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A new iterative method for the split feasibility problem
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ABSTRACT. The split feasibility problem (SFP) has many applications, which can be a model for many inverse
problems where constraints are imposed on the solutions in the domain of a linear operator as well as in the
operator’s range. In this paper, we introduce a new projection method to solve the SFP and prove its convergence
under standard assumptions. Our results improve previously known corresponding methods and results of this
area. The preliminary numerical experiments illustrates the advantage of our proposed methods.

1. INTRODUCTION

We consider the split feasibility problem (shortly, SFP) which was first Censor and
Elfving [5] and is formulated as follows:

Find a point x∗ with the property

(1.1) x∗ ∈ C and Ax∗ ∈ Q,

where A an M × N real matrix, C ⊆ RN and Q ⊆ RM are nonempty closed convex sets.
The SFP has a variety of specific applications in real world, such as medical care, image
reconstruction and signal processing (see [4] for details).

A great deal of projection methods were proposed to approximate the solutions of the
SFP [7, 8, 9, 10, 11, 14, 17, 18]. Byrne [2, 3] first presented the so-called CQ-method in which
he used fixed stepsize. In general, a method with fixed stepsize may be slow. To improve
the choice of the stepsize, Qu and Xiu [14] determined the stepsizes self-adaptively by
adopting Armijo–like searches and López et al. [13] presented a way to choose the stepsize
directly. Zhao and Yang used two-step projection methods to solve the SFP, such as the
well-known extragradient method [20] and Tseng’s method [21].

Inspired by the work of He [12], we introduce a new iterative method to solve the SFP.
The convergence of the proposed method are proved under standard assumptions. Pre-
liminary numerical experiments are presented to illustrate the advantage of our method
by comparing it with extragradient method and Tseng’s method.

2. PRELIMINARIES

In this section, we review some definitions and lemmas which are used in the main
results.

The projection is an important tool for our work in this paper. Let C be a closed convex
subset of a real Hilbert space H . Recall that the nearest point or metric projection from H
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onto C, which is denoted PC , is defined as follows: for each x ∈ H , PCx is the unique
point in C such that

∥x− PCx∥ = min{∥x− z∥ : z ∈ C}.

The following two lemmas are useful characterizations of projections:

Lemma 2.1. For any x ∈ H and z ∈ C, then z = PCx if and only if

⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

Lemma 2.2. [1] For any x, y ∈ H and z ∈ C, the following hold:
(1) ∥PC(x)− PC(y)∥2 ≤ ⟨PC(x)− PC(y), x− y⟩;
(2) ∥PC(x)− z∥2 ≤ ∥x− z∥2 − ∥PC(x)− x∥2;
(3) ⟨(I − PC)x− (I − PC)y, x− y⟩ ≥ ∥(I − PC)x− (I − PC)y∥2.

Lemma 2.3. [1] Let K be a nonempty closed convex subset of a Hilbert space H . Let {xk} be a
bounded sequence which satisfies the following properties:

(1) every weak limit point of {xk} lies in K;
(2) limn→∞ ∥xk − x∥ exists for every x ∈ X .

Then {xk} converges weakly to a point in K.

In this paper, we are concerned with the case whenever the involved subsets are com-
posed of level sets. Namely, we consider the case whenever C and Q in (1.1) are defined
by

C = {x ∈ RN : c(x) ≤ 0}, Q = {y ∈ RM : q(y) ≤ 0},
where c : RN → R is a convex function, and q : RM → R is a convex function.

For the functions c and q, we make the following assumptions:
(1) c and q are subdifferentiable on C and Q. (Note that the convex function is subdif-

ferentiable everywhere in RN .) For any x ∈ RN , at least one subgradient ξ ∈ ∂c(x)
can be calculated, where ∂c(x) is defined as follows:

∂c(x) = {z ∈ RN : c(u) ≥ c(x) + ⟨u− x, z⟩, for all u ∈ RN}.

For any y ∈ RM , at least one subgradient η ∈ ∂q(y) can be calculated, where

∂q(x) = {w ∈ RM : q(v) ≥ q(y) + ⟨v − y, w⟩, for all v ∈ RM}.

(2) c and q are bounded on bounded sets. (Note that this condition is automatically
satisfied if RN and RM are finite dimensional.)

From Banach-Steinhaus Theorem (see Theorem 2.5 in [15]), it is easy to get the follow-
ing result.

Remark 2.1. Assumption (4) guarantees that if {xk} is a bounded sequence in RN (resp.
RM ) and {yk} is a sequence in RN (resp. RM ) such that yk ∈ ∂c(xk) (resp. yk ∈ ∂q(xk))
for each k, then {yk} is bounded.

3. MAIN RESULTS

In this section, we present a new projection method and establish its convergence under
the standard assumptions.

Throughout this paper, we assume that the solution set of the SFP (1.1), denoted by

Γ = {x |x ∈ C and Ax ∈ Q},

is nonempty.
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Let
F (xk) = (xk − PCk

(xk)) +A∗(I − PQk
)A(xk)).

Next we define a new algorithm.
Algorithm 3.1 For any σ > 0, ρ ∈ (0, 1) and θ ∈ (0, 1), take arbitrarily x0 ∈ RN and let

(3.2) yk = PX(xk − αkF (xk)),

where αk = σρmk and mk is the smallest nonnegative integer such that

(3.3) αk∥F (xk)− F (yk)∥ ≤ θ∥xk − yk∥.

Let the corrections of the method be, respectively, defined by:

(3.4) xk+1
I = xk − γϱkd(x

k, yk)

and

(3.5) xk+1
II = PX(xk − γϱkαkF (yk)),

where γ ∈ (0, 2),

(3.6) d(xk, yk) := (xk − yk)− αk(F (xk)− F (yk))

and

(3.7) ϱk :=
⟨xk − yk, d(xk, yk)⟩+ αk(∥(I − PCk

)yk∥2 + ∥(I − PQk
)Ayk∥2)

∥d(xk, yk)∥2
.

Remark 3.2. There are some illustrations and observations to Algorithm 3.1.
(1) For convenience, we call the projection algorithms which use update forms (3.4)

and (3.5) Algorithm 3.1 (I) and Algorithm 3.1 (II), respectively.
(2) Algorithm 3.1 is a two-step method, which contains two methods since the sec-

ond step are two different. There is no projection onto X in xk+1
I , while xk+1

II

involves a projection onto X .
(3) The set X in Algorithm 3.1 can be chosen variously. It can be chosen to be a

simple bounded subset of Hilbert spaces that contains at least one solution of the
SFP, it can also be directly chosen as X = RN . In fact, it can be more generally
chosen to be a dynamically changing set Xk, provided ∩∞

k=1Xk contains a solution
of the SFP. This does not affect the convergence result (see, e.g. [16]).

Following the line of the proof of Lemma 3.4 in [20], we get the following lemma, which
shows that the inner loop in the stepsize calculation in (3.3) is always finite.

Lemma 3.4. The line rule (3.3) is well defined. Besides, α ≤ αk ≤ σ, where α = min{σ, µρ
L }.

Remark 3.3. By the definitions of yk and d(xk, yk), we get

(3.8) yk = PX(yk − (αkF (yk)− d(xk, yk))).

From Lemma 2.1, it follows that

(3.9) ⟨x− yk, αkF (yk)− d(xk, yk)⟩ ≥ 0, ∀x ∈ X.

Lemma 3.5. Let {xk} and {yk} be the iterations generated by Algorithm 3.1 and d(xk, yk) be
given by (3.6). Then we have

(3.10) ⟨xk − x∗, d(xk, yk)⟩ ≥ ϱk∥d(xk, yk)∥2, ∀x∗ ∈ Γ.
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Proof. Take arbitrarily x∗ ∈ Γ, that is, x∗ ∈ C,Ax∗ ∈ Q. By setting x = x∗ in (3.9), we
get

(3.11) ⟨x∗ − yk, αkF (yk)− d(xk, yk)⟩ ≥ 0.

which implies that

(3.12) ⟨yk − x∗, d(xk, yk)⟩ ≥ ⟨yk − x∗, αkF (yk)⟩.

By the definition of F , Lemma 2.2 (2) and the choice of x∗, we have

(3.13)

⟨yk − x∗, F (yk)⟩ = ⟨yk − x∗, (I − PCk
)yk +A∗(I − PQk

)Ayk⟩

= ⟨yk − x∗, (I − PCk
)yk⟩+ ⟨yk − x∗, A∗(I − PQk

)Ayk⟩

= ⟨yk − x∗, (I − PCk
)yk⟩+ ⟨Ayk −Ax∗, (I − PQk

)Ayk⟩

≥ ∥(I − PCk
)yk∥2 + ∥(I − PQk

)Ayk∥2.

So, we get
(3.14)

⟨xk − x∗, d(xk, yk)⟩ = ⟨xk − yk, d(xk, yk)⟩+ ⟨yk − x∗, d(xk, yk)⟩

≥ ⟨xk − yk, d(xk, yk)⟩+ αk(∥(I − PCk
)yk∥2 + ∥(I − PQk

)Ayk∥2)

= ϱk∥d(xk, yk)∥2.

So, we get the (3.10).

Lemma 3.6. Let {xk} and {yk} be the iterations generated by Algorithm 3.1. Let d(xk, yk) and
ϱk be given by (3.6) and (3.7), respectively. Then we have

(3.15) ⟨xk − yk, d(xk, yk)⟩ ≥ (1− θ)∥xk − yk∥2

and

(3.16) ϱk ≥ 1− θ

1 + θ2
.

Proof. We obtain

(3.17)

⟨xk − yk, d(xk, yk)⟩ = ∥xk − yk∥2 − αk⟨xk − yk, F (xk)− F (yk)⟩

≥ ∥xk − yk∥2 − αk∥xk − yk∥∥F (xk)− F (yk)∥

≥ ∥xk − yk∥2 − θ∥xk − yk∥2

= (1− θ)∥xk − yk∥2

which completes the proof of (3.15).
From (2.2), we obtain

(3.18)

− 2αk⟨xk − yk, F (xk)− F (yk)⟩

= −2αk⟨xk − yk, (I − PCk
)(xk)− (I − PCk

)(yk)⟩

− 2αk⟨xk − yk, A∗(I − PQk
)A(xk)−A∗(I − PQk

)A(yk)⟩

= −2αk⟨xk − yk, (I − PCk
)(xk)− (I − PCk

)(yk)⟩

− 2αk⟨Axk −Ayk, (I − PQk
)A(xk)− (I − PQk

)A(yk)⟩

≤ −2αk∥(I − PCk
)(xk)− (I − PCk

)(yk)∥2

− 2αk∥A∥ · ∥(I − PQk
)A(xk)− (I − PQk

)A(yk)∥2 ≤ 0.
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So, we obtain

(3.19)
∥d(xk, yk)∥2 = ∥xk − yk∥2 + α2

k∥F (xk)− F (yk)∥2 − 2αk⟨xk − yk, F (xk)− F (yk)⟩

≤ (1 + θ2)∥xk − yk∥2.
Thus we obtain (3.16).

Theorem 3.1. Assume that Γ is nonempty. Then the iteration {xk} generated by Algorithm 3.1
(I) converges to a solution of the SFP (1.1).

Proof. From Lemma (3.5), we obtain

(3.20)

∥xk+1
I − x∗∥2 = ∥xk − γϱkd(x

k, yk)− x∗∥2

= ∥xk − x∗∥2 + γ2ϱ2k∥d(xk, yk)∥2 − 2γϱk⟨xk − x∗, d(xk, yk)⟩

≤ ∥xk − x∗∥2 + γ2ϱ2k∥d(xk, yk)∥2 − 2γϱ2k∥d(xk, yk)∥2

= ∥xk − x∗∥2 − (2− γ)γϱ2k∥d(xk, yk)∥2.

Since γ ∈ (0, 2), (3.20) implies that the sequence {∥xk −x∗∥2} is monotonically decreasing
and thus convergent, moreover, {xk} is bounded. This implies

(3.21) lim
k→∞

ϱ2k∥d(xk, yk)∥2 = 0.

From definition of ρk and Lemma 3.6, we have

(3.22)

ϱ2k∥d(xk, yk)∥2

= ϱk(⟨xk − yk, d(xk, yk)⟩+ αk(∥(I − PCk
)yk∥2 + ∥(I − PQk

)A(yk)∥2))

≥ ϱk((1− θ)∥xk − yk∥2 + αk(∥(I − PCk
)yk∥2 + ∥(I − PQk

)A(yk)∥2))

≥ (1− θ)2

1 + θ2
(
∥xk − yk∥2 + α(∥yk − PCk

yk∥2 + ∥A(yk)− PQk
A(yk)∥2))

)
,

which with (3.21) implies

(3.23) lim
k→∞

∥xk − yk∥ = 0,

and

(3.24) lim
k→∞

∥A(yk)− PQk
A(yk)∥ = 0.

Let x̄ be a cluster point of {xk} with a subsequence {xkl} converging to x̄. From (3.23),
it follows that {ykl} also converges to x̄. We will show that x̄ is a solution of the SFP (1.1).

From the definition of Ckl
, we have

c(xkl) + ⟨ξkl , ykl − xkl⟩ ≤ 0,

where ξkl ∈ ∂c(xkl). By the assumption that ξkl is bounded and (3.23), we have

c(xkl) ≤ −⟨ξkl , ykl − xkl⟩ ≤ ∥ξkl∥∥ykl − xkl∥ → 0

as l → ∞, which implies c(x̄) ≤ 0, i.e., x̄ ∈ C.
From the definition of Qkl

, we have PQ

q(Aykl) + ⟨ηkl , PQkl
(Aykl)−Aykl⟩ ≤ 0,

where ηkl ∈ ∂q(Aykl). From the assumption that ξkl is bounded and (3.24), it follows that

q(Aykl) ≤ −⟨ηkl , PQkl
(Aykl)−Aykl⟩ ≤ ∥ηkl∥∥PQkl

(Aykl)−Aykl∥ → 0

as l → ∞, which implies q(x̄) ≤ 0, i.e., Ax̄ ∈ Q. Thus x̄ is a solution of the SFP. Therefore,
x̄ ∈ Γ.
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Now we can apply Lemma 2.3 to K := Γ to get that the full sequence {xk} converges
weakly to a point in Γ. This completes the proof.

Theorem 3.2. Assume that Γ is nonempty. Then the iteration {xk} generated by Algorithm 3.1
(II) converges to a solution of the SFP (1.1).

Proof. From Lemma (2.2) (2), we obtain

(3.25)
∥xk+1

II − x∗∥2 ≤ ∥xk − γϱkαkF (yk)− x∗∥2 − ∥xk − γϱkαkF (yk)− xk+1
II ∥2

= ∥xk − x∗∥2 − ∥xk − xk+1
II ∥2 − 2γϱk⟨xk+1

II − x∗, αkF (yk)⟩.

By setting x = xk+1 in (3.9), we get
(3.26)
−2γϱk⟨xk+1

II − yk, αkF (yk)⟩ ≤ −2γϱk⟨xk+1
II − yk, d(xk, yk)⟩

= −2γϱk⟨xk − yk, d(xk, yk)⟩ − 2γϱk⟨xk+1
II − xk, d(xk, yk)⟩.

It holds

(3.27)
− 2γϱk⟨xk+1

II − xk, d(xk, yk)⟩

= −∥xk − xk+1
II − γϱkd(x

k, yk)∥2 + ∥xk − xk+1
II ∥2 + γ2ϱ2k∥d(xk, yk)∥2.

Substituting (3.27) in the right hand side of (3.26) and using xk − γϱkd(x
k, yk) = xk+1

I , we
obtain
(3.28)

−2γϱk⟨xk+1
II − yk, αkF (yk)⟩ ≤ −2γϱk⟨xk − yk, d(xk, yk)⟩

− ∥xk+1
I − xk+1

II ∥2 + ∥xk − xk+1
II ∥2 + γ2ϱ2k∥d(xk, yk)∥2.

From (3.13), we have

(3.29) −2γϱkαk⟨yk − x∗, F (yk)⟩ ≤ −2γϱkαk(∥(I − PCk
)yk∥2 + ∥(I − PQk

)Ayk∥2).

So, adding (3.28) and (3.29) and using the definition of ϱk, we obtain

(3.30)

− 2γϱk⟨xk+1
II − x∗, αkF (yk)⟩

≤ −2γϱk(⟨xk − yk, d(xk, yk)⟩+ αk(∥(I − PCk
)yk∥2 + ∥(I − PQk

)Ayk∥2))

− ∥xk+1
I − xk+1

II ∥2 + ∥xk − xk+1
II ∥2 + γ2ϱ2k∥d(xk, yk)∥2

≤ −2γϱ2k∥d(xk, yk)∥2 + γ2ϱ2k∥d(xk, yk)∥2 − ∥xk+1
I − xk+1

II ∥2 + ∥xk − xk+1
II ∥2

≤ −(2− γ)γϱ2k∥d(xk, yk)∥2 − ∥xk+1
I − xk+1

II ∥2 + ∥xk − xk+1
II ∥2.

Adding (3.25) and (3.30), we obtain

(3.31) ∥xk+1
II − x∗∥2 ≤ ∥xk − x∗∥2 − (2− γ)γϱ2k∥d(xk, yk)∥2 − ∥xk+1

I − xk+1
II ∥2.

Similar with Theorem 3.1, we obtain that the whole sequence {xk} weakly converges to a
solution of the SFP (1.1), which completes proof.

4. NUMERICAL EXPERIMENTS

In this section, we present a numerical example to compare Algorithm 3.1 with the
extragradient method in [20] and Tseng’s methods in [21].

For convenience, we denote the vector with all elements 0 by e0 and the vector with
all elements 1 by e1 in what follows. In the numerical results listed in the following table,
‘Iter.’ and ‘Sec.’ denote the number of iterations and the cpu time in seconds, respectively.
And “InIt.” denotes the number of total iterations of finding suitable αk in (3.3).
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Example 4.1. [19] Consider the SFP, where A = (aij)M×N ∈ RM×N and aij ∈ (0, 1)
generated randomly and

C = {x ∈ RN |c(x) ≤ 0} where c(x) = −x1 + x2
2 + · · ·+ x2

N ,

and
Q = {y ∈ RM |q(y) ≤ 0} where q(x) = y1 + 20y22 + · · ·+ 20y2M − 1.

Note that C is the set above the function x1 = x2
2 + · · · + x2

N and Q is the set below the
function y1 = −20y22−· · ·−20y2M +1. The initial point x0 ∈ (0, 100e1) is randomly chosen.
The parameters µ = 0.95, ρ = 0.4 and σ = 5 and γ = 1.5.

TABLE 1. Computational results for example 4.1 with different dimensions.

(N,M) Extragradient method Tseng’s method Alg.3.1(I) Alg.3.1(II)
Iter. 552 516 211 107

(50,50) Inlt. 4004 3564 1792 887
Sec. 2.2344 1.7969 0.9063 0.5313
Iter. 1944 1840 434 398

(100, 150) Inlt. 19400 17640 4530 4119
Sec. 22.4375 16.3594 4.3594 3.2656
Iter. 3024 2731 546 361

(250, 200) Inlt. 33305 30157 6171 4326
Sec. 57.0781 49.0313 10.1563 8.2656

The numerical results listed in Table 1 illustrate that Algorithm 3.1 behaves better than
the extragradient method and Tseng’s method from the number of iterations and the cpu
time in seconds. We also conclude that Algorithm 3.1(II) outperforms Algorithm 3.1(I)
since Algorithm 3.1(II) has better contraction inequality (3.31) than the contraction in-
equality (3.20) of Algorithm 3.1(I).
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