of M . For X,Y ∈ C(M), define the
Hausdorff-Pompeiu distance:

H(X,Y ) = max{ sup
m∈X

d(m,Y ), sup
n∈Y

d(n,X)},

where d(m,Y ) = inf{d(m,n) : n ∈ Y }. H is a metric on CB(M). A multi-valued mapping
T :M → CB(M) is called a contraction if there exists k ∈ [0, 1) such that for all m,n ∈M

H(T (m), T (n)) ≤ k d(m,n).

A pointm ∈M is a fixed point of a multi-valued mapping T ifm ∈ T (m). In 2007, Berinde
and Berinde [4] introduced the notion of multi-valued weak contraction which generalizes
Mizoguchi and Takahashi definition given in [13]. Regarding the structure of the metric
space, we cite Jachymski [12] who have introduced the concept of a contraction single-
valued mapping in a metric space endowed with a graph Γ. Such type of a contraction T
is called a Γ-contraction. More precisely T preserves the edges of the graph Γ:

(m,n) ∈ E(Γ) =⇒ (T (m), T (n)) ∈ E(Γ)

and ∃ k ∈ [0, 1) : (m,n) ∈ E(Γ) =⇒ d(T (m), T (n)) ≤ k d(m,n).

Jachymski has proved that a Γ-contraction mapping on a complete metric space that sat-
isfies certain properties has a fixed point if and only if there exists m ∈ M such that
(m,T (m)) ∈ E(Γ), providing an important step in the connection between fixed point
theory and graph theory. Recall that a graph Γ is an ordered pair (V,E), where V is a
set and E ⊂ V × V is a binary relation on V . Elements of E are called edges and are
denoted by E(Γ) while elements of V , denoted V (Γ), are called vertices. If the direction
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is imposed in E (the edges are directed), then we have a directed graph (digraph). In our
setting, no two vertices are connected by more than one edge and hence we can identify Γ
with its pair (V (Γ), E(Γ)). If (M,d) is a metric space, we assume that M = V (Γ) and the
diagonal of M ×M is contained in E(Γ). More details on graph theory can be found in
the monograph [2] edited by Alfuraidan and Ansari (see Chapter 7, pp. 287–363) where
a special attention is given to the connection between graph theory and fixed point the-
ory. Recently, Hanjing and Suanti [11] suggested a definition of a weak Γ-contraction with
respect to a single-valued function g. Then they have established the existence of some
coincidence point and fixed point theorems. Recall that a point m ∈ M is a coincidence
point of the hybrid pair (g, T ) if g(m) ∈ T (m). If g is the identity map on M , we recover
the definition of a fixed point of T . We will use Fix(T ) and Coin(g, T ) to represent the
set of fixed points of T and the set of coincidence points of g and T , respectively. By
Coin(g, T ) ∩ Fix(T ) ̸= ∅, it is meant that a fixed point of T exists and is a coincidence
point of (g, T ). Alfuraidan and Khamsi [3] recently proposed the following definition
which generalizes Hanjing-Suanti Definition.

Definition 1.1. Let (M,d) be a metric space and Γ be a digraph. Let T : M → C(M) and
g :M →M be two mappings. T is called a weak Γ-contraction with respect to g if for any
m,n ∈M such that m ̸= n and (m,n) ∈ E(Γ), we have
(i) if a ∈ T (m), there exists b ∈ T (n) such that (a, b) ∈ E(Γ) and
(ii) d(a, b) ≤ γ(d(m,n)) d(m,n) + h(g(n)) d(g(n), T (m)),
where γ : (0,+∞) → [0, 1) satisfies lim sup

s→t+
γ(s) < 1, for all t ∈ [0,+∞) and h : M −→

[0,+∞).

Then they have established the following coincidence point theorem:

Theorem 1.1. [3, Theorem 2.1] Let (M,d) be a complete metric space such that the triplet
(M,d,Γ) satisfies the following property (P).

(P): for every sequence (mi) in M , if mi → m and (mi,mi+1) ∈ E(Γ) for all i ∈ N, there
exists a subsequence (mik) of (mi) with (mik ,m) ∈ E(Γ), for k ∈ N.

Let g : M → M be a continuous self-mapping and T : M → C(M) be a weak Γ-contraction
mapping with respect to g. Suppose that g(n) ∈ T (m), for all (m,n) ∈ E(Γ) with n ∈ T (m) and
there ism0 ∈M such that (m0, n) ∈ E(Γ) for some n ∈ T (m0). ThenCoin(g, T )∩Fix(T ) ̸= ∅.

2. MAIN RESULTS

We first present a slight extension of Definition 1.1, namely:

Definition 2.2. Let (M,d) be a metric space endowed with a digraph Γ. Let T : M →
C(M) and g : M → M be two mappings. T is called a weak Γ-contraction with respect to
g if for every m,n ∈M such that m ̸= n and (m,n) ∈ E(Γ), we have
(i) if a ∈ T (m), there exists b ∈ T (n) such that (a, b) ∈ E(Γ) and
(ii) d(a, b) ≤ ζ(d(m,T (m)), d(m,n)) d(m,n) + h(g(n)) d(g(n), T (m)),
where ζ : R × R → R is a generalized Mizoguchi-Takahashi function and h : M −→
[0,+∞).

Notice that in Definition 2.2, we can replace in (ii) ζ(d(m,T (m)), d(m,n)) by
ζ(d(n, T (n)), d(m,n)). Now we consider the following class of functions.

Definition 2.3. Let Ψ = {ψ | ψ : [0,+∞) → [0,+∞)} be the class of nondecreasing
functions that satisfy the following two conditions:
(i) for every sequence (tn) ⊂ R+, ψ(tn) → 0 if and only if tn → 0;
(ii) for every sequence t1, t2 ∈ R+, ψ(t1 + t2) ≤ ψ(t1) + ψ(t2).
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Note that we have dropped the condition that either ψ is continuous or ψ(t) ≤ t, ∀ t > 0
commonly used by many authors. With this class of functions, we now present a new
generalization of Mizoguchi-Takahashi Γ-contraction.

Definition 2.4. Let (M,d) be a metric space and Γ be a digraph. Let T : M → C(M) and
g : M → M be two mappings. Then T is called a weak (ψ,Γ)-contraction with respect to
g if for every m,n ∈M such that m ̸= n and (m,n) ∈ E(Γ), we have
(i) if a ∈ T (m), there exists b ∈ T (n) such that (a, b) ∈ E(Γ) and
(ii) ψ(d(a, b)) ≤ γ(d(m,n)) ψ(M(m,n)) + h(g(n)) d(g(n), T (m)),
where

M(m,n) = max

{
d(m,n), d(T (m),m), d(T (n), n),

d(n, T (m)) + d(m,T (n))

2

}
,

ψ ∈ Ψ, γ : (0,+∞) → [0, 1) satisfies lim sup
s→t+

γ(s) < 1, for all t ≥ 0, and h is non-negative

on M .

Making use of these definitions, we will establish several coincidence point theorems
extending Theorem 1.1. This is the aim of Section 2 where some consequence are derived.
Two examples as applications are also supplied. Section 2 ends with some remarks show-
ing how the obtained theorems improve some results from the very recent literature.

The proof of the following theorem is similar to that of Theorem 1.1 and so is omit-
ted. Here the definition of weak Γ-contraction is that given in Definition 2.2. We will
show (see Remark 2.2) that this theorem encompasses Edelstein’s, Mizoguchi-Takahasi,
and Berinde-Berinde Theorems.

Theorem 2.2. Let (M,d) be a complete metric space endowed with a digraph Γ and assume that
(M,d,Γ) satisfies property (P). Let g : M → M be a continuous self-mapping and T : M →
C(M) be a weak Γ-contraction mapping with respect to g. Suppose that g(n) ∈ T (m), for all
(m,n) ∈ E(Γ) with n ∈ T (m) and E(Γ) ∩Graph(T ) ̸= ∅. Then Coin(g, T ) ∩ Fix(T ) ̸= ∅.

This is illustrated by the following example inspired from [1, Example 3.1].

Example 2.1. Step 1 (Setting): Consider the spaceM =

{
1

2i
, i ∈ N

}
∪{0} with the standard

metric d(m,n) = |m− n|, for m,n ∈M . Let

E(Γ) = ∆ ∪
{(

1

2i
, 0

)
, i ∈ N

}
,

define the function φ : [0,∞) → [0, 1) by

φ(m) =



m

2
, if m ∈

[
0,

1

2

)
,

1

4
, if m =

1

2
,

2

3
, if m >

1

2
,

and let ζ(u, v) = 1− φ(v)

v
, for all u, v > 0. For any bounded sequence (ui) ⊂ (0,+∞) and

any non-increasing sequence (vi) ⊂ (0,+∞), we have

lim sup
i→+∞

ζ(ui, vi) = lim sup
i→+∞

(
1− φ(vi)

vi

)
< 1.
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Let the mapping T :M → C(M ) be defined by

T (m) =


{0, 1}, if m = 0,{
0,

1

2i+1

}
, if m =

1

2i
, i ̸= 2{

1

22
,
1

23

}
, if m =

1

22
.

Let g :M →M be defined by

g(m) =

{
1, if m ∈ {0, 1},
1

2i+1
, if m =

1

2i
.

Let h :M → [0,∞) be defined by

h(m) =

{
1, if ∈ {0, 1},
2i+1, if m =

1

2i+3
.

Step 2: T :M → C(M) is a weak Γ-contraction with respect to g. Indeed, let m,n ∈M be such
that (m,n) ∈ E(Γ). Two cases are discussed separately. If m = n, then we are done.

If (m,n) =

(
1

2i
, 0

)
, i ̸= 2, then T

(
1

2i

)
=

{
0,

1

2i+1

}
and T (0) = {0, 1}. Let a ∈

T (m). If a = 0, then clearly the two conditions of Definition 2.2 are satisfied by taking

b = 0. If a =
1

2i+1
, then (a, 0) ∈ E(Γ) and ζ

(
d

(
1

2i
, T

(
1

2i

))
, d

(
1

2i
, 0

))
d

(
1

2i
, 0

)
+

h(g(0)) d

(
g(0), T

(
1

2i

))
≥ 1

2i+1
≥ d(a, 0) =

1

2i+1
. If (m,n) =

(
1

22
, 0

)
, then T

(
1

22

)
={

1

22
,
1

23

}
and T (0) = {0, 1}. Let a ∈ T (m). If a =

1

2s
for some s ∈ {2, 3}, then

(a, 0) ∈ E(Γ) and

ζ

(
d

(
1

22
, T

(
1

22

))
, d

(
1

22
, 0

))
d

(
1

22
, 0

)
+ h(g(0)) d

(
g(0), T

(
1

22

))
=

1

23
+ 1− 1

22

≥ d(a, 0) =
1

2s
.

Therefore, T : M → C(M) is a weak Γ-contraction with respect to g. In addition, it is
easy to check that if (m,n) ∈ E(Γ) with n ∈ T (m), then g(n) ∈ T (m), that is T satisfies
Definition 2.2. Hence Theorem 2.2 guarantees that Coin(g, T ) ∩ Fix(T ) ̸= ∅. In fact,

Coin(g, T ) ∩ Fix(T ) =
{
0,

1

22

}
.

Step 3: We check that the given map T does not satisfy Definition 1.1. For (m,n) = (
1

2
, 0),

then T
(
1

2

)
= {1

2
,
1

22
} and T (0) = {0, 1}. Let a ∈ T (m). If a =

1

22
, then (a, 0) ∈ E(Γ) and

φ

(
d

(
1

2
, 0

))
d

(
1

2
, 0

)
+ h(g(0)) d

(
g(0), T

(
1

2

))
=

1

23
< d(a, 0) =

1

22
.

Therefore, for (m,n) =
(
1

2
, 0

)
and (a, b) =

(
1

22
, 0

)
, Theorem 1.1 of Alfuraidan et al. [3]

does not apply.
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In the following result, we drop the continuity of g and property (P) of the metric space
(M,d) while T is g-invariant and the mapping m 7→ d(m,T (m)) is lower semi-continuous
(l.s.c. for short).

Theorem 2.3. Let (M,d) be a complete metric space endowed with a digraph Γ. Let g :M →M
be a self-mapping and T : M → C(M) be a weak Γ-contraction mapping with respect to g.
Suppose that T is g-invariant and E(Γ) ∩ Graph(T ) ̸= ∅. Then there exists a sequence (mi)
which converges to some limit m̃ ∈ M and mi+1 ∈ T (mi), for all i ∈ N. If further the function
d(m,T (m)) is l.s.c. at m̃, then Coin(g, T ) ∩ Fix(T ) ̸= ∅.

Proof. The sequence (mi) constructed in the proof of Theorem 1.1 converges to some limit
m̃ ∈M and satisfies mi+1 ∈ T (mi), for all i ∈ N. Moreover, we have

0 ≤ d(mi, T (mi)) ≤ d(mi,mi+1).

Passing to the limit yields lim
i→∞

d(mi, T (mi)) = 0. The function d(m,T (m)) being lower

semi-continuous at m̃, we obtain that

d(m̃, T (m̃)) ≤ lim inf
i→∞

d(mi, T (mi)) = 0.

Since T (m̃) is closed, then m̃ ∈ T (m̃). Finally using the g-invariance assumption on T , we
deduce that g(m̃) ∈ T (m̃). Therefore m̃ ∈ Coin(g, T ) ∩ Fix(T ), as claimed. □

Theorem 2.2 is now extended to the class of weak (ψ,Γ)-contraction mappings:

Theorem 2.4. Let (M,d) be a complete metric space such that (M,d,Γ) has property (P). Let
g : M → M be a continuous self-mapping and T : M → C(M) be a weak (ψ,Γ)-contraction
mapping with respect to g. In addition, suppose that g(n) ∈ T (m), for all (m,n) ∈ E(Γ) with
n ∈ T (m) and E(Γ) ∩Graph(T ) ̸= ∅. Then Coin(g, T ) ∩ Fix(T ) ̸= ∅.

Proof. Since E(Γ) ∩ Graph(T ) ̸= ∅, then there exists m0 ∈ M and m1 ∈ T (m0) such that
(m0,m1) ∈ E(Γ). By assumption, g(m1) ∈ T (m0). If m0 = m1, then m0 ∈ Coin(g, T ) ∩
Fix(T ). Now suppose m0 ̸= m1. Since T is a weak (ψ,Γ)-contraction, then there exists
m2 ∈ T (m1) such that (m1,m2) ∈ E(Γ) and

ψ(d(m1,m2)) ≤ γ(d(m0,m1)) ψ(M(m0,m1)) + h(g(m1)) d(g(m1), T (m0))

= γ(d(m0,m1)) ψ(M(m0,m1)).

By induction, we obtain a sequence {mi} such that, for all i ∈ N, mi+1 ∈ T (mi),
(mi,mi+1) ∈ E(Γ), and

(2.1) ψ(d(mi,mi+1)) ≤ γ(d(mi−1,mi)) ψ(M(mi−1,mi)),

where

M(mi−1,mi) = max
{
d(mi−1,mi), d(T (mi−1),mi−1), d(T (mi),mi),

d(mi, T (mi−1)) + d(mi−1, T (mi))

2

}
= max

{
d(mi−1,mi), d(T (mi),mi),

d(mi−1, T (mi))

2

}
.

Observe that we have assumed mi−1 ̸= mi, otherwise mi is a fixed point of T and by
assumption, g(mi) ∈ T (mi) because (mi,mi) lies in E(Γ) and mi ∈ T (mi−1) = T (mi),
that is mi ∈ Coin(g, T ) ∩ Fix(T ). Also mi /∈ T (mi), for all i ∈ N.

Step 1. lim
i→∞

d(mi,mi+1) = 0. We distinguish between two cases:
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Case 1. M(mi−1,mi) =
d(mi−1, T (mi))

2
, i.e.,

d(mi−1, T (mi))

2
> d(mi−1,mi) and

d(mi−1, T (mi))

2
> d(T (mi),mi). Then

d(mi−1, T (mi)) > d(mi−1,mi) + d(mi, T (mi)) ≥ d(mi−1, T (mi)),

leading to a contradiction.
Case 2. M(mi−1,mi) = d(T (mi),mi). In this case, we have

ψ(d(mi,mi+1)) ≤ γ(d(mi−1,mi)) ψ(d(T (mi),mi)).

Since mi+1 ∈ T (mi) and the function ψ is monotone, we have

ψ(d(mi,mi+1)) ≤ γ(d(mi−1,mi)) ψ(d(mi+1,mi)) < ψ(d(mi+1,mi)),

and again a contradiction is reached. Thus M(mi−1,mi) = d(mi−1,mi) and so inequality
(2.1) becomes

(2.2) ψ(d(mi,mi+1)) ≤ γ(d(mi−1,mi)) ψ(d(mi−1,mi)),

for all i ∈ N. Since 0 < γ(t) < 1, for all t > 0, then

ψ(d(mi,mi+1)) < ψ(d(mi−1,mi)).

Hence (ψ(d(mi,mi+1))) is a decreasing sequence of positive numbers. Let

l = lim
i−→∞

ψ(d(mi,mi+1)).

By taking the limit in (2.2), we find

l ≤ l lim sup
i→∞

γ(d(mi−1,mi)) < l

which is a contradiction unless l = 0. Hence lim
i−→∞

ψ(d(mi,mi+1)) = 0. As ψ ∈ Ψ, we

deduce that lim
i−→∞

d(mi,mi+1) = 0, as claimed.

Step 2. {mi} is a Cauchy sequence in M . Since lim sup
s→t+

γ(s) < 1, for all t ∈ [0,+∞), then there

exist δ > 0 and a ∈ (0, 1) such that

γ(t) < a, ∀ t ∈ (0, δ).

Since lim
i−→∞

d(mi−1,mi) = 0, for ε = δ, there exists I ∈ N such that d(mi−1,mi) < δ, for all

i ≥ I . From the inequality in (2.2), we infer that for all i ≥ I

ψ(d(mi,mi+1)) ≤ aψ(d(mi−1,mi)) ≤ . . . ≤ ai−Iψ(d(mI ,mI+1)).

For each i, j ∈ N with j > i ≥ I , we have

ψ(d(mi,mj)) ≤ ψ(

j−1∑
k=i

d(mk,mk+1))

≤
j−1∑
k=i

ψ(d(mk,mk+1))

≤
j−1∑
k=i

ak−Iψ(d(mI ,mI+1)).

By taking the limit as i, j → ∞, we find ψ(d(mi,mj)) → 0, whence d(mi,mj) → 0, as
i, j → ∞. This proves that (mi) is a Cauchy sequence which converges to m ∈M since M
is complete.
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Step 3. m ∈ Coin(g, T ) ∩ Fix(T ). By property (P), there exists a subsequence (mϕ(i)) such
that (mϕ(i),m) ∈ E(Γ), for each i ∈ N. Since T is a weak (ψ,Γ)-contraction, then there
exists ni ∈ T (m) such that for all i ∈ N,

ψ(d(mϕ(i)+1, ni)) ≤ γ(d(mϕ(i),m)) ψ(M(mϕ(i),m)) + h(g(m)) d(g(m), T (mϕ(i))).

Since mϕ(i)+1 ∈ T (mϕ(i)), then g(mϕ(i)+1) ∈ T (mϕ(i)) which implies that

ψ(d(mϕ(i)+1, ni)) ≤ γ(d(mϕ(i),m)) ψ(M(mϕ(i),m)) + h(g(m)) d(g(m), g(mϕ(i)+1)),

where we have set

M(mϕ(i),m) = max
{
d(mϕ(i),m), d(T (mϕ(i)),mϕ(i)), d(T (m),m),

d(m,T (mϕ(i))) + d(mϕ(i), T (m))

2

}
.

Since lim
i→+∞

d(mϕ(i),m) = 0, then there exists I1 ∈ N such that

d(mϕ(i),m) ≤ d(m,T (m))

4
, ∀ i ≥ I1.

Moreover the estimate d(T (mϕ(i)),mϕ(i)) ≤ d(mϕ(i)+1,mϕ(i)) guarantees that

lim
i→+∞

d(T (mϕ(i)),mϕ(i)) = 0.

Thus, we can find some I2 ∈ N such that

d(T (mϕ(i)),mϕ(i)) ≤
d(m,T (m))

4
, ∀ i ≥ I2.

As a consequence

d(m,T (mϕ(i))) + d(mϕ(i), T (m))

2
≤

d(m,mϕ(i))

2
+
d(mϕ(i), T (mϕ(i)))

2

+
d(mϕ(i),m)

2
+
d(m,T (m))

2
.

For i ≥ I0 = max{I1, I2}, we have

d(m,T (mϕ(i))) + d(mϕ(i), T (m))

2
≤ d(m,T (m)).

We conclude that one can choose I0 ∈ N such that

M(mϕ(i),m) = d(T (m),m), ∀ i ≥ I0.

Since ni ∈ T (m), the properties of ψ and g lead to the estimates:

ψ(d(mϕ(i)+1, ni)) ≤ γ(d(mϕ(i),m)) ψ(d(T (m),m)) + h(g(m)) d(g(m), g(mϕ(i)+1))

≤ γ(d(mϕ(i),m)) ψ(d(ni,m)) + h(g(m)) d(g(m), g(mϕ(i)+1))

≤ γ(d(mϕ(i),m)) ψ(d(ni,mϕ(i)+1) + ψ(d(mϕ(i)+1,m))

+h(g(m)) d(g(m), g(mϕ(i)+1)).

Hence

(1− γ(d(mϕ(i),m)))ψ(d(mϕ(i)+1, ni)) ≤ ψ(d(mϕ(i)+1,m)) + h(g(m)) d(g(m), g(mϕ(i)+1)).

Taking into account the property of the function γ in Definition 1.1, the limit as i → ∞
yields lim

i−→∞
ψ(d(mϕ(i)+1, ni)) = 0, which implies that

lim
i−→∞

d(mϕ(i)+1, ni) = 0.
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As a consequence the sequence (ni) also converges to m. Since T (m) is closed, we de-
duce that m ∈ T (m), a fixed point of T . By assumption, g(m) ∈ T (m). Therefore,
m ∈ Coin(g, T ) ∩ Fix(T ). □

To illustrate Theorem 2.4, we again discuss [3, Example 2.3] showing that T is in fact a
weak (ψ,Γ)-contraction.

Example 2.2. Let M =

{
1

2i
, i ∈ N

}
∪ {0} with the metric d(m,n) = |m− n| for all m,n ∈

M and let

E(Γ) = ∆ ∪
{(

1

22i+1
, 0

)
, i ∈ N

}
.

Define γ : [0,∞) → [0, 1) by γ(t) =
1

2
for all t ∈ [0,∞) and let ψ : (0,∞) → [0, 1),

T :M → C(M ) be defined by ψ(t) =
t

t+ 1
and

T (m) =



{0, 1}, if m = 0,{
1

22i+1
,

1

22i+3
,

1

22i+5
, · · ·

}
, if m =

1

22i+1
,{

1

22i+2

}
, if m =

1

22i
.

Let g :M →M and h :M → [0,∞) be defined by:

g(m) =

{
1, if m ∈ {0, 1},
1

2i+2
, if m =

1

2i
, i ∈ {2, 3, . . .}

and

h(m) =

{
1, if m ∈ {0, 1},
2i+1, if m = 1

2i .

We claim that T : M → C(M) is a weak (ψ,Γ)-contraction with respect to g. For this, let
m,n ∈ M be such that (m,n) ∈ E(Γ). If m = n, there is nothing to prove. If (m,n) =(

1

22i+1
, 0

)
, then T

(
1

22i+1

)
=

{
1

22i+1
,

1

22i+3
,

1

22i+5
· · ·

}
and T (0) = {0, 1}. Let a ∈

T (m). If a =
1

22i+s
for some s ∈ {1, 3, 5, 7, · · · }, then (a, 0) ∈ E(Γ) and

1

2
ψ

(
M

(
1

22i+1
, 0

))
+ h(g(0)) d

(
g(0), T

(
1

22i+1

))
=

1

2
· 1

1 + 22i+1
+ 1− 1

22i+1

≥ ψ(d(a, b))

=
1

1 + 22i+s
.

Consequently T :M → C(M) is a weak (ψ,Γ)-contraction with respect to g. Moreover,
it is easy to check that if (m,n) ∈ E(Γ) with n ∈ T (m), then g(n) ∈ T (m). From Theorem
2.4, we conclude that Coin(g, T ) ∩ Fix(T ) ̸= ∅. In fact, we have Coin(g, T ) ∩ Fix(T ) ={
0,

1

22i+1
, i ∈ N

}
.

The proof of the following theorem will be omitted for it is similar to those of Theorems
2.2 and 2.4.
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Theorem 2.5. Let (M,d) be a complete metric space such that (M,d,Γ) has property (P). Let
g : M → M be a continuous self-mapping and T : M → C(M) be a mapping with the property
that for any m,n ∈M such that m ̸= n and (m,n) ∈ E(Γ), we have two conditions:

(i) if a ∈ T (m), then there exists b ∈ T (n) such that (a, b) ∈ E(Γ) and
(ii) ψ(d(a, b)) ≤ ζ(d(m,T (m)), d(m,n)) ψ(d(m,n)) + h(g(n)) d(g(n), T (m)), where ψ ∈

Ψ while ζ : R × R → R is a generalized Mizoguchi-Takahashi function and h : M →
[0,+∞).

Suppose further that g(n) ∈ T (m) for all (m,n) ∈ E(Γ) with n ∈ T (m) andE(Γ)∩Graph(T ) ̸=
∅. Then Coin(g, T ) ∩ Fix(T ) ̸= ∅.

Remark 2.1. (a) As in Theorem 2.3, when (M,d,Γ) not satisfies property (P) and the map-
ping m 7→ d(m,T (m)) is lower semi-continuous, we can here again drop the continuity of
T and replace ψ(d(m,n)) by ψ(M(m,n)) in condition (ii).
(b) If we take g(m) = m and h = 0 in Theorem 2.5, then we obtain another Mizoguchi-
Takahashi type fixed point theorem.

Remark 2.2. [Concluding remarks]
(1) If in Theorem 2.2, we take ζ(u, v) = λ, g(m) = m, h = 0, and Γ with E(Γ) = {(m,n) ∈
M × M : d(m,n) < ϵ}, then we obtain an extension of Edelstein’s Coincidence Point
Theorem in [9].
(2) If in Theorem 2.2, we consider the digraph Γ with E(Γ) =M ×M , then we recover the
main coincidence point theorem in [8].
(3) If in Theorem 2.2, we take ζ(u, v) = φ(v), g(m) = m, h = 0, and Γ with E(Γ) =M ×M ,
then we recapture Mizoguchi-Takahasi Fixed Point Theorem.
(4) If in Theorem 2.2, we take ζ(u, v) = φ(v), g(m) = m, h = S, and Γ withE(Γ) =M×M ,
then Berinde-Berinde Theorem is recovered (see [4]).
(5) Putting ζ(u, v) = γ(v) in Theorem 2.2 yields Theorem 1.1.
(6) Alfuraindan-Khamsi Theorem 1.1 follows from Theorem 2.4 with ψ(t) = 1.
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