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Levitin-Polyak well-posedness for parametric
quasivariational inclusion and disclusion problems

PANATDA BOONMAN and RABIAN WANGKEEREE

ABSTRACT. Inthis paper, we aim to suggest the new concept of Levitin-Polyak (for short, LP) well-posedness
for the parametric quasivariational inclusion and disclusion problems (for short, (QVIP) (resp. (QVDP))). Neces-
sary and sufficient conditions for LP well-posedness of these problems are proved. As applications, we obtained
immediately some results of LP well-posedness for the quasiequilibrium problems and for a scalar equilibrium
problem.

1. INTRODUCTION

Well-posedness is very important concept in optimization theory, for well-posed op-
timization problems, which guarantees that, for every approximating solution sequence,
there is a subsequence which converges to a solution. In 1966, well-posedness of uncon-
strained and constrained scalar optimization problems was first introduced and studied
by Tykhonov [24] and Levitin and Polyak [15], respectively. Well-posedness for various
problems related to optimization has been recently intensively considered, see e.g: for op-
timization problems [11, 12, 13, 21, 23, 31, 32], for variational inequalities [5, 7, 9, 10, 17, 25],
for Nash equilibria [18, 20], for inclusion problems [10, 26, 27, 28], for equilibrium prob-
lems [2, 8, 16, 30] and for fixed point problems [6, 10, 22].

Lin and Chuang [19] studied and extended the well-posedness to variational inclu-
sion and disclusion problems and optimization problems with variational inclusion and
disclusion problems as constraints. They proved some results concerned with the well-
posedness in the generalized sense, the well-posedness for optimization problems for
variational inclusion problems and variational disclusion problems and scalar equilib-
rium problems as constraint. Recently, Wang and Huang [26] introduced and studied LP
well-posedness for generalized quasivariational inclusion and disclusion problems. Nec-
essary and sufficient conditions for LP well-posedness of these problems are proved.

On the other hand, in [3], Anh, Khanh and Quy introduced and studied the paramet-
ric generalized quasivariational inclusion problem (QVIP) which contains many kinds
of problems such as generalized quasivariational inclusion problems, quasioptimization
problems, quasiequilibrium problems, quasivariational inequalities, complementarity prob-
lems, vector minimization problems, Nash equilibria, fixed-point and coincidence-point
problems, traffic networks, etc. It is well known that a quasioptimization problem is more
general than an optimization one as constraint sets depend on the decision variable as
well. It is investigated in [3] the semicontinuity properties of solution maps to (QVIP). In
2016, Wangkeeree, Anh and Boonman [29] studied the new concept of well-posdness for
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the general parametric quasivariational inclusion problems (QVIP). The corresponding
concepts of well-poseness in the generalized sense are also introduced and investigated
for (QVIP). Some metric characterizations of well-posedness for (QVIP) are also studied.

Motivated and inspired by the works mentioned above [3, 19, 26, 29], there is no work
to provide the concept of LP well-posedness for (QVIP) (resp. (QVDP)). In this paper, our
main aim is to suggest the new concept of LP well-posedness for (QVIP) (resp. (QVDP)).
Necessary and sufficient conditions for LP well-posedness of these problems are proved.
As applications, we obtained immediately some results of LP well-posedness for the
quasiequilibrium problems and for a scalar equilibrium problem.

2. PRELIMINARIES

Let X and Y be two metric spaces, T : X — 2¥ be a multivalued map. T is said to
be upper semicontinuous (u.s.c., shortly) (resp. lower semicontinuous (l.s.c., shortly)) at
xo € X if for any open set V C Y, where T'(z9) C V (resp. T'(xo) NV # ), there exists a
neighborhood U C X of z such that T'(z) C V (resp. T'(x) NV # 0),Va € U; T(-) is said
to be u.s.c. (resp. Ls.c.) on X if it is u.s.c. (resp. Ls.c.) at every z € X; T is continuous on
X ifitis both u.s.c. and Ls.c. on X; T'is closed if gr(T') := {(z,y) € X xY |y € T'(z)} isa
closed set X x Y; T is open if graph of T'is openin X x Y.

Lemma 2.1. [4] Let X and Y be two metric spaces, T : X — 2¥ a multivalued mapping.

(i) If T is u.s.c. and closed-valued, then T is closed.
(ii) If T is u.s.c. at T and T(Z) is compact, then for any sequence {x,,} converging fo T, every
sequence {yy } with y,, € T(x,,) has a subsequence convering to some point in T (Z). If,
in addition, T(Z) = {g} is a singleton, then such a sequnece {y,, } must converge to .
(iii) T is L.s.c. at z if and only if for any sequence {x,} with x,, — & and any point y € T(Z),
there is a sequence {y, } with y,, € S(x,,) converging to y.

Definition 2.1. [14] Let (£, d) be a complete metric space. The Kuratowski measure of
noncompactness of subset M of E is defined by

(M) :inf{g >0:MC UMiand diamM; < e,1 = 1,2,...,n},
i=1
where diam M, denotes the diameter of M; and is defined by diamM, = sup{d(x1,z2) :
x1,To € M,}

Definition 2.2. Let A and B be nonempty subset of a metric space (E, d). The Hausdorff
distance #(-,-) between A and B is defined by (A, B) := max{H*(A,B),H*(B,A)},
where H*(A, B) := sup,¢ 4 d(a, B) with d(a, B) = infycp d(a, b).

Lemma 2.2. [14] Let (X,d) be a complete metric space. If (F),) is a decreasing sequence of
nonempty, closed and bounded subsets of X such that lim w(F,) = 0, then the intersection
n—oo

Fo =N,2, F, is a nonempty and compact subset of X.

3. LP WELL-POSEDNESS FOR PARAMETRIC QUASIVARIATIONAL INCLUSION AND
DISCLUSION PROBLEMS

Throughout this article, unless otherwise specified, we use the following notations.
Let (E,d) and (E’,d’) be two metric spaces and X and A be nonempty closed subsets
of E and E’, respectively. Let Z be a Hausdorff topological vector space. Let K, K> :
X xA—2%¥and Fi, F> : X x X x A — 2% be multivalued mappings. Lete : X — Z be
a continuous mapping. We consider the following parametric quasivariational inclusion and
disclusion problems, for each A € A,
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(QVIP), : Finding Z € K;(Z, A) such that 0 € F;(Z,y, ), foreachy € K»(Z, \);
(QVDP), : Finding Z € K;(Z, A\) such that 0 ¢ F5(Z,y, \), for eachy € K»(Z, \).
Denote by (QVIP) (resp. (QVDP)) the families {(QVIP), : A € A} (resp. {(QVDP), : X €
A}). Foreach A € A, let Sqvip), (resp. Sqvpp), ) be solution sets of (QVIP), (resp.(QVDP),).
For each a € E and each r > 0, we denote by B(a, ) the closed ball centered at ¢ with
radius 7. When E = R, we denote by B*(0, ) the closed interval [0, r].

Definition 3.3. Let A € A and let {)\,} C A be any sequence such that A, — A. A
sequence {x,} C X is called a LP approximating solution sequence for (QVIP), if there
exists a sequence {e,} of positive real numbers with ¢,, — 0 such that, for each n € N,
d(zn, Ki(2n,\n)) < enpand 0 € Fi(xy,,y, \n) + BT(0,en)e(xy,), Yy € Ko(zp, \p).

Definition 3.4. Let A € A and let {\,} C A be any sequence such that A\, — A. A
sequence {z,} C X is called a LP approximating solution sequence for (QVDP), if there
exists a sequence {e,} of positive real numbers with ¢,, — 0 such that, for each n € N,
d(zp, K1(Tn, An)) <epand 0 ¢ Fo(xp, y, An) + B1(0,en)e(zy), Yy € Ko(zp, An).

Definition 3.5. (i) (QVIP) is said to be LP well-posed if for every A € A, (QVIP), has a
unique solution x, and for every sequence {\,,} C A with \,, — A, every approxi-
mating solution sequence for (QVIP), corresponding to {\, } converges to x, and
(QVIP) is said to be LP well-posed in the generalized sense if for every A € A, (QVIP),
has a nonempty solution set Siqvp),, and for every sequence {\,} C A with
An — A, every approximating solution sequence for (QVIP), corresponding to
{An} has a subsequence which converges to a point of Siqvrp), -

(if) (QVDP) is said to be LP well-posed if for every A € A, (QVDP), has a unique solu-
tion z, and for every sequence {\,} C A with A,, — A, every approximating so-
lution sequence for (QVDP), corresponding to {\,,} converges to z, and (QVDP)
is said to be LP well-posed in the generalized sense if for every A € A, (QVDP), has a
nonempty solution set Siqvpr), ; and for every sequence {A\n} C Awith A, — A,
every approximating solution sequence for (QVDP), corresponding to {\,,} has a
subsequence which converges to a point of Siqvpp), -

Remark 3.1. Definition 3.3 generalizes Definition 3.1 of [29]. Indeed, the condition (i) of
Definition 3.1in [29] “z,, € K1(xy, A,) 7, implies that d(x,,, Ki (xn, Ay )) = 0. So, Definition
3.3 generalizes Definition 3.1 of [29].

For each X\ € A, the approximating solution set for (QVIP), and (QVDP),, respectively,
are defined by, for all §,e > 0, Qquip), (6,€) = Uy ep(r.5) Savip), (N, €),
where g(QVH’)A : A x RT is defined by, for all \' € A, e € R,

~ ;o x, Ki(z,\)) < eand
(31) ‘S'(QVIP)A ()\ 75) = { reX ‘ 0c Fl(l' y,)\ ) + B+(0 6)€(x),vy € KQ((E,)\/) )

and Qqvop), (6, €) = U,\/eB(,\ 5) S(QVDP)A (XN, ¢e), where SQVDp : A x R is defined by,
forall N € A,e € RT,

s N z, K1(z,N)) <eand
(3.2) S(QVDP))\(/\ 76) .—{ reX ‘ 0 ¢ Fg(x y7/\’) +B+(0 E) ( ),Vy c K2($7)\/)
Clearly, we have, for every A € A, (i) Sqvir), = S(QVH))A()\,O) C Qqvm), (0,€), Vd,e >0

and S(QVDP)A = S(QVDP) (A\,0) C QQVDP (6,¢), V6,e >0,31)if0< § <dgand 0 < g1 <
g2, then Qqvip), (61,€1) € Qqup), (52762) and Qqvpr), (62,€2) € Qqvpp), (61,€1)-

Lemma 3.3. Assume that K is closed-valued and u.s.c. and K5 is l.s.c..
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(i) If, foreach x € X, Fi(z,.,.) is closed, then Sqvip), = (s5=0.50 $Qip), (0, €) for each
A €A

(ii) If, for each © € X, Fy(x,.,.) is open, then SQvpp), = ﬂ5>076>0 Q(QVDP)A((L €) for
each A € A.

Proof. (i) For any given A € A, it is clear that Siqvip), < [ 550,650 $2Quip), (6,¢).

Thus, we only need to show that (5. .., Qqvp), () C S(QVIP) Suppose on the con-
trary that there exists 2* € (5.4 .~ Quip), (0,€) such that 2* ¢ Sqvip), - Then, for each
0 >0and eache > 0, z* € Q(QVH))A (d,¢e \S(QVH: . In particular, for each n € N, we have

r* € Qqvp), (n, )\S(QVHJ)A, and so there exists A\, € B(A, ) such that

1
(33) d(.’E*,Kl(l‘*,An)) < -, and
n
* + ]' * *
(3.4) 0 Fi(@",y,An) + BT (0, )ela®), ¥y € Ka(a, \n).

Obviously, A\, — A. Since K, is closed-valued, it follow from (3.3) that we can choose
z, € Ki(z*, \,) such that d(z*,z,) < 1, Vn € N. Thus, z,, — 2* as n — oc. Since
K, is closed-valued and u.s.c., we have K is closed, it follows that z* € Kj(z*,\).
We observe that for each y € Ks(z*, ), since Ky is ls.c. at (z*,\) and (z*,\,) —
(x*,N), there exists y,, € Ka(z*, \,) such that v, — y. Applying (3.4), we have that 0 €
Fi(z*,Yn, A\n) + BT (0, %)e(x*) Thus, there exists a sequence {7,} € BT (0, 1) such that,
foreachn € N, 0 € Fy(z*, yn, An) + 1me(z*), which gives that —vy,e(z*) € Fi(z*, yn, An)
that is ((Yn, A\n), —ne(z*)) € Gr(Fi(z*,.,.)). It is clear that {((z*, yn, An), —yne(z*))} —
((z*,y,A),0). The closedness of the mapping Fi(z, ., .) implies that (y,\), 0) € Gr(Fi (z*, ., .)).
Thatis 0 € F1(z*,y, ) and so 2* € Sqvrp), , which is a contradiction. Hence

Ns0.c50 Aquipy, (3,€) € Siquip), - (i) For any given A € Aand let F} : X x X x A — 22
be defined by Fi(x,y,\) = Z\Fy(z,y, A) for each (z,y,\) € X x X x A. Then Sqvip), =
S(QVDP))\~ For each 6 > 0 and £ > 0 we have Q(QVIP)X ((57 6) Q(QVDP)X ((5 6) Since FQ( )
is open, we have Fy(z,y, A) is closed. By (i), the proof is complete. D

The following example is given to illustrate the case that Lemma 3.3 is applicable.

Example 3.1. Let E = Z =R, X = [0,+00) and A = [0, 1]. For every (z,y,A\) € X x X x A,
let e(x) = 22, K1(x,)\) = [A\?,+00) and Ka(z,\) = [z + A%, 22 + 1]. Define a set-valued
mapping F1, Fy : X x X x A — 22 by Fy(z,y,\) = (—00,22 — y + A,

Fy(z,y,\) = (2z—y+ A, +00). Obviously, it is to see that all assumptions of Lemma 3.3 are
satisfied. Hence, Siquip), = (s5x0..>0 {k@uip), (6,€) and Sqvpr), = s=0.>0 Skavop), (6,€)
foreach A € A.

Lemma 3.4. For (QVIP) and (QVDP), assume that K is closed-valued and u.s.c. and K>
is Ls.c..

(i) If, for each A € A, Fi(.,.,A) is closed and K is also compact-valued, then for each
(M) € A xR, S(QVIP (), €) is closed subset of X, where S(QVIP)A is defined by (3.1)
and so is Qqvrp), (4, €).

(i) If, for each A € A, F3(.,.,A) is open and K is also compact-valued, then for each
(A e) € A x RT S(QVDP (A, €) is closed subset of X, where S(QVDP) is defined by
(3 2) and so is Q(QVDP)A ((5 )
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Proof. Let (A\,e) € A x R* be fixed and suppose that K is also compact-valued. If z €
clSqvip), (A, €), then there exists a sequence {z,} C Sqvp), (A, €) such that z,, — = as
n — oo. It follows that, for each n € N, z,, € X such that for each y € Ks(z,, A),

(35) d(l’n7K1 (xna A)) < &, and

(3.6) 0€ F(2n,y,A) + BT(0,6)e(x,).
By (3.5), for each n € N, there exists u,, € K1(z,, A) such that

1
(3.7) d(xn,un) < e+ o

Since K is u.s.c. and compact-valued, there exists a subsequence {u,, } of {u, } such that
Up, — wask — oo. It follows that d(z, u) = limy_, o0 d(@n,,, un, ) < €. Since K, is u.s.c. and
closed-valued, we have K is closed. Thus u € K;(z, A). This implies that

(3.8) d(z, K1(z,\)) <e.

For each y € Ky(x, \), since K3 is L.s.c., there exists a sequence {y,, } with y,, € Ko(xp, A)
such that y,, — y as n — oco. By (3.6), we have 0 € F(xy,, yn, A) + BT(0,¢)e(x,,), Vn € N.
Thus there exists a sequence {a,,} € B*(0,¢) such that 0 € Fy(xp, Yn, A) + ane(z,), Vn €
N. Observe that BT (0,¢) := [0,¢] C R is compact. Assume that a,, - o € BT (0,¢)
as n — oo. Since Fi(.,.,A) is closed, one has 0 € Fi(z,y,\) + ae(z) C Fi(z,y,\) +
B*(0,¢e)e(x). Therefore x € §(QVIP)A(/\, ¢), and this implies that §(QVIP)A (A, €) is a closed
subset of X. Now it follows Qqvp), (d,¢) is a closed subset of X. (ii) Let Fy : X x
X x A — 27 be defined by Fi(z,y,\) = Z\Fsy(z,y,\) foreach (z,y,A\) € X x X x
A. Then S(QVIP)A ()\,E) = S(QVDP))\ (/\,5) and S(QVIP))\ = S(QVDP)X/ and so Q(QVIP))\ (5, E) =
Qqvpp), (0,¢€). Since Fy(.,., ) is open, we have Fi(z,y, \) is closed. By (i), the proof is
complete. O

If E is finite-dimension normed space, then the assumption that “K; is also compact-
valued in Lemma 3.4 ” can be removed

Lemma 3.5. Let E be finite-dimensional normed space. For (QVIP) and (QVDP), assume that
K is closed-valued and u.s.c. and Ko is L.s.c..
(i) If, for each X € A, F1(.,.,\) is closed, then Siqvip),, g(pr)A()\,s) and Qgvip), (0,¢€) are
closed subset of X.
(ZZ) If,fOT each A € A, FQ(., . )\) is open, then S(QVDP)A/ §(QVDP)X ()\, E) and Q(QVDP)X ((5, E) are
closed subset of X.

Proof. We can proceed the proof exactly as that of Lemma 3.4 except for using the As-
sumption that F is finite-dimension normed space to get d(z, K1 (x, A)) < . In fact, since
z, — z, it follows that {z, } is bounded. By (3.7), we have {u,} is also bounded. Thus
there exists a subsequence {u,, } of {u,} such that {u,,} converges to some v € X
as k — oo. Since K is closed-valued and u.s.c., we have K, is closed, it follows that
u € Ki(x,\). It follows that d(z,u) = limg_y 00 d(Zn,, Un,) < € and so d(z, K1(z,\)) < e.
This complete the proof. O

Remark 3.2. If Ky (z,\) = Kx(z,\) = X, then our problem (QVIP) reduces to (VIP) in Lin
and Chuang [19].

Now, we are in a position to state and prove our main results.

Theorem 3.1. For (QVIP), assume that E is complete, K is closed-valued and u.s.c., Ko is L.s.c.
and F is closed. Then (QVIP) is LP well-posed if and only if for every X € A,

(39) Q(QVIP)A(& E) 7& (Z), Vé,E > O, and diam(Q(QVIp)A(é, 5)) — 0as (6, E) — (0, 0)
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Proof. Supposed that (QVIP) is LP well-posed. Then, for every A € A,(QVIP), has a
unique solution y, Svip), # 0, and so Qx(d,¢) # 0, for all 6, > 0. Now we shall show
that

(3.10) diam(Qqvip), (6,€)) — 0as (4,&) — (0,0).

Suppose to the contrary the existences of (3.10), there exist ! > 0, sequences {J,, } and {e,,}
of positive real numbers with (d,,,e,) — (0,0) as n — oo and sequence {z,} and {z},}
with z,,, 7, € Qquip), (0n, €,) for each n € N such that

(3.11) d(zn,2)) > 1, ¥neN.

For each n € N, since =, € Qqvip), (0n,¢n), there exists A, € B7(0,¢,) such that

d(Tpn, K1(n,\n)) < ep and 0 € Fy(zp,y,A\n) + BT(0,e,)e(z,) Vy € Ka(xpn,\n), and
since 2], € Qqvip), (0n,€n), there exists A, € B*(0,¢,) such that d(z],, Ki(zn, A},)) < ep
and 0 € Fi(z),,y,\,) + BT (0,e,)e(xl,) Yy € Ko(zy, A,). Clearly, A, = Xand A, — A
as n — oo. Hence, {:cn} and {z],} are LP approximating solution sequences for (QVIP)
corresponding to A,, A}, respectively. By the LP well-posed of (QVIP),, {z,} and {z],}
converge to the unique solution z of (QVIP),, which is a contradiction to (3.11). This
implies that (3.10). Conversely, suppose that condition (3.9) holds. Let A € A be fixed.
Let {\,} be any sequence in A with \,, — X as n — co. Suppose that {x,,} is a LP ap-
proximating solution sequence for (QVIP), corresponding to {\,}, then there exists a
nonnegative sequence {¢,} | 0 such that for each n € N, d(z,, Ki(z,,A)) < &,, and
0 € Fi(zn,y, \n) + BT(0,e,)e(z,), Yy € Ko(xp, ). Foreach n € N, let §,, = d'(\y, ).
Then, A\, € B()\,0,) and x,, € Qqurp), (0n, &) for each n € N, and §,, — 0 asn — oo. It
follows from (3.9) that {x,} is a Cauchy sequence and so it converges to a point z € X.
By similar arguments as in the proof of Lemma 3.4, we also deduce that = belongs to
S(qvip), - Next, we will show that (QVIP), has a unique solution. Suppose to the contrary,
if (QVIP), has two distinct solutions z; and z», it is easy to see that z1,x2 € Q(Q\,Ip)A for
all ,& > 0. It follows that 0 < d(w1, z2) < diam(qvrp), (J,¢)) which gives a contrdiction
to (3.9). This implies that (QVIP), has a unique solution. This completes the proof. O

The following example is given to illustrate the case that Theorem 3.1 is applicable.

Example 3.2. Let E =Z =R, X = [0,1]and A = [0, 1]. Forevery (z,y,A\) € X x X x A, let

. 1

[07 1] 7 if/\?gl’ [0, 1], 1f)\7é§,

e(z) =1, Ki(z,\) = 2 % and Ks(z,\) = ) )
[071}7 1f>\:§’ {0,2] 5 1f)\:§

Define a set-valued mapping Fy : X x X x A — 2Z by Fi(z,y,\) = (—o0,(A +2)(y —
x)]. Obviously, it is to see that conditions of Theorem 3.1 are satisfied. For every A €
A, diam(Qqvrp), (4,¢)) — 0 as (6,¢) — (0,0). By Theorem 3.1, (QVIP), is well-posed. [

Remark 3.3. We can not the supposed LP well-posedness in Theorem 3.1 by generalized
LP well-posedness. Therefore, we have to employ the Kuratowski measure of noncom-
pactness to study characterizations of the LP well-posedness in the generalized sense for

(QVIP).

Theorem 3.2. For (QVIP), assume that E is complete and A is finite dimensional, K is closed-
valued and u.s.c., Ky is L.s.c. and Fy is closed. Then (QVIP) is LP well-posed in generalized the
sense if and only if for every A € A, Qquipy, (9,€) # 0, ¥d,e > 0, and p(Qqvipy, (6,¢)) —
0as (6,e) — (0,0).

Proof. Suppose that (QVIP) LP well-posed in the generalized sense. Let A € A be fixed.
Then S(qvip), is nonempty. Now we show that Siqvip), is compact. Indeed, let {z,}
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be any sequence in S(qvip),. Then {z,} is a LP approximating solution sequence for
(QVIP),. By the LP well-posedness in the generalized sense of (QVIP), {z,} has a sub-
sequence which converges to a point of Sqvip), - Thus Sqvip), is compact. Clearly, for
each d,e > 0, Sqvip), € Qquip), (0,€),and so Qqvip), (4,€) # (7) Now we will show that

(3.12) (v, (6,¢)) — 0as (d,€) — (0,0).

Observe that for every d,¢ > 0, /H(Q(Qv[p)X (0,¢), S(QVIP)A) (Q(QVIP (9,¢), S(QVIP)A)
and S(qvip), is compact. Indeed, let {x,,} := {(=,, \n)} be arbitraly sequence in Sqvrp), -
Then, it is clear that {z,,} is a LP approximating sequence of (QVIP). Thus, it has a
subsequence converging to a point in Siqvip),. Therefore, u(Sqvir),) = 0. Now for
any a > 0, there are finite sets A{, A%, ..., A} for some n, € N such that Sqvir), €
Up, A and diam Ay < «, forallk = 1,2,...,n,. Next, foreach k € {1,2,...,n,},
we define the set M} = {2z € X : d(z, 4%) < H(Qqvp), (0,€), Squip), ) }- We show that
Qavip), (0,) C Ur2, M. To this end, let z € Qqup), (0,€) be given. Thus, we have
d(z, Squip), ) < H(quie), (4;€), Squm), ) As S(QVIP) € Ur2y AR, wealso get

d(JC,UZil AO‘) < d(z, S(QVIP)A) < ,H(Q(QVIP)/\ (6,¢),S QVIP), ). Therefore, there exists kg €
{1,2,...,n4} such that d(z, A7) < H(Qqvw), (J;¢), Sqvip), ), thereby yielding » € Mg .
Therefore, we get the desired inclusion. Futherrnore wesee that, forany k € {1,2,...,n,},

(313) diam M}? S o+ 2H(Q(QVIP)>\ (5, 5), S(QVIP)A)~

Indeed, for any y,y’ € MY andm,m’' € AY, d(y,y’) < d(y,m)+d(m,m’)+d(m’,y"), which
gives thatd(y, y') < a+2H(Qqvp), (J,¢), Svp), ), which leads to the desired result (3.13).
It follows from the definition of o) that M(Q(QVIP)A ((5, E)) < 2H(Q(QVIP (6 8) S(QVH’)A) +
a, for all & > 0. Therefore, we can conclude that

(Qquip), (0,€)) < 2H(Qqip), (3, ), Suip), ) = 2H " (Qqvp), (4, €), Sqvip), )-
To prove (3.8), it is sufficient to show that

(314) H* (Q(QVIP)/\ (5, 6), S(QVHJ))\) — 0as (5, 6) — (0, O)

If (3.14) does not hold, then there exist » > 0, sequences {6, } and {e,} of positive real
numbers with (0,,,¢,) — (0,0) as n — oo and sequence {x,} with z,, € Qqvip), (0n,en)
for every n € N such that

(315) d(l’n, S(QVIP)/\) >, Vn € N.

For each n € N, since x,, € Q5 (n,&n), there exists A,, € B(\, d,,) such that

d(Tn, Ki(zn,\n)) < &, and 0 € F(zn,y,\n) + BT(0,e,)e(x,), Yy € Ka(xn, A\n)-
Clearly A\, — XA asn — oo. Hence {z,,} is a LP approximating solution sequence for
(QVIP), corresponding to {\,,}. Then, by the LP well-posedness in the generalized sense
of (QVIP), {z,,} has a subsequence {z,, } which converges to some point of Sqvrp), - This
contradicts (3.15), and so (3.14) holds. Therefore, (3.8) is proved. Conversely, suppose that
condition (3.7) holds. We will show that (QVIP) is LP well-posed in generalized sense. Let
A € A be fixed. Thus, by Lemma 3.3 and Lemma 3.4, we have Qqvrp), is closed. Further,
S(QVIP ﬂé >0 Q(QVIP)A ((5 5) Since N(Q(QVIP)A (5 6)) — 0 as (5, E) — (0, 0), by Lemma
22, S(QVIP) is a nonempty compact subset of X and

(316) H* (Q(QVIP)A (5, 6), S(QVIP))\) — 0as ((5, E) — (0, 0)

Let {\, } be any sequence in A with \,, — X as n — co. Suppose that {z,,} is a LP approxi-
mating solution sequence for (QVIP), corresponding to {\,}, then there exists a sequence
{en} of positive real numbers with ¢,, — 0 such that, for each n € N, d(z,,, K1(zn, An)) <
enand 0 € Fi(Tn,y, \n) + BT(0,e,)e(x,),Vy € Ka(xy, \y). For each n € N, let §,, =
d(An,A). Then, A\, € B(\,6,) and x, € Qqvp), (0n,€,) for every n € N, and 4, — 0
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as n — oo. It follows from (310) that d(xn, S(QVIP)A) < H* (Q(QVIP)A (5n7 En), S(QVIP)/\) —
0asn — oo. Since Sgvip), is compact, for each n € N, there exists 7, € Siqvip), such
that d(z,,, Z,,) = d(wn, Squip),) — 0asn — oc. By the compactness of Siqvp), , {Z» } has
a subsequence {Z,, } which converges to a point Z € Siqvip), - Hence, the corresponding
subsequence {z,, } of {z, } converges to z. This implies that (QVIP) is LP well-posed in
the genelized sense. This completes the proof. O

Remark 3.4. Theorems 3.1, Theorems 3.2 generalizes Theorem 3.8, Theorems 3.11 of [29], respec-
tively.

By Theorems 3.1 and 3.2, we can get the following results.

Theorem 3.3. For (QVDP), assume that E, K1, Ko as in Theorem 3.1 and Fy is closed. Then
(QVDP) is LP well-posed if and only if for every \ € A,

Q(QVDP)A(év E) 7é @,V&E > 0, and diam(Q(QVDp)A(é, 6)) — 0as ((5, 6) — (07 O)

Theorem 3.4. For (QVDP), assume that E, K1, Ko as in Theorem 3.2 and Fs is closed. Then
(QVDP) is LP well-posed in generalized the sense if and only if for every \ € A,

Q(QVDP)A(& E) 75 (Z),V(;,E >0, and ,U/(Q(QVDP))\((S» E)) — 0as ((S, 8) — (0,0)
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