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ABSTRACT. In this paper, we consider a class of Stackelberg quasi-equilibrium problem with two players in
finite dimensional spaces. Existence and location of the Stackelberg quasi-equilibrium is discussed by employing
the quasi-variational inequality techniques and the fixed point arguments. The results presented in this paper
generalize some corresponding ones due to Nagy [Nagy, S., Stackelberg equilibia via variational inequalities and
projections, J. Global Optim., 57 (2013), 821–828].

1. INTRODUCTION

Stackelberg equilibrium model is a game with two players, in which the leader one
moves first and then the follower one moves sequentially [13]. Recently, Nagy [9] studied
the existence and location for a class of Stackelberg equilibrium problem with two players
by employing variational inequality methods and fixed point arguments. We note that the
strategy sets of the two players are assumed to be fixed in the study of Nagy [9]. However,
in some real situations, the strategy sets of the players may depend on their choices, such
as the generalized Nash equilibria considered in [10]. Thus, it is important and interesting
to extend the Stackelberg equilibrium problem considered by Nagy [9] to the case that the
strategy sets of the two players depend on their choices. The motivation of the present
work is to make an attempt in this direction.

Assume that f, g : Rn ×Rn → Rn are the payoff/loss functions for the two players. Let
K1,K2 be two set-valued mappings from Rn to Rn with nonempty values. In this paper,
we consider the following Stackelberg quasi-equilibrium problem (SQEP):

min
x∈K1(x)

f(x, y)

s.t. y ∈ argmin
y∈K2(y)

g(x, y).

We note that, if K1(x) = K1 and K2(y) = K2 for all x, y in Rn, where K1,K2 are two
subsets of Rn, then (SQEP) reduces to the Stackelberg equilibrium model considered by
Nagy [9].

As discussed by Nagy [9], the first step is to define the best response set of the follower
in (SQEP) as

RSQE(x) = {y∗ ∈ K2(y
∗) : g(x, y)− g(x, y∗) ≥ 0, ∀y ∈ K2(y

∗)}, x ∈ Rn,

i.e.,
RSQE(x) = argmin

y∈K2(y)

g(x, y), x ∈ Rn.
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Assume that RSQE(x) ̸= ∅ and r(x) is a selector of RSQE(x). Then, the Stackelberg quasi-
equilibrium leader set in (SQEP) can be defined as

SSQE = {x∗ ∈ K1(x
∗) : f(x, r(x))− f(x∗, r(x∗)) ≥ 0, ∀x ∈ K1(x

∗)},

i.e.,
SSQE = argmin

x∈K1(x)

f(x, r(x)).

In order to locate the points of the Stackelberg quasi-equilibrium response set, we de-
fine a slightly larger set than the best response set of the follower in (SQEP) by means of
the quasi-variational inequality [2, 3, 6, 8, 10, 12, 14]. More precisely, based on the C1 class
functions f(x, y) and g(x, y), we can define the Stackelberg quasi-variational response set
of the follower in (SQEP) as

RSQV (x) =

{
y∗ ∈ K2(y

∗) :

〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
≥ 0, ∀y ∈ K2(y

∗)

}
, x ∈ Rn,

where ⟨·, ·⟩ is the standard inner product in Rn. Assume that RSQV (x) ̸= ∅ and r(x) is a
selector of RSQV (x). Then, the Stackelberg quasi-variational leader set in (SQEP) can be
defined as

SSQV =

{
x∗ ∈ K1(x

∗) :

〈
∂f(x, r(x))

∂x

∣∣∣∣
x=x∗

, x− x∗
〉

≥ 0, ∀x ∈ K1(x
∗)

}
.

It is well known that the (quasi) variational inequality techniques and the fixed point
arguments are popular for solving equilibrium problems (see, for example, [4, 5, 7, 11, 15,
16] and the references therein). The main purpose of this paper is to show some new ex-
istence theorems concerned with solutions of (SQEP) by employing the quasi-variational
inequality method and the fixed point arguments. This paper is organized as follows.
Section 2 presents some basic definitions and results which are needed for the further
investigations. In Section 3, we give the main results of this paper in the cases of the
compactness and non-compactness for the strategy sets of the two players.

2. PRELIMINARIES

In this section, we give some basic properties concerned with the Stackelberg quasi-
variational response set. Throughout this section, the notions are the same as in previous
section.

Proposition 2.1. Let g be a function of class C1 and K2(x) be nonempty and convex for all
x ∈ Rn. Then, we have the following conclusions:

(a) RSQE(x) ⊆ RSQV (x) for every x ∈ Rn;
(b) If g(x, ·) is convex for some x ∈ Rn, then RSQE(x) = RSQV (x).

Proof. (a) For any x ∈ Rn and y∗ ∈ RSQE(x), it follows from the definition that y∗ ∈
K2(y

∗) and
g(x, y)− g(x, y∗) ≥ 0, ∀y ∈ K2(y

∗).

Since g is a function of class C1, by the definition, one has〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, h

〉
= lim

t→0+

g(x, y∗ + th)− g(x, y∗)

t
, ∀h ∈ Rn.

Since K2(x) is nonempty and convex, we know that y∗ + t(y − y∗) ∈ K2(y
∗) for all y ∈

K2(y
∗) and every t ∈ [0, 1]. Thus, taking h = y − y∗ ∈ Rn in the above expression, we



A Stackelberg quasi-equilibrium problem via quasi-variational inequalities 357

have 〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
≥ 0, ∀y ∈ K2(y

∗),(2.1)

which shows that y∗ ∈ RSQV (x) and so RSQE(x) ⊆ RSQV (x) for every x ∈ Rn.
(b) We only need to show that RSQE(x) ⊇ RSQV (x). For any given y∗ ∈ RSQV (x), we

know that y∗ ∈ K2(y
∗) and (2.1) holds. Since g(x, ·) is convex and of class C1, it follows

that

g(x, y)− g(x, y∗) ≥

〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
, ∀y ∈ Rn.(2.2)

Thus, by (2.1) and (2.2), we have

g(x, y)− g(x, y∗) ≥ 0, ∀y ∈ K2(y
∗)

and so y∗ ∈ RSQE(x). This completes the proof. □

Remark 2.1. Proposition 2.1 is a generalization of Proposition 2.1 of Nagy [9].

Assume that K ⊂ Rn is a nonempty, closed and convex subset. Let PK : Rn → K be
the metric projection defined as follows:

PK(x) =

{
y ∈ K : ∥x− y∥ = inf

z∈K
∥z − x∥

}
, ∀x ∈ Rn.

It is well known that

z = PK(x) ⇔ ⟨z − x, y − z⟩ ≥ 0, ∀y ∈ K.(2.3)

Moreover, PK is a nonexpansive mapping, i.e.,

∥PK(x)− PK(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn.

Now we turn to the investigation of an element of follower’s Stackelberg quasi-variational
response set RSQV (x). The element acts as a solution to the parametric quasi-variational
inequality problem: find y∗ ∈ K2(y

∗) such that〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
≥ 0, ∀y ∈ K2(y

∗).

For any given x ∈ Rn, let

Ax
ρ(y) = PK2(y)

[
y − ρ

∂g(x, y)

∂y

]
, ρ > 0.

Then we have the following result.

Proposition 2.2. Suppose that g is a function of class C1 and K2(x) is nonempty, closed and
convex for all x ∈ Rn. Let X∗ ∈ Rn. Then the following assertions are equivalent:

(i) y∗ ∈ RSQV (x
∗);

(ii) y∗ = Ax∗

ρ (y∗) for any ρ > 0;
(iii) y∗ = Ax∗

ρ (y∗) for some ρ > 0.

Proof. Clearly, y∗ ∈ RSQV (x
∗) if and only if〈

∂g(x∗, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
≥ 0, ∀y ∈ K2(y

∗).
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which is equivalent to〈
y∗ −

[
y∗ − ρ

∂g(x∗, y)

∂y

∣∣∣∣
y=y∗

]
, y − y∗

〉
≥ 0, ∀y ∈ K2(y

∗)

for all/some ρ > 0. Thus, it follows from (2.3) that

RSQV (x
∗) =

{
y∗ ∈ K2(y

∗) : y∗ = PK2(y∗)

(
y∗ − ρ

∂g(x∗, y)

∂y

∣∣∣∣
y=y∗

)}
.

By the definition of Ax∗

ρ , we know the claim is proved. This completes the proof. □

Remark 2.2. Proposition 2.2 is a generalization of Proposition 2.2 of Nagy [9].

At the end of this section, we give a result concerned with the Stackelberg quasi-
variational leader set. More precisely, by the definitions, we have the following result.

Proposition 2.3. Let f be a function of class C1 and K1(x) be nonempty, closed and convex
for all x ∈ Rn. Assume that x 7→ RSQV (x) is a single-valued function of class C1. Then
SSQE ⊂ SSQV .

Remark 2.3. Proposition 2.3 is a generalization of Proposition 2.3 of Nagy [9].

3. STACKELBERG QUASI-VARIATIONAL RESPONSE SETS

By Proposition 2.2, to find elements in RSQV (x) is equivalent to find fixed points of Ax
ρ

for ρ > 0. To this end, we discuss two cases: compact and non-compact strategy sets.

Theorem 3.1. Let f and g be two functions of class C1, and K1,K2 ⊂ Rn be two nonempty,
convex and compact subsets. Assume that Ki : Rn → 2Ki (i = 1, 2) are two set-valued mappings
such that Ki(x) (i = 1, 2) are nonempty, closed and convex, for each x ∈ Rn. Then the following
statements are true:

(a) RSQV (x) is nonempty for each given x ∈ K1;
(b) If RSQV (x) is a singleton for each x ∈ K1, and the mapping x 7→ RSQV (x) is of class

C1, then SSQV is nonempty.

Proof. (a) For fixed x ∈ K1 and ρ > 0, since PK2(y) is nonexpansive for any y ∈ Rn and
g is a function of class C1, we know that Ax

ρ : K2 → K2 is a continuous mapping. Thus,
by employing the Brouwer fixed point theorem, Ax

ρ has a fixed point y∗ ∈ K2. Now
Proposition 2.2 shows that y∗ ∈ RSQV (x).

(b) Let η > 0. Since RSQV (x) is a singleton for each x ∈ K1, we can define a mapping
Bη : K1 → K1 as follows:

Bη(x) = PK1(x)

[
x− η

∂f(x, r(x))

∂x

]
, r(x) = RSQV (x).

Since PK1(x) is nonexpansive for any x ∈ Rn, f and r(x) are two functions of class C1,
we know that Bη : K1 → K1 is a continuous mapping. Thus, the Brouwer fixed point
theorem shows that Bη has a fixed point x∗ ∈ K1. Similar to the proof of Proposition 2.2,
we know that x∗ ∈ Bη(x

∗) is and only if x∗ ∈ SSQV . This completes the proof. □

Remark 3.4. We would like to mention that Theorem 3.1 presented in this paper reduces
to Theorem 3.1 of Nagy [9] when K1(x) = K1 and K2(y) = K2 for all x, y in Rn.

Next we consider the non-compact case. As pointed out by Nagy [9], in order to ensure
the existence of the the elements concerned with the Stackelberg quasi-equilibrium/quasi-
variational response set in the non-compact case, some additional assumptions are needed
beside regular conditions of functions.
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Theorem 3.2. Let g be a function of class C1 and K2 : Rn → 2R
n

be a set-valued mapping with
nonempty, closed and convex valued such that∥∥PK2(y1)z − PK2(y2)z

∥∥ ≤ k2∥y1 − y2∥, ∀y1, y2, z ∈ Rn,(3.4)

where k2 > 0 is a constant. For any given x ∈ Rn, assume that there exist two positive constants
κg and Lg such that〈

∂g(x, y)

∂y

∣∣∣∣
y=y1

− ∂g(x, y)

∂y

∣∣∣∣
y=y2

, y1 − y2

〉
≥ κg∥y1 − y2∥2, ∀y1, y2 ∈ Rn(3.5)

and ∥∥∥∥∥ ∂g(x, y)∂y

∣∣∣∣
y=y1

− ∂g(x, y)

∂y

∣∣∣∣
y=y2

∥∥∥∥∥ ≤ Lg∥y1 − y2∥, ∀y1, y2 ∈ Rn.(3.6)

If

k2 +
√
1− 2ρκg + ρ2L2

g < 1,(3.7)

then there exists a unique point y∗ ∈ Rn such that RSQV (x) = {y∗}. Moreover, the sequence
{yk} generated by {

yk+1 = Ax
ρ(y

k),
y0 ∈ Rn,

(3.8)

converges to y∗.

Proof. For any y1, y2 ∈ Rn, it follows from (3.4) that

∥Ax
ρ(y1)−Ax

ρ(y2)∥(3.9)

=

∥∥∥∥∥PK2(y1)

[
y1 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y1

]
− PK2(y2)

[
y2 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y2

]∥∥∥∥∥
≤ k2∥y1 − y2∥+

∥∥∥∥∥
[
y1 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y1

]
−

[
y2 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y2

]∣∣∣∣∣ .
By (3.5) and (3.6), one has∥∥∥∥∥

[
y1 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y1

]
−

[
y2 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y2

]∥∥∥∥∥
2

(3.10)

= ∥y1 − y2∥2 − 2ρ

〈
∂g(x, y)

∂y

∣∣∣∣
y=y1

− ∂g(x, y)

∂y

∣∣∣∣
y=y2

, y1 − y2

〉

+ ρ2

∥∥∥∥∥ ∂g(x, y)∂y

∣∣∣∣
y=y1

− ∂g(x, y)

∂y

∣∣∣∣
y=y2

∥∥∥∥∥
2

≤ ∥y1 − y2∥2 − 2ρκg∥y1 − y2∥2 + ρ2L2
g∥y1 − y2∥2

= (1− 2ρκg + ρ2L2
g)∥y1 − y2∥2.

Thus, from (3.9) and (3.10), we have

∥Ax
ρ(y1)−Ax

ρ(y2)∥ ≤ h∥y1 − y2∥, ∀y1, y2 ∈ Rn(3.11)

with
0 < h = k2 +

√
1− 2ρκg + ρ2L2

g.
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It follows from (3.7) that 0 < h < 1 and so by the Banach fixed point theorem, Ax
ρ has a

unique fixed point y∗ ∈ Rn. Moreover, it is easy to know that the sequence {yk} generated
by (3.8) converges to y∗. This completes the proof. □

Remark 3.5. It is clear that Theorem 3.2 generalizes discrete case of Theorem 3.2 of Nagy
[9].

Theorem 3.3. Assume that all the conditions of Theorem 3.2 hold. If∥∥∥∥∂g(x1, y)

∂y
− ∂g(x2, y)

∂y

∥∥∥∥ ≤ L′
g∥x1 − x2∥, ∀x1, x2, y ∈ Rn,(3.12)

where L′
g > 0 is a constant, then

∥RSQV (x1)−RSQV (x2)∥ ≤ C∥x1 − x2∥, ∀x1, x2 ∈ Rn,

where C is a positive constant.

Proof. From Theorem 3.2, we know that RSQV (x) = {y∗}. For any x1, x2 ∈ Rn, let y∗i =
RSQV (xi) with i = 1, 2. Then, it follows from (3.11) and (3.12) that

∥RSQV (x1)−RSQV (x2)∥ = ∥y∗1 − y∗2∥
= ∥Ax1

ρ (y∗1)−Ax2
ρ (y∗2)∥

≤ ∥Ax1
ρ (y∗1)−Ax1

ρ (y∗2)∥+ ∥Ax1
ρ (y∗2)−Ax2

ρ (y∗2)∥

≤ h∥y∗1 − y∗2∥+ ρ

∥∥∥∥∥ ∂g(x1, y)

∂y

∣∣∣∣
y=y∗

2

− ∂g(x2, y)

∂y

∣∣∣∣
y=y∗

2

∥∥∥∥∥
≤ h∥y∗1 − y∗2∥+ ρL′

g∥x1 − x2∥.
In view of fact that 0 < h < 1, we have

∥y∗1 − y∗2∥ ≤
ρL′

g

1− h
∥x1 − x2∥

and so
∥RSQV (x1)−RSQV (x2)∥ ≤ C∥x1 − x2∥

with a positive constant C =
ρL′

g

1−h . This completes the proof. □

Next we will consider the existence result for the Stackelberg quasi-variational leader
set. To this end, we need the following assumptions. Suppose that there exist constants
κf > 0 and Lf > 0 such that, for all x1, x2 ∈ Rn,〈

∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

, x1 − x2

〉
≥ κf∥x1 − x2∥2(3.13)

and ∥∥∥∥∥ ∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

∥∥∥∥∥ ≤ Lf∥x1 − x2∥.(3.14)

Moreover, we assume that∥∥∥∥∥ ∂f(x, r(x))∂x

∣∣∣∣
x=x1

− ∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

∥∥∥∥∥ ≤ L′
f∥r(x1)− r(x2)∥, ∀x1, x2 ∈ Rn.(3.15)

When the mapping x 7→ RSQV (x) is single-valued, we denote r(x) = RSQV (x). For
any η > 0, we can define an operator Bη : Rn → Rn as follows:

Bη(x) = PK1(x)

[
x− η

∂f(x, r(x))

∂x

]
, x ∈ Rn.(3.16)
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Theorem 3.4. Assume that all the conditions of Theorems 3.2 and 3.3 hold. Moreover, suppose
that conditions (3.13)-(3.15) are satisfied and∥∥PK1(x1)z − PK1(x2)z

∥∥ ≤ k1∥x1 − x2∥, ∀x1, x2, z ∈ Rn,(3.17)

where k1 > 0 is a constant. If there exist constants ρ > 0 and η > 0 such that

h = k2 +
√
1− 2ρκg + ρ2L2

g < 1, k1 +
√
1− 2ηκf + η2L2

f +
ηρL′

gL
′
f

1− h
< 1,(3.18)

then there exists a unique x∗ ∈ Rn such that SSQV = {x∗} and y∗ = r(x∗) with RSQV (x
∗) =

{y∗}.

Proof. By (3.16) and (3.17), for any x1, x2 ∈ Rn, we have

∥Bη(x1)−Bη(x2)∥(3.19)

=

∥∥∥∥∥PK1(x1)

[
x1 − η

∂f(x, r(x))

∂x

∣∣∣∣
x=x1

]
− PK1(x2)

[
x2 − η

∂f(x, r(x))

∂x

∣∣∣∣
x=x2

]∥∥∥∥∥
≤ k1∥x1 − x2∥+

∥∥∥∥∥(x1 − x2)− η

[
∂f(x, r(x))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

]∥∥∥∥∥
≤ k1∥x1 − x2∥+

∥∥∥∥∥(x1 − x2)− η

[
∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

]∥∥∥∥∥
+ η

∥∥∥∥∥ ∂f(x, r(x))∂x

∣∣∣∣
x=x1

− ∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

∥∥∥∥∥ .
It follows from (3.13) and (3.14) that∥∥∥∥∥(x1 − x2)− η

[
∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

]∥∥∥∥∥
2

≤ (1− 2ηκf + η2L2
f )∥x1 − x2∥2

and so∥∥∥∥∥(x1 − x2)− η

[
∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

]∥∥∥∥∥ ≤
√
1− 2ηκf + η2L2

f∥x1 − x2∥.

By (3.15) and Theorem 3.3, one has∥∥∥∥∥ ∂f(x, r(x))∂x

∣∣∣∣
x=x1

− ∂f(x, r(x2))

∂x

∣∣∣∣
x=x1

∥∥∥∥∥ ≤ L′
f∥r(x1)− r(x2)∥ ≤

ρL′
gL

′
f

1− h
∥x1 − x2∥.

These inequalities mentioned above together with (3.19) imply that

∥Bη(x1)−Bη(x2)∥ ≤ h′∥x1 − x2∥, ∀x1, x2 ∈ Rn,

where

h′ = k1 +
√
1− 2ηκf + η2L2

f +
ηρL′

gL
′
f

1− h
.

Now (3.18) shows that Bη is a contractive mapping. Thus, it follows from the Banach fixed
point theorem that there exists a unique x∗ ∈ Rn such that x∗ = Bη(x

∗) and so SSQV =
{x∗}. Moreover, by Theorem 3.1, there exists a unique y∗ ∈ Rn such that y∗ = r(x∗) with
RSQV (x

∗) = {y∗}. This completes the proof. □

Remark 3.6. We would like to mention that conditions (3.4) and (3.17) are similar to con-
dition (b) in Theorem 1 of Aussel et al. [1].
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