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ABSTRACT. In this paper, we begin by discussion of some well known results on the existence of left invariant
means in the spaces: LUC(S), AP (S) and WAP (S) with Hahn-Banach extension theorem. We then give a new
and precise proof of the well known Fan–Glicksberg fixed point theorem. This is then followed by a discussion
on some related open problems.

1. INTRODUCTION

Throughout this paper, we assume that E is a real separated locally convex space. All
topologies in this paper are assumed to be Hausdorff.

Let P : E → R. We say that P is sublinear if P (x+y) ≤ P (x)+P (y) and P (λx) = λP (x)
for all x, y ∈ E, λ ≥ 0.

Let S be a semitopological semigroup, i.e., S is a semigroup with Hausdorff topology such
that for every a ∈ S, the mappings s 7→ sa and s 7→ as from S into S are continuous.

Let ℓ∞(S) denote the space of all bounded real-valued functions on S with the supre-
mum norm: ∥ · ∥∞. For each a ∈ S and f ∈ ℓ∞(S), let laf and raf denote the left and right
translate of f by a respectively, i.e., (laf)(s) := f(as) and (raf)(s) := f(sa), ∀s ∈ S. Let
Y be a closed subspace of ℓ∞(S) containing constants and invariant under translations (i.e.,
la(Y ) ⊆ Y and ra(Y ) ⊆ Y, ∀a ∈ S). Then a linear functional m ∈ Y ∗ is called a mean if
∥m∥ = m(1) = 1. We say that a mean m is a left invariant mean on Y , denoted by LIM, if〈

m, laf
〉
=

〈
m, f

〉
, ∀a ∈ S, ∀f ∈ Y.

Let CB(S) denote the space of all bounded continuous real-valued functions on S with
the supremum norm: ∥ · ∥∞. Let LUC(S) be the space of all f ∈ CB(S) such that the
mappings a → laf from S into CB(S) are continuous. If G is a topological group, then
LUC(G) is precisely the space of bounded right uniformly continuous functions [15]. Set
LO(f) := {lsf | s ∈ S} and RO(f) := {rsf | s ∈ S}, where f ∈ CB(S).

Let AP (S) and WAP (S) be denoted by space of almost periodic functions and the space of
weakly almost periodic functions on S, respectively. More precisely, the spaces AP (S) and
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WAP (S) are defined by the followings:

AP (S) := the space of all f ∈ CB(S) such that LO(f) (or equivalently, RO(f) [3])

is relatively compact in the norm topology of CB(S);

WAP (S) := the space of all f ∈ CB(S) such that LO(f) (or equivalently, RO(f) [3])

is relatively compact in the weak topology of CB(S).

In general, we have the following inclusions.

AP (S) ⊆ LUC(S) ⊆ CB(S) and AP (S) ⊆ WAP (S) ⊆ CB(S).

Note that LUC(S), WAP (S) and AP (S) are closed subalgebras of CB(S) invariant under
left and right translations.

We say that S is left amenable if LUC(S) has a left invariant mean (LIM).
Let S be a semitopological semigroup. An action of S on E is a mapping from S ×E to

E, denoted by (s, x) → s · x.
Let e ∈ E. We say that e is an invariant element if e = s · e for every s ∈ S. Let F be a

nonempty subset of E. We say that F is an invariant set if s · x ∈ F for every s ∈ S and
every x ∈ F . Let F ⊆ E be an invariant set and f : F → R. We say that f is an invariant
function on F if for every s ∈ S and every x ∈ F ,

f (s · x) = f(x).

Let S be a semitopological semigroup. Then a continuous (resp. weakly continuous) right
linear action of S on E is an action of S on E satisfying the following.

(i) (ab) · x = b · (a · x) for all a, b ∈ S and x ∈ E.
(ii) For each s ∈ S, the map x 7→ s · x is a continuous linear mapping from E into E.

(iii) For each x ∈ E, the map s 7→ s · x is continuous from S into E (resp. weak
topology).

The rest of this paper are organized as follows. In Section 2, we introduce some classical
characterizations on the existence of left invariant means on the spaces LUC(S), AP (S)
and WAP (S). In Section 3, we present a new proof for the well known Fan–Glicksberg
fixed point theorem: Theorem 3.4. Some open interesting problems are listed in Section 4.

2. AMENABILITY OF SEMIGROUP AND HAHN-BANACH EXTENSION PROPERTY

The following result (Theorem 2.1) shows that the amenability of a semitopological
semigroup S is equivalent to Hahn-Banach extension properties. Theorem 2.1 (a)⇒(b) is
due to Silverman [25] for the case when S has the discrete topology (see also [11, Page 4]
and [26, Page 576]).

Theorem 2.1. (See [20, Theorem 1].) Let S be a semitopological semigroup. The following
conditions on S are equivalent:

(a) S is left amenable (i.e., LUC(S) has a left invariant mean).
(b) For any continuous right linear action of S on E, if p is a continuous sublinear function

on E such that p(s · x) ≤ p(x) for all s ∈ S, x ∈ E, and if ϕ is an invariant linear
functional on an invariant subspace F of E such that ϕ ≤ p on F , then there exists a
continuous invariant linear extension ϕ̃ of ϕ to E such that ϕ̃ ≤ p.

(c) For any continuous right linear action of S on E, if U is an invariant open convex subset
of E containing an invariant element, and M is an invariant subspace of E which does
not meet U , then there exists a closed invariant hyperplane H of E such that H contains
M and H does not meet U .
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(d) For any continuous right linear action of S on E with a base of the neighbourhoods of the
origin consisting of invariant open convex sets, then any two distinct points in

Ef := {x ∈ E | s · x = x for all s ∈ S}

can be separated by a continuous invariant linear functional on E.

Corollary 2.1. (See [20, Corollary].) Let S be a semitopological semigroup. If S is abelian, a
solvable group, or a compact semigroup with finite intersection property for right ideals, then S
has properties (b), (c) and (d) of Theorem 2.1.

In the following, we will present some characterization of S on the existence of a left
invariant mean on AP (S) and WAP (S) in terms of Hahn-Banach extension properties.

Let S be a semitopological semigroup. We say that the action of S on E is almost periodic
(resp. weakly almost periodic) if for each x ∈ E, the orbit: {s ·x | s ∈ S} is relatively compact
in the topology of E (resp. weak topology).

Theorem 2.2 generalized [13, Theorems 1 and 3] by Fan and Silverman’s result: Theo-
rem 15.A (see [25, Theorem 15.A]).

Theorem 2.2. (See [22, Theorem 1].) Let S be a semitopological semigroup. The following
conditions on S are equivalent:

(a) AP (S) has a left invariant mean (LIM).
(b) For any almost periodic continuous right linear action of S on E, if P is a continuous

sublinear function on E such that P (s · x) ≤ P (x) for all s ∈ S, x ∈ E, and if L is an
invariant linear functional on an invariant subspace F of E such that L ≤ P on F , then
there exists a continuous invariant linear extension L̃ of L to E such that L̃ ≤ P .

(c) For any almost periodic continuous right linear action of S on E, if F is an invariant
subspace of E and K is a convex subset of E such that K − x0 is invariant for some
x0 ∈ F ∩ intK, then for each invariant linear functional L on F such that L(x) ≤ α
for all x ∈ F ∩K and some fixed real number α, then there exists a continuous invariant
linear extension L̃ of L to E such that L̃(x) ≤ α for all x ∈ K.

With a proof similar to that of the above Theorem 2.2, we can have the following result
for WAP (S).

Theorem 2.3. (See [22, Theorem 2].) Let S be a semitopological semigroup. The following
conditions on S are equivalent:

(a) WAP (S) has a left invariant mean (LIM).
(b) For any weakly almost periodic weakly continuous right linear action of S on E, if P is a

continuous sublinear function on E such that P (s · x) ≤ P (x) for all s ∈ S, x ∈ E, and
if L is an invariant linear functional on an invariant subspace F of E such that L ≤ P on
F , then there exists a continuous invariant linear extension L̃ of L to E such that L̃ ≤ P .

(c) For any weakly almost periodic weakly continuous right linear action of S on E, if F is an
invariant subspace of E and K is a convex subset of E such that K − x0 is invariant for
some x0 ∈ F ∩intK, then for each invariant linear functional L on F such that L(x) ≤ α
for all x ∈ F ∩K and some fixed real number α, then there exists a continuous invariant
linear extension L̃ of L to E such that L̃(x) ≤ α for all x ∈ K.

Remark 2.1. See also Fan [13].

3. FAN–GLICKSBERG THEOREM

Let T : E ⇒ E be a set-valued operator (also known as multifunction) from E to E, i.e.,
for every x ∈ E, Tx ⊆ E, and let graT :=

{
(x, y) ∈ E × E | y ∈ Tx

}
be the graph of T .
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The set of the fixed points for T is FixT := {x ∈ E | x ∈ Tx}. Some interesting generalized
variational inequalities for set-valued mappings can be found in [1, 2, 4].

Given a set C ⊆ E, the closure of C is C and the interior of C is intC. Set N :=
{1, 2, 3, . . .}.

In this section, we will present a new and precise proof for the following well known
Fan–Glicksberg fixed point theorem (see [12, 14]). Our proof is inspired by [14, Theorem]
and [24, Theorem 5.28, page 143].

Theorem 3.4 (Fan-Glicksberg). (See [12, Theorem 1] and [14].) Let C ⊆ E be a nonempty
compact convex set. Let T : C ⇒ C be such that graT is closed and that Tx is a nonempty convex
set for all x ∈ C. Then FixT ̸= ∅.

Proof. Suppose to the contrary that FixT = ∅. Set

∆ :=
{
(x, x) ∈ E × E | x ∈ C

}
.

Thus graT ∩ ∆ = ∅. Then [24, Theorem 1.10, page 15] implies that there exists an open
convex set V with 0 ∈ V and V = −V such that

(graT + V × V ) ∩ (∆ + V × V ) = ∅.

Hence

(Tx+ V ) ∩ (x+ V ) = ∅, ∀x ∈ C.(3.1)

Since C is compact, there exist x1, x2, · · · , xm ∈ C with m ∈ N such that

C ⊆
m⋃
i=1

(
xi +

1

2
V

)
.(3.2)

Set

K := the convex hull of {x1, x2, · · · , xm}.

Then K is a compact convex set by [24, Theorem 3.20(a), page 72] and K ⊆ C. Thus, we
define A : K ⇒ K by

Ax :=

(
Tx+

1

2
V

)
∩K, ∀x ∈ K.

Then graA ⊆ K × K is a closed set by the compactness of C and closeness of graT (see
also the corresponding lines in the proof of [14, Theorem]). We have

Ax is a nonempty convex set, ∀x ∈ K.

Indeed, let x ∈ K and then take y ∈ Tx. By (3.2), there exists 1 ≤ i0 ≤ m such that
y ∈ xi0+

1
2V . Thus xi0 ∈ y− 1

2V = y+ 1
2V and then xi0 ∈

(
Tx+ 1

2V
)
∩K ⊆ Ax. Therefore,

Ax ̸= ∅. By the assumption that Tx is a nonempty convex set, Ax is a nonempty convex
set.

Thus by Kakutani’s fixed point theorem (see [18]), there exists z ∈ K such that

z ∈ Az ⊆ Tz +
1

2
V and hence

(
Tz +

1

2
V

)
∩ (z + V ) ̸= ∅.

Since
1

2
V ⊆ 1

2
V +

1

2
V = V (see [24, Theorem 1.13(a), page 11]),

(Tz + V ) ∩ (z + V ) ̸= ∅,

which contradicts (3.1). Hence FixT ̸= ∅. □
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4. SOME REMARKS AND OPEN PROBLEMS

Remark 4.2. In the case of a locally compact group, there is an analogue of separation
property and Hahn-Banach extension properties for the set of positive definite functions
[5, 6, 7, 8, 9].

Problem 4.1. Can we extend Theorem 2.2 and Theorem 2.3 for set-valued mappings?

Problem 4.2. Can we use the ideas in Theorem 2.2 and Theorem 2.3 to extend Day’s fixed point
theorem in [10] for set-valued mappings [23, 16]?

Problem 4.3. Let C ⊆ E be a nonempty compact convex set, and let S be a nonempty set. For
each s ∈ S, let Ts : C ⇒ C be such that graTs is closed and that Tsx is a nonempty convex set
for all x ∈ C. Under what condition is the intersection of the fixed point sets of Ts nonempty?

Problem 4.4. Can we extend the fixed point properties in [19, 21] for set-valued mappings [17]?
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