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On existence of solution of a class of quadratic-integral
equations using contraction defined by simulation
functions and measure of noncompactness

M. MURSALEEN and REZA ARAB

ABSTRACT. In this paper we have introduced a new type of contraction condition using a class of simulation
functions, in the sequel using the new contraction definition, involving measure of noncompactness; we estab-
lish few results on existence of fixed points of continuous functions defined on a subset of Banach space. This
result also generalizes other related results obtained in Arab [Arab, R., Some generalizations of Darbo fixed point
theorem and its application, Miskolc Math. Notes, 18 (2017), No. 2, 595–610], Banaś [Banaś, J. and Goebel, K., Mea-
sures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Dekker, New York, 60
(1980)]. The obtained results are used in establishing existence theorems for a class of nonlinear quadratic equa-
tion (which generalizes several types of fractional-quadratic integral equations such as Abel’s integral equation)
defined on a closed and bounded subset of R. The existence of solution is established with the aid of a mea-
sure of noncompactness defined on function space C(I) introduced in [Banaś, J. and Olszowy, L., Measures of
Noncompactness related to monotonicity, Comment. Math., 41 (2001), 13–23].

1. INTRODUCTION

Integral equation create a very important and significant part of the mathematical anal-
ysis and has various applications into real world problems. The technique of measures of
noncompactness is often used in several branches of nonlinear analysis. Especially, that
technique turns out to be very useful tool in the existence theory for several types of in-
tegral equations[2, 3, 6, 7, 8, 9, 17]. Many authors studied the existence of solutions for
several classes of nonlinear quadratic integral equations [10, 14]. In our investigations,
we apply the method associated with the technique of measures of noncompactness to
generalize the Darbo fixed point theorem [13] and to extend some recent results of Arab
[4]. Moreover, as an application, we study the problem of existence of solutions for the
following nonlinear integral equation

x(t) = a(t) + h(t, x(t) + F
(
t,

∫ t

0

(tm − sm)α−1

Γ(α)
msm−1k1(f1(t, s))x(s) ds,∫ t

0

(tn − sn)β−1

Γ(β)
nsn−1k2(f2(t, s))x(s) ds

)
,

(1.1)

for t ∈ I = [0, 1], 0 < α, β ≤ 1, m, n > 0, where Γ(.) is the (Euler’s) Gamma function
defined by Γ(α) =

∫∞
0
tα−1e−tdt and H : C(I) → C(I) is operator which satisfy special

assumptions (see Section 4). Let us recall that the function h = h(t, x) involved in Eq.(1.1)
generates the superposition operator H , defined by (Hx)(t) = h(t, x(t)), where x = x(t)
is an arbitrary function defined on I , see [5]. We show that Eq. (1.1) has solutions in C(I).
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The rest of the paper is organized as follows. In Section 2, we present some definitions
and preliminary results about the concept of measure of noncompactness. In Section 3,
using the new contraction of measure of noncompactness, some generalizations of Darbo
fixed point theorem and to extend some recent results of Arab[4] are proved. Finally in
Section 4, using the obtained results in Section 3, we investigate the problem of existence
of solutions for the nonlinear integral equation (1.1).

We use the following definition of the measure of noncompactness given in [13].

Definition 1.1. A mapping µ : ME → R+ is said to be a measure of noncompactness in E
if it satisfies the following conditions:

(10) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE ,
(20) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),
(30) µ(X̄) = µ(X),
(40) µ(ConvX) = µ(X),
(50) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1],
(60) If (Xn) is a sequence of closed sets from mE such that Xn+1 ⊂ Xn(n = 1, 2, ...)

and if lim
n−→∞

µ(Xn) = 0, then the set X∞ =
⋂∞

n=1Xn is nonempty.

Theorem 1.1. (Schauder [1]) Let C be a nonempty, bounded, closed, convex subset of a Banach
space E. Then every compact, continuous map T : C → C has at least one fixed point.

In the following we state a fixed-point theorem of Darbo type proved by Banaś and
Goebel [13].

Theorem 1.2. Let C be a nonempty, closed, bounded, and convex subset of the Banach space E
and F : C → C be a continuous mapping. Assume that there exist a constant k ∈ [0, 1) such that
µ(FX) ≤ kµ(X) for any nonempty subset of C. Then F has a fixed-point in C.

2. NEW FIXED POINT THEOREMS ON BANACH SPACES

The main result of the present paper is the following fixed point theorem which is a
generalization of Darbo fixed point theorem (cf. Theorem1.2) and extend Theorem 4 of
[4].
In the sequel, we fixed the set of functions by F,ψ, ϕ : [0,+∞) → [0,+∞) such that

(a) F is nondecreasing, continuous, and F (0) = 0 < F (t) for every t > 0;
(b) ϕ(t) < ψ(t) for each t > 0, ϕ(0) = ψ(0) = 0;
(c) ϕ(t) and ψ(t) are continuous functions;
(d) ψ is increasing.

Define F = {F : F satisfies (a)}, Ψ = {(ψ, ϕ) : ψ and ϕ satisfy (b),(c) and (d)}.
In the sequel, we denote by Θ the class of functions θ : R+ × R+ −→ R satisfying the
following conditions:

(θ1) θ(t, s) < s− t, for all t, s > 0;
(θ2) if {tn}, {sn} are sequences in (0,+∞) such that lim

n−→+∞
tn = l > 0 and lim

n−→+∞
sn =

s > 0, then
lim sup
n−→+∞

θ(tn, sn) < s− l.

Now, we are in a position to state and prove our main result.

Theorem 2.3. Let C be a nonempty subset of a Banach space E, T : C → C and φ : R+ −→ R+

be two continuous functions. Suppose that if for any 0 < a < b <∞ there exists 0 < γ(a, b) < 1
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such that for all X ⊆ C,

a ≤ F (µ(X) + φ(µ(X))) ≤ b(2.2)
=⇒ θ[ψ(F (µ(T (X)) + φ(µ(TX)))), γ(a, b)ϕ(F (µ(X) + φ(µ(X))))] ≥ 0,

where µ is an arbitrary measure of noncompactness, θ ∈ Θ, F ∈ F and (ψ, ϕ) ∈ Ψ. Then T has at
least one fixed point in C.

Proof. Let C0 = C, we construct a sequence {Cn} such that Cn+1 = Conv(TCn), for n ≥ 0.
TC0 = TC ⊆ C = C0, C1 = Conv(TC0) ⊆ C = C0, therefore by continuing this process,
we have

C0 ⊇ C1 ⊇ ... ⊇ Cn ⊇ Cn+1 ⊇ ...·
If there exists a positive integer N ∈ N such that µ(CN ) + φ(µ(CN )) = 0, i.e, µ(CN ) = 0,
then CN is relatively compact. On the other hand, we have T (CN ) ⊆ Conv(TCN ) =
CN+1 ⊆ CN . Then Theorem 1.1 implies that T has a fixed point. So we assume that
0 < µ(Cn) + φ(µ(Cn)) for all n ∈ N and by property of function F , we have

(2.3) 0 < F (µ(Cn) + φ(µ(Cn))), ∀n ≥ 1.

Suppose that

F (µ(Cn0) + φ(µ(Cn0))) < F (µ(Cn0+1) + φ(µ(Cn0+1))),(2.4)

for some n0 ∈ N. In addition, by (2.3) and (2.4), we have

0 < a := F (µ(Cn0) + φ(µ(Cn0))) ≤ F (µ(Cn0) + φ(µ(Cn0)))

< F (µ(Cn0+1) + φ(µ(Cn0+1))) := b.

By using (2.2) and (θ1) with X = Cn0
, there exists 0 < γ(a, b) < 1 such that

0 ≤ θ[ψ(F (µ(TCn0
) + φ(µ(TCn0

)))), γ(a, b)ϕ(F (µ(Cn0
) + φ(µ(Cn0

))))]

< γ(a, b)ψ(F (µ(Cn0+1) + φ(µ(Cn0+1))))− ψ(F (µ(Cn0+1) + φ(µ(Cn0+1)))),

which implies that γ(a, b) > 1, a contradiction. This implies that

µ(Cn+1) + φ(µ(Cn+1)) ≤ µ(Cn) + φ(µ(Cn)),

for all n ∈ N, that is, the sequence {µ(Cn)+φ(µ(Cn))} is non-increasing and nonnegative,
we infer that

lim
n→∞

µ(Cn) + φ(µ(Cn)) = r.(2.5)

Now, we show that r = 0. Suppose, to the contrary, that r > 0. Then

0 < a := F (r) ≤ F (µ(Cn) + φ(µ(Cn))) ≤ F (µ(C0) + φ(µ(C0))) =: b, for all n ≥ 0.

By using (2.2) with X = Cn, there exists 0 < γ(a, b) < 1 such that

0 ≤ θ[ψ(F (µ(TCn) + φ(µ(TCn)))), γ(a, b)ϕ(F (µ(Cn) + φ(µ(Cn))))]

= θ[ψ(F (µ(Cn+1) + φ(µ(Cn+1)))), γ(a, b)ϕ(F (µ(Cn) + φ(µ(Cn))))].

The above inequality and the condition (θ2), with tn = ψ(F (µ(Cn+1) + φ(µ(Cn+1)))) and
sn = γ(a, b)ϕ(F (µ(Cn) + φ(µ(Cn)))), we have

0 ≤ lim sup
n→∞

θ[ψ(F (µ(Cn+1) + φ(µ(Cn+1)))), γ(a, b)ϕ(F (µ(Cn) + φ(µ(Cn))))]

<γ(a, b)ϕ(F (r))− ψ(F (r)) < γ(a, b)ψ(F (r))− ψ(F (r)) < 0,

which is a contradiction. Then we conclude that r = 0 and from (2.5), since φ ≥ 0, we get

lim
n→∞

µ(Cn) = 0 and lim
n→∞

φ(µ(Cn)) = 0.
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SinceCn ⊇ Cn+1 and TCn ⊆ Cn for all n = 1, 2, ..., it follows from (60) thatC∞ =

∞⋂
n=1

Cn is

nonempty convex closed set, invariant under T and belongs to Kerµ. Therefore Theorem
1.1 completes the proof. □

We show the unifying power of simulation functions by applying Theorem 2.3 to de-
duce different kinds of contractive conditions in the existing literature.

Theorem 2.4. Let C be a nonempty subset of a Banach space E, T : C → C and φ : R+ −→ R+

be two continuous functions. Suppose that if for any 0 < a < b <∞ there exists 0 < λ(a, b) < 1
such that for all X ⊆ C,

a ≤ F (µ(X) + φ(µ(X))) ≤ b

=⇒ ψ(F (µ(T (X)) + φ(µ(TX)))) ≤ λ(a, b)ϕ(F (µ(X) + φ(µ(X)))),

where µ is an arbitrary measure of noncompactness, F ∈ F and (ψ, ϕ) ∈ Ψ. Then T has at least
one fixed point in C.

Proof. The result follows from Theorem 2.3, by taking as function θ(t, s) = k s − t, for all
t, s ≥ 0 and λ(a, b) = k γ(a, b). □

Now, the following fixed point theorem follows immediately from Theorem 2.4 is a
generalization of [4].

Corollary 2.1. Let C be a nonempty subset of a Banach space E, T : C → C and φ : R+ −→ R+

be two continuous functions. Suppose that if for any 0 < a < b <∞ there exists 0 < λ(a, b) < 1
such that for all X ⊆ C,

a ≤ F (µ(X) + φ(µ(X))) ≤ b =⇒ F (µ(T (X)) + φ(µ(TX)) ≤ λ(a, b)F (µ(X) + φ(µ(X))),

where µ is an arbitrary measure of noncompactness and F ∈ F. Then T has at least one fixed point
in C.

Proof. The result follows from Theorem 2.4, by taking as function θ(t, s) = k1 s− t, for all
t, s ≥ 0, 0 < k1 < 1, 0 < k2 < 1, ψ(t) = t, ϕ(t) = k2t and λ(a, b) = k1k2 γ(a, b). □

3. APPLICATION

LetC(I) = C[0, 1] be the Banach space of all continuous functions on I = [0, 1] equipped
with the standard norm

||x|| = max{|x(t)| : t ≥ 0}.
Next, we recall the definition of a measure of noncompactness in C(I) which will be
used in this Section. This measure was introduced and studied in [11]. Let X be a fixed
nonempty and bounded subset of C(I). For x ∈ X and ϵ ≥ 0, denote by ω(x, ϵ) the mod-
ulus of continuity of the function x on the interval [0, 1], i.e.

ω(x, ϵ) := sup{|x(t)− x(s)| : t, s ∈ [0, 1], |t− s| ≤ ϵ}.

Further, let us put

ω(X, ϵ) := sup{ω(x, ϵ) : x ∈ X}, ω0(X) := lim
ϵ→0

ω(X, ϵ).

Define
i(x) := sup{|x(s)− x(t)| − [x(s)− x(t)] : t, s ∈ I, t ≤ s},

and
i(X) := sup{i(x) : x ∈ X}.



On existence of solution of a class of quadratic-integral equations ... 375

Observe that all functions belonging to X are nondecreasing on I if and only if i(X) = 0.
Now, let us define the function µ on the family MC(I) by the formula

µ(X) := ω0(X) + i(X).

It can be shown [11] that the function µ is a measure of noncompactness in the space C(I).
Now, equation (1.1) will be investigated under the assumptions:

(a1) a : I → R+ is a continuous, nondecreasing and nonnegative function on I .
(a2) h : I × R → R is continuous function in t, x such that h(I × R+) ⊆ R+ and there

exists a continuous and nondecreasing function φ : R+ → R+ with φ(0) = 0 and
for each t > 0, φ(t) < t such that

|h(t, x)− h(t, y)| ≤ λφ(|x− y|)(3.6)

for all t ∈ I and all x, y ∈ R where 0 < λ < 1. Additionally we assume that φ is
superadditive i.e., φ(t) + φ(s) ≤ φ(t+ s) for all t, s ∈ R+.

(a3) The superposition operator H generated by the function h(t, x) satisfies for any
nonnegative function x the condition

i(Hx) ≤ λφ(i(x))

where φ is the same function as in (a2).
(a4) F : I × R × R → R is continuous and nondecreasing function for each variable

separately, such that F (I × R+ × R+) ⊆ R+ and satisfies the following condition

|F (t, x, y)− F (t, u, v)| ≤ |x− u|+ |y − v|,(3.7)

for all t ∈ I and all x, y, u, v ∈ R.
(a5) f1, f2 : I × I → R are continuous and the functions f1(t, s) and f2(t, s) are nonde-

creasing for each variable t and s, separately.
(a6) k1 : Imf1 → R+ is a continuous and nondecreasing function on the compact set

Imf1.
(a7) k2 : Imf2 → R+ is a continuous and nondecreasing function on the compact set

Imf2.
(a8) The inequality

M1 + λφ(r) +M2 +
||k1||r

Γ(α+ 1)
+

||k2||r
Γ(β + 1)

+M3 ≤ r,(3.8)

has a positive solution r0, where M1 = max{|a(t)| : t ∈ I}, M2 = max{|h(t, 0)| :
t ∈ I} and M3 = max{|F (t, 0, 0)| : t ∈ I}.

Theorem 3.5. Under assumptions (a1) − (a8), the equation (1.1) has at least one solution x =
x(t) which belongs to the space C(I).

Proof. Consider the operators G1, G2 and T defined on the space C(I) by the formulas:

(G1x)(t) =

∫ t

0

(tm − sm)α−1

Γ(α)
msm−1k1(f1(t, s))x(s) ds,

(G2x)(t) =

∫ t

0

(tn − sn)β−1

Γ(β)
nsn−1k2(f2(t, s))x(s) ds,

(Tx)(t) = a(t) + h(t, x(t)) + F (t, (G1x)(t), (G2x)(t)).

Solving Eq.(1.1) is equivalent to finding a fixed point of the operator T defined on the
space C(I). By considering the conditions of theorem we infer that Tx is continuous on I
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for any function x ∈ C(I), i.e., T transforms the space C(I) into itself. Moreover, in virtue
of (a1)− (a7) for each t ∈ I , we have

|(G1x)(t)| ≤
||k2||||x||
Γ(β + 1)

, |(G2x)(t)| ≤
||k2||||x||
Γ(β + 1)

.(3.9)

So, we obtain
|(Tx)(t)| ≤M1 + [λφ(||x||) +M2] + |(G1x)(t)|+ |(G2x)(t)|+ |F (t, 0, 0, 0)|

≤M1 + λφ(||x||) +M2 +
||k1||||x||
Γ(α+ 1)

+
||k2||||x||
Γ(β + 1)

+M3.

Hence,

||Tx|| ≤M1 + λφ(||x||) +M2 +
||k1||||x||
Γ(α+ 1)

+
||k2||||x||
Γ(β + 1)

+M3.

Thus, if ||x|| ≤ r0 we obtain from assumption (a8) the estimate

||Tx|| ≤M1 + λφ(r0) +M2 +
||k1||r0
Γ(α+ 1)

+
||k2||r0
Γ(β + 1)

+M3 ≤ r0.

Consequently, the operator T maps the ball Br0 ⊂ C(I) into itself. Next, we prove that
the operator T is continuous on Br0 . To do this, let {xn} be a sequence in Br0 such that
xn → x. We have to show that Txn → Tx. In fact, for each t ∈ I , we have

|(G1xn)(t)− (G1x)(t)| ≤
∫ t

0

(tm − sm)α−1

Γ(α)
msm−1|k1(f1(t, s))||xn(s)− x(s)|ds,

thus

||G1xn −G1x|| ≤
||k1||

Γ(α+ 1)
||xn − x||.

Similarly, we have

||G2xn −G2x|| ≤
||k2||

Γ(β + 1)
||xn − x||.

As,

|(Txn)(t)− (Tx)(t)| ≤ λφ(||xn − x||) + ||G1xn −G1x||+ ||G2xn −G2x||.

It follows that

||Txn − Tx| ≤ λφ(||xn − x||) + ||k1||
Γ(α+ 1)

||xn − x||+ ||k2||
Γ(β + 1)

||xn − x||.

This proves that T is continuous on Br0 . The operator T on the subset B+
r0 of the ball Br0

defined in the following way: B+
r0 = {x ∈ Br0 : x(t) ≥ 0, for t ∈ I}. Obviously, the

set B+
r0 is nonempty, bounded, closed and convex. In view of our assumptions (a2) and

(a4), if x(t) ≥ 0 then (Tx)(t) ≥ 0 for all t ∈ I . Thus T transforms the set B+
r0 into itself.

Moreover, T is continuous on B+
r0 . Let X be a nonempty subset of B+

r0 . Fix ϵ > 0 and
t1, t2 ∈ I with |t2 − t1| ≤ ϵ. Without loss of generality assume that t2 ≥ t1. Then we get

|(G1x)(t2)− (G1x)(t1)| ≤
∫ t2

0

(tm2 − sm)α−1

Γ(α)
msm−1|k1(f1(t2, s))− k(f(t1, s))||x(s)|ds

+

∫ t2

t1

(tm2 − sm)α−1

Γ(α)
msm−1|k1(f1(t1, s))||x(s)|ds

+

∫ t1

0

|(tm2 − sm)α−1 − (tm1 − sm)α−1|
Γ(α)

msm−1|k1(f1(t1, s))||x(s)|ds.
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Therefore, if we denote

ωkiofi(ϵ, .) = sup{|ki(fi(t, s))− ki(fi(t
′, s))| : t, t′, s ∈ I and |t− t′| ≤ ϵ, i = 1, 2},

then

|(G1x)(t2)− (G1x)(t1)| ≤
||x||ωk1of1(ϵ, .)

Γ(α+ 1)
+

2||x||||k1||
Γ(α+ 1)

(tm2 − tm1 )α.

Similarly, one can show that

|(G2x)(t2)− (G2x)(t1)| ≤
||x||ωk2of2(ϵ, .)

Γ(β + 1)
+

2||x||||k2||
Γ(β + 1)

(tn2 − tn1 )
β .

So, by applying the mean value theorem on [t1, t2], we get

|tm2 − tm1 |α ≤ mα|t2 − t1|α, |tn2 − tn1 |α ≤ nα|t2 − t1|α.

|(Tx)(t2)− (Tx)(t1)| ≤ ω(a, ϵ) + γr0(h, ϵ) + λφ(ω(x, ϵ))+

+
||x||ωk1of1(ϵ, .)

Γ(α+ 1)
+ +

2||x||||k1||
Γ(α+ 1)

(mϵ)α +
||x||ωk2of2(ϵ, .)

Γ(β + 1)
+

2||x||||k2||
Γ(β + 1)

(nϵ)β ,

where we denoted

γr0(h, ϵ) = sup{|h(t, x)− h(t′, x)| : t, t′ ∈ I, x ∈ [0, r0], |t− t′| ≤ ϵ}.

Hence,

ω(Tx, ϵ) ≤ ω(a, ϵ) + γr0(h, ϵ) + λφ(ω(x, ϵ))+

+
r0ωk1of1(ϵ, .)

Γ(α+ 1)
+

2r0||k1||
Γ(α+ 1)

(mϵ)α +
r0ωk2of2(ϵ, .)

Γ(β + 1)
+

2r0||k2||
Γ(β + 1)

(nϵ)β .

Thus, taking the supremum on X, we obtain

ω(TX, ϵ) ≤ ω(a, ϵ) + γr0(h, ϵ) + λφ(ω(X, ϵ))+

+
r0ωk1of1(ϵ, .)

Γ(α+ 1)
+

2r0||k1||
Γ(α+ 1)

(mϵ)α +
r0ωk2of2(ϵ, .)

Γ(β + 1)
+

2r0||k2||
Γ(β + 1)

(nϵ)β .

From the uniform continuity of the functions k1of and k2og on the set I × I and h on
the set I × [0, r0] and the continuity of the function a on I , we have that ωk1of1(ϵ, .) →
0, ωk2of2(ϵ, .) → 0, γr0(h, ϵ) → 0 and ω(a, ϵ) → 0 as ϵ→ 0. So, let ϵ→ 0 to obtain

ω0(TX) ≤ λφ(ω0(X)).(3.10)

Let x ∈ X and t1, t2 ∈ I with t1 < t2. Then

(G1x)(t2)− (G1x)(t1) ≥ 0, (G2x)(t2)− (G2x)(t1) ≥ 0

and so |(Tx)(t2)− (Tx)(t1)| − [(Tx)(t2)− (Tx)(t1)] ≤ i(Hx). The above estimate implies
that

i(Tx) ≤ λφ(i(x)) =⇒ i(TX) ≤ λφ(i(X)).(3.11)

From (3.10) and (3.11) and the definition of the measure of noncompactness µ, we obtain

µ(TX) = ω0(TX) + i(TX) ≤ λφ(ω0(X) + i(X)) ≤ λφ(µ(X)).

Now, taking into account the above inequality and the fact that λ < 1 and applying Corol-
lary 2.1, we complete the proof. □
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Remark 3.1. If F (t, x, y) = x, h(t, x) ≡ 0, k1(t) = t and m = 1, then Eq. (1.1) becomes the
well-known linear Abel integral equation of the second kind

x(t) = a(t) +

∫ t

0

(t− s)α−1

Γ(α)
f(t, s)x(s) ds.

Abel integral equations have applications in many fields of physics and experimental
sciences. For example, problems in mechanics, spectroscopy, scattering theory, elasticity
theory and plasma physics often lead to such equations [16].
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