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ABSTRACT. In the present work, we discuss the existence of mild solutions for the initial value problem of
fractional evolution equation of the form

(A)

{ CDσ
t x(t) +Ax(t) = f(t, x(t)), t ∈ J := [0, b],

x(0) = x0 ∈ X,

where CDσ
t denotes the Caputo fractional derivative of order σ ∈ (0, 1), −A : D(A) ⊂ X → X generates a

positive C0-semigroup T (t)(t ≥ 0) of uniformly bounded linear operator in X , b > 0 is a constant, f is a given
functions. For this, we use the concept of measure of noncompactness in partially ordered Banach spaces whose
positive cone K is normal, and establish some basic fixed point results under the said concepts. In addition, we
relaxed the conditions of boundedness, closedness and convexity of the set at the expense that the operator is
monotone and bounded. We also supply some new coupled fixed point results via MNC. To justify the result,
we prove an illustrative example that rational of the abstract results for fractional parabolic equations.

1. INTRODUCTION AND PRELIMINARIES

It is well-known that the fixed point theorems are very important for proving the ex-
istence of solutions for some nonlinear differential and integral equations, see [1, 27, 28]
and the references therein. The mixed arguments from different branches of mathematics
are used in the research of fixed point theory. The first hybrid fixed point theorems in
partially ordered sets is obtained by Ran and Reurings [29], where they extended the Ba-
nach contraction principle to partially ordered sets with some applications to linear and
nonlinear matrix equations. Subsequently, Nieto and Rodrı́guez-López [23, 24] extended
the results in [26] to the monotone mappings in partially ordered metric spaces using the
mixed arguments from algebra, analysis and geometry and applied the abstract results
to study the unique solution for a first order ordinary differential equation with periodic
boundary conditions. Further improvements of the above mentioned results in partially
ordered linear spaces can be found in [22] and the references therein.

In 1930, Kuratowski [19] opened up a new direction of research with the introduc-
tion of measure of noncompactness. The measure of noncompactness [19] combine with
some algebraic arguments are useful for studying the mathematical formulations, par-
ticularly for solving the existence of solutions of some nonlinear problems under certain
conditions. The Kuratowskii and Hausdorff measure of noncompactness [5, 6, 7, 17] in a
metric space are well-known in the literature. However, as far as we know that the ap-
plications of measure of noncompactness in partially ordered normed linear spaces are
seldom [10, 11, 12, 25].
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Throughout this paper, we assume that (E , ∥·∥) is an infinite dimensional Banach space.
Let R = (−∞,+∞),R+ = [0,+∞) and N = {1, 2, 3, · · · }. If D is a subset of E , we denote
by conv(D) and conv(D) the closure and the convex closure of D, respectively. Moreover,
we denote by ME the family of nonempty bounded subset of E and by NE the family of
all relatively compact subset of E . We use the following definition of measure of noncom-
pactness(MNC, for short) given in [7].

Definition 1.1. A mapping β : ME → R+ is said to be a MNC in E if it satisfies the
following conditions:

(1) The family Kerβ = {D ∈ ME : β(D) = 0} is nonempty and Kerβ ⊂ NE ;
(2) β(C) ≤ β(D) for any nonempty subsets C,D ∈ ME with C ⊂ D;
(3) β(conv(D)) = β(D) for any nonempty subset D ∈ ME ;
(4) β(conv(D)) = β(D) for any nonempty subset D ∈ ME ;
(5) β(λC + (1 − λ)D) ≤ λβ(C) + (1 − λ)β(D) for any nonempty subsets C,D ∈ ME

and λ ∈ [0, 1];
(6) If {Dn} is a sequence of closed sets from ME such that Dn+1 ⊂ Dn, n ≥ 1 and if

lim
n→∞

β(Dn) = 0, the intersection set D∞ =
∞⋂

n=1
Dn is nonempty.

It follows from Definition 1.1 (6) that D∞ is a member of the family Kerβ. Since
β(D∞) ≤ β(Dn) for any n, we can deduce that β(D∞) = 0. This implies that D∞ ∈ Kerβ.

Definition 1.2. [15] Let Ψ be a set of functions χ : R+ → [0, 1) satisfying

χ(tn) → 1 ⇒ tn → 0.

Darbo’s fixed point theorem is a very important generalization of Schauder’s fixed
point theorem and Banach’s fixed point theorem. The following fixed point theorem of
Darbo type proved by Banaś and Goebel in [7].

Lemma 1.1. Let D be a nonempty, bounded, closed and convex subset of a Banach space E and
let Q : D → D be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that

β(Q(S)) ≤ kβ(S),

for any nonempty subset S ⊂ D. Then Q has at least one fixed point in D.

Recently, Lemma 1.1 has been extended by Aghajani et al. in [4]. They obtained the
following two fixed point theorems.

Lemma 1.2. Let D be a nonempty, bounded, closed and convex subset of a Banach space E and
let χ ∈ Ψ, Q : D → D be a continuous mapping satisfying

β(Q(S)) ≤ χ(β(S))β(S),

for any nonempty subset S ⊂ D, where β is MNC. Then Q has at least one fixed point in D.

Lemma 1.3. Let D be a nonempty, bounded, closed and convex subset of a Banach space E and
let Q : D → D be a continuous mapping satisfying

β(Q(S)) ≤ ϕ(β(S)),

for any nonempty subset S ⊂ D, where β is MNC, ϕ : R+ → R+ is a nondecreasing and upper
semi-continuous function such that ϕ(t) < t for all t > 0. Then Q has at least one fixed point in
D.

Clearly, if we take χ(t) ≡ k ∈ [0, 1) for any t ∈ R+ in Lemma 1.2, or take ϕ(t) = kt for
any t ∈ R+ and k ∈ [0, 1) in Lemma 1.3, the Lemma 1.2 and Lemma 1.3 degenerate into
Lemma 1.1.
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Very recently, Dhage et al. [13] defined new control function Φ and proved following
result and generalized Theorem 1.4 due to Aghajani et. al. [3].

Definition 1.3. [13] Let Υ be a set of continuous functions ζ : R+ → R+ satisfying

ζ(tn) → 0 ⇒ tn → 0.

For shorten the text, we denote ϕ ∈ Φ where ϕ : R+ → R+ is a nondecreasing function
such that and ϕ is lower semicontinuous on R+ such that ϕ(0) = 0 and ϕ(t) > 0 for t > 0.

Lemma 1.4. Let D be a nonempty, bounded, closed and convex subset of a Banach space E and
let Q : D → D be a continuous operator such that

β(QS) ≤ β(S)− ϕ(ζ(β(S)))

for every nonempty subset S of D and each ζ ∈ Υ, where β is MNC and ϕ ∈ Φ. Then Q has at
least one fixed point in D.

In the present paper, we will extend the results in Lemma 1.4 into partially ordered
Banach spaces. By doing this, we also improve and generalize the work mentioned in
[10, 11, 12, 25]. For this, we first define a notion of measure of noncompactness in par-
tially ordered Banach spaces. We use this notion to prove some fixed point theorems for
β− ϕ−contraction condition (2.1) in partially ordered Banach spaces whose positive cone
K is normal, and then to prove some coupled fixed point theorems in partially ordered
Banach spaces. To achieve this result,we relaxed the conditions of boundedness, closed-
ness and convexity of the set at the expense that the operator is monotone and bounded.
Further, we apply the obtained fixed point theorems to prove the existence of mild solu-
tions for fractional integro-differential evolution equations with nonlocal conditions. At
the end, an example is given to illustrate the rationality of the abstract results for fractional
parabolic equations.

2. FIXED POINT THEOREMS

Let E be a Banach space with the norm ∥ ·∥ whose positive cone is defined by K = {x ∈
E : x ≥ 0}. Then (E , ∥ · ∥) is now a partially ordered Banach space with the order relation
⊑ induced by cone K.

Now, we establish the fixed point theorems via MNC in partially ordered Banach
spaces.

Theorem 2.1. Let (E , ∥ · ∥,⊑) be a partially ordered Banach space, whose positive cone K is
normal. Suppose that Q : E → E is a continuous, nondecreasing and bounded mapping satisfying
the following contraction:

(2.1) β(Q(C)) ≤ β(C)− ϕ(ζ(β(C)))
for all bounded subset C in E , where β denotes the MNC in E , ϕ ∈ Φ and ζ ∈ Υ.

If there exists an element u0 ∈ E such that u0 ⊑ Qu0, then Q has a fixed point u∗ and the
sequence {Qnx0} of successive iterations converges monotonically to u∗.

Proof. Starting from the given u0 ∈ E , we define a sequence {un} of points in E by

(2.2) un+1 = Qun, n ∈ N∗ := N ∪ {0}.
Since Q is nondecreasing and u0 ⊑ Qu0, we have

(2.3) u0 ⊑ u1 ⊑ u2 ⊑ . . . ⊑ un ⊑ . . .

Denote Cn = conv{un, un+1, . . .} for n ∈ N∗. By (2.2) and (2.3), each Cn is a bounded and
closed subset in E and

(2.4) C0 ⊃ C1 ⊃ . . . ⊃ Cn ⊃ . . . .
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Following (2.1), we obtain

(2.5) β(Cn+1) = β(convQCn) = β(QCn) ≤ β(Cn)− ϕ(ζ(β(Cn))).

By the construction of Cn, it is clear that Cn+1 ⊂ Cn and so by the Definition 1.1, the
sequence {β(Cn)} is nonincreasing and nonnegative. Thus, there exists r ≥ 0 such that
β(Cn) → r when n → ∞. Continuity of β implies that ζ(β(Cn)) → ζ(r) as n → ∞. Now,
in view of (2.5) we obtain

lim sup
n→∞

β(Cn+1) ≤ lim sup
n→∞

β(Cn)− lim inf
n→∞

ϕ(ζ(β(Cn))).

This yields r ≤ r − lim inf
n→∞

ϕ(ζ(β(Cn))). Since ϕ is nondecreasing, we obtain

ϕ(ζ(r)) ≤ lim inf
n→∞

ϕ(ζ(β(Cn))) = 0.

By the virtue of ϕ, we deduce that

ζ(β(Cn)) → 0 as n → ∞.

Since ζ ∈ Υ, we get r = 0, and hence

(2.6) β(Cn) → 0, as n → ∞.

Since Cn ⊂ Cn−1, we have

C∞ =

∞⋂
n=1

Cn ̸= ∅ and C∞ ∈ Kerβ.

Hence, for every ϵ > 0 there exists an n0 ∈ N such that

β(Cn) < ϵ ∀n ≥ n0.

This concluded that Cn0
and consequently C0 is a compact chain in E . Hence, {un} has

a convergent subsequence. Applying the monotone property of Q and the normality of
cone K, the whole sequence {un} = {Qnu0} converges monotonically to a point, say
u∗ ∈ C0. Finally, from the continuity of Q, we get

Qu∗ = Q( lim
n→∞

un) = lim
n→∞

Qun = lim
n→∞

un+1 = u∗.

□

Remark 2.1. Taking various concrete functions ϕ ∈ Φ and ζ ∈ Υ in the condition (2.1)
of Theorem 2.1, we can get various classes of µ-set contractive conditions. We state just a
few examples which include results existing in the literature:

(A1) Taking ζ(t) = t (t > 0), we have condition

β(Q(C)) ≤ β(C)− ϕ(β(C))

(A2) Taking ϕ(t) = (1− k)t (t > 0), k ∈ [0, 1), we have condition

β(Q(C)) ≤ kζ(β(C)).

(A3) Taking ζ(t) = t (t > 0) and ϕ(t) = (1−k)t (t > 0), k ∈ [0, 1), we have Darbo’s µ-set
contraction condition (see Lemma 1.1 )

β(Q(C)) ≤ kβ(C).
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Proposition 2.1. Let (E , ∥ · ∥,⊑) be a partially ordered Banach space, whose positive cone K is
normal. Suppose that Q : E → E is a continuous, nondecreasing and bounded mapping satisfying
the following contraction:

(2.7) diam(Q(C)) ≤ diam(C)− ϕ(ζ(diam(C)))

for all bounded subset C in E , where ϕ ∈ Φ, ζ ∈ Υ, and diam(C) denote the diameter of C.
If there exists an element u0 ∈ E such that u0 ⊑ Qu0, then Q has a fixed point u∗ and the

sequence {Qnx0} of successive iterations converges monotonically to u∗.

Proof. Following Theorem 2.1 and argument of Proposition 3.2 [14], Q has a fixed point in
C.
To prove uniqueness, we suppose that there exist two distinct fixed points ζ, ξ ∈ C, then
we may define the set Λ := {ζ, ξ}. In this case diam(Λ) = diam(Q(Λ)) = ∥ξ − ζ∥ > 0.
Then using (2.7), we get

diam(Q(Λ)) ≤ diam(Λ)− ϕ(ζ(diam(Λ))),

and ϕ(ζ(diam(Λ))) ≤ 0, a contradiction to the virtue of ϕ and hence ξ = ζ. □

3. COUPLED FIXED POINT THEOREMS

In this section, we prove some coupled fixed point theorems. We begin our discussion
by recalling some definitions and notions.

Definition 3.4. [16] An element (u∗, v∗) ∈ E2 is called a coupled fixed point of a mapping
G : E2 → E if G(u∗, v∗) = u∗ and G(v∗, u∗) = v∗.

Definition 3.5. Let (E , ∥ · ∥,⊑) be a partially ordered Banach space and let G : E2 → E be
a mapping. A mapping G is said to have the monotone property if G(u, v) is monotone
nondecreasing in both variables u and v, that is, for any u, v ∈ E ,

u1, u2 ∈ E , u1 ⊑ u2 ⇒ G(u1, v) ⊑ G(u2, v)

and
v1, v2 ∈ E , v1 ⊑ v2 ⇒ G(u, v1) ⊑ G(u, v2).

Lemma 3.5. [5] Suppose that β1, β2, . . . , βn are measures of noncompactness in Banach spaces
E1, E2, . . . , En, respectively. Moreover assume that the function F : [0,∞)n →!‘ú[0,∞) is convex
and F (x1, x2, . . . , xn) = 0 if and only if xi = 0 for i = 1, 2, 3, . . . , n. Then

β(C) = F (β1(C1), β2(C2), . . . , βn(Cn)),

defines a measure of noncompactness in E1 × E2 × E3 × . . . × En where Ci denotes the natural
projection of C into Ei, for i = 1, 2, 3, . . . , n.

Theorem 3.2. Let (E , ∥·∥,⊑) be a partially ordered Banach space whose positive cone K is normal.
Suppose that G : E2 → E is a continuous and bounded mapping, having monotone property and
satisfying

(3.8) β(G(C1 × C2)) ≤
1

2
[β(C1) + β(C2)− ϕ(ζ(β(C1) + β(C2))]

for all bounded subsets C1, C2 in E , where β denotes the MNC in E , ϕ ∈ Φ and ζ ∈ Υ.
If there exist elements u0, v0 ∈ E such that u0 ⊑ G(u0, v) for any v ∈ E and v0 ⊑ G(v0, u) for

any u ∈ E , then G has at least a coupled fixed point (u∗, v∗).
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Proof. Consider the mapping G̃ : E2 → E2 defined by the formula

G̃(u, v) = (G(u, v),G(v, u)).

Since G is a continuous and bounded mapping, having monotone property, it follows that
G̃ is also a continuous and bounded mapping, having monotone property.

Following Lemma 3.5, for C = C1 ×C2, we define a new measure of noncompactness in
the space E2 as

β̃(C) = β(C1) + β(C2),
where Ci, i = 1, 2 denote the natural projections of C. Now let C = C1 × C2 ⊂ E2 be a
nonempty bounded subset. Due to (3.8) we conclude that

β̃((G̃(C)) ≤ β̃(G(C1 × C2)× G(C2 × C1))
= β(G(C1 × C2)) + β(G(C2 × C1))

≤ 1

2
[β(C1) + β(C2)− ϕ(ζ(β(C1) + β(C2))]

+
1

2
[β(C2) + β(C1)− ϕ(ζ(β(C2) + β(C1)))]

= β(C1) + β(C2)− ϕ(ζ(β(C1) + β(C2)))
= β̃(C)− ϕ(ζ(β̃(C))).

That is,

β̃((G̃(C)) ≤ β̃(C)− ϕ(ζ(β̃(C))).

Next, we show that there is a ũ0 ∈ C such that ũ0 ⊑ G̃(ũ0). Indeed, since there exist two
elements u0, v0 ∈ E such that u0 ⊑ G(u0, v) for any v ∈ E and v0 ⊑ G(v0, u) for any u ∈ E ,
set ũ0 = (u0, v0). Then by the definition of G̃, we have

ũ0 = (u0, v0) ⊑ (G(u0, v0),G(v0, u0)) = G̃(u0, v0)

= G̃(ũ0).

Thus, following from Theorem 2.1, we conclude that G̃ has a fixed point, and hence G
has a coupled fixed point. □

Theorem 3.3. Let (E , ∥·∥,⊑) be a partially ordered Banach space whose positive cone K is normal.
Suppose that G : E2 → E is a continuous and bounded mapping, having monotone property and
satisfying

(3.9) β(G(C1 × C2)) ≤ max{β(C1), β(C2)} − ϕ(ζ(max{β(C1), β(C2)}))

for all bounded subsets C1, C2 in E , where β denotes the MNC in E , ϕ ∈ Φ and ζ ∈ Υ.
If there exist elements u0, v0 ∈ E such that u0 ⊑ G(u0, v) for any v ∈ E and v0 ⊑ G(v0, u) for

any u ∈ E , then G has at least a coupled fixed point (u∗, v∗).

Proof. Consider the mapping G̃ : E2 → E2 defined by the formula

G̃(u, v) = (G(u, v),G(v, u)).

Then G̃ is a continuous and bounded mapping, having monotone property.
For any C = C1 × C2, we define a new MNC in the space E2 as

β̃(C) = max{β(C1), β(C2)}
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where Ci, i = 1, 2 denote the natural projections of C. Now let C ⊂ E2 with C = C1 × C2 be
a nonempty bounded subset. We can conclude

β̃((G̃(C)) ≤ β̃(G(C1 × C2)× G(C2 × C1))
= max{β(G(C1 × C2)), β(G(C2 × C1))}

≤ max

{
max{β(C1), β(C2)} − ϕ(ζ(max{β(C1), β(C2)})),
max{β(C2), β(C1)− ϕ(ζ(max{β(C2), β(C1)}))

}
= max{β(C1), β(C2)} − ϕ(ζ(max{β(C1), β(C2)}))
= β̃(C)− ϕ(ζ(β̃(C))).

That is,

β̃((G̃(C)) ≤ χ(β̃(C))β̃(C).

Next, we show that there is a ũ0 ∈ C such that ũ0 ⊑ G̃(ũ0). Since there exist elements
u0, v0 ∈ E such that u0 ⊑ G(u0, v) for any v ∈ E and v0 ⊑ G(v0, u) for any u ∈ E , set
ũ0 = (u0, v0). Then by the definition of G̃, we have

ũ0 = (u0, v0) ⊑ (G(u0, v0),G(v0, u0)) = G̃(u0, v0)

= G̃(ũ0).

Following Theorem 2.1, G̃ has a fixed point, and hence G has a coupled fixed point.
Thus we conclude the result. □

Remark 3.2. In view of the Remark 2.1 (A1)-(A3), some new coupled fixed point results
can be derived from Theorem 3.2 and Theorem 3.3.

4. EXISTENCE OF MILD SOLUTIONS FOR FRACTIONAL EVOLUTION EQUATIONS

Let (X, ∥ · ∥,≤) be a partially ordered Banach space, whose positive cone K is normal.
Consider the existence of mild solutions for the following fractional evolution equation
with initial value condition

(4.10)

{
CDq

tx(t) +Ax(t) = f(t, x(t)), t ∈ J := [0, a],

x(0) = x0 ∈ X,

where CDq
t denotes the Caputo fractional derivative of order q ∈

(
1

2
, 1

]
, −A : D(A) ⊂

X → X generates a positive C0-semigroup T (t)(t ≥ 0) of uniformly bounded linear
operator in X , a > 0 is a constant, f is a given function.

Definition 4.6. A C0-semigroup T (t)(t ≥ 0) is called a positive C0-semigroup if T (t)x ≥ 0
for all x ≥ 0.

Define two operator families {Uq(t)}t≥0 and {Vq(t)}t≥0 as

Uq(t)x =

∫ ∞

0

ζq(τ)S(t
qτ)xdτ,

Vq(t)x = q

∫ ∞

0

τζq(τ)S(t
qτ)xdτ, 0 < q < 1,



386 Hemant Kumar Nashine, He Yang, and Ravi P. Agarwal

where

ζq(τ) =
1

q
τ−1− 1

q ϱq(τ
− 1

q ),

ϱq(τ) =
1

π

∞∑
n=1

(−1)n−1τ−qn−1Γ(nq + 1)

n!
sin(nπq), τ ∈ (0,∞).

The following lemma can be found in [21, 30].

Lemma 4.6. (i) For any x ∈ X and fixed t ≥ 0, one has

∥Uq(t)x∥ ≤ M∥x∥, ∥Vq(t)x∥ ≤ M

Γ(q)
∥x∥.

(ii) If T (t)(t ≥ 0) is an equi-continuous semigroup, Uq(t) and Vq(t) are equi-continuous in X
for t > 0.

(iii) If T (t)(t ≥ 0) is a positive C0-semigroup, Uq(t) and Vq(t) are positive operators for all
t ≥ 0.

Definition 4.7. A function x ∈ C(J,X) is called a mild solution of the initial value prob-
lem of fractional integro-differential evolution equation (4.10) if it satisfies the following
integral equation

x(t) = Uq(t)x0 +

∫ t

0

(t− s)q−1Vq(t− s)f(s, x(s))ds, t ∈ J.

To prove our main results, we list the following assumptions:
(H1) T (t)(t ≥ 0) is a positive and equi-continuous C0-semigroup, and there is a con-

stant M > 0 such that
∥T (t)∥ ≤ M ∀t ≥ 0.

(H2) f : J ×X → X is continuous and satisfies the following conditions:
(i) For any t ∈ J and x1, x2 ∈ X with x1 ≤ x2, one has

f(t, x1) ≤ f(t, x2).

(ii) There exist functions ρi ∈ L
1
σ (J,R+), where i = 1, 2 and σ ∈ [0, 2q − 1) such that

∥f(t, x)∥ ≤ ρ1(t)∥x∥+ ρ2(t),

for all t ∈ J and x ∈ X .
(iii) There is a function γ ∈ L1(J,R+) such that

β(f(t,D)) ≤ γ(t) ln(1 + β(D)),

for any t ∈ J and any nonempty bounded subsets D ⊂ X .
(H3) There exists an element u0 ∈ C(J,X) satisfying{

CDq
tu0(t) +Au0(t) ≤ f(t, u0(t)), t ∈ J,

u0(0) ≤ x0.

(H4) Mb
Γ(q)a

2q−1−σ∥ρ1∥
L

1
σ
≤ 1, where b = ( 1−σ

2q−1−σ )
1−σ .

Theorem 4.4. Assume that the conditions (H1)− (H4) hold true. Then the initial value problem
of fractional evolution equation (4.10) has at least one mild solution provided that

(4.11)
4Maq

Γ(q + 1)
∥γ∥L1 ≤ 1.
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Proof. Define an operator Q : C(J,X) → C(J,X) by the formula:

(4.12) (Qx)(t) = Uq(t)x0 +

∫ t

0

(t− s)q−1Vq(t− s)f(s, x(s))ds, t ∈ J.

It follows from the continuity of f that Q : C(J,X) → C(J,X) is continuous. From the
assumption (H2)(i) and the Lemma 1.2 (iii), it is easy to see that Q : C(J,X) → C(J,X)
is nondecreasing. The remaining proof will be given in four steps.

Step 1. We prove that there is r > 0 such that QBr ⊂ Br, where Br = {x ∈ C(J,X) :
∥x∥ ≤ r}.

If this were not the case, there would exist t ∈ J and xr ∈ Br such that r < ∥(Qxr)(t)∥
for each r > 0 . Combining with (H2)(ii), Lemma 1.2 and Hölder inequality, we have

r < ∥(Qxr)(t)∥ ≤ M∥x0∥+
M

Γ(q)

∫ t

0

(t− s)q−1[ρ1(s)∥xr(s)∥+ ρ2(s)]ds

≤ M∥x0∥+
Mr

Γ(q)

∫ t

0

(t− s)q−1ρ1(s)ds+
M

Γ(q)

∫ t

0

(t− s)q−1ρ2(s)ds

≤ M∥x0∥+
Mbr

Γ(q)
a2q−1−σ∥ρ1∥

L
1
σ
+

Mb

Γ(q)
a2q−1−σ∥ρ2∥

L
1
σ
.

Dividing both sides by r and taking the lower limit as r → +∞ in above inequality, we
obtain

1 ≤ Mb

Γ(q)
a2q−1−σ∥ρ1∥

L
1
σ
,

which is a contradiction of assumption (H4). Therefore, QBr ⊂ Br for some r > 0.
Step 2. We prove that Q(Br) is equi-continuous.
Using (H1), it is a similar proof as in the proof of Theorem 1 of [21]. So, we omit the

details here.
Step 3. We prove that β(Q(Br)) ≤ β(Q(Br))− ϕ(ζ(β(Q(Br)))).
Since Q(Br) is bounded and equi-continuous, there exists a countable subset Bn

r =
{xn} ⊂ Br such that Q(Bn

r ) is bounded and equi-continuous and

(4.13) β(Q(Br)) ≤ 2β(Q(Bn
r )).

For any x ∈ Br and t ∈ J , by (H2)(iii) and (4.12), we have

β((QBn
r )(t)) ≤ β({

∫ t

0

(t− s)q−1Vq(t− s)f(s, xn(s))ds})

≤ 2M

Γ(q)

∫ t

0

(t− s)q−1γ(s) ln(1 + β(Bn
r (s)))ds

≤ 2M

Γ(q)

∫ t

0

(t− s)q−1γ(s) ln(1 + β(Br))ds

≤ 2Maq

Γ(q + 1)
∥γ∥L1 ln(1 + β(Br))

≤ 1

2
ln(1 + β(Br)).

Since QBn
r is bounded and equi-continuous, we can obtain

β(QBr) ≤ 2β(QBn
r ) = 2max

t∈J
β((QBn

r )(t)) ≤ ln(1 + β(Br)).
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Now we consider the functions ζ : R+ → R+ and ϕ : R+ → R+ as follows

ζ(t) = t, ϕ(t) = t− ln(1 + t) ∀ t ∈ R+.

Then ϕ ∈ Φ, ζ ∈ Υ and

β(QBr) ≤ β(Br)− [β(Br)− ln(1 + β(Br))] = β(Br)− ϕ(ζ(β(Br))).

Step 4. We prove that there is u0 ∈ Br satisfying u0 ≤ Qu0.
Let h(t) =C Dq

tu0(t) +Au0(t) and u0(0) = u0(0). Then by Definition 4.7, we can obtain

u0(t) = Uq(t)u0(0) +

∫ t

0

(t− s)q−1Vq(t− s)h(s)ds, t ∈ J.

Combining this fact with (H4) and (4.12), we have

u0(t) ≤ Uq(t)x0 +

∫ t

0

(t− s)q−1Vq(t− s)f(t, u0(t),

∫ t

0

k(t, s, u0(s))ds)ds = (Qu0)(t)

for all t ∈ J .
Hence, all the conditions of Theorem 2.1 are satisfied. By Theorem 2.1, the initial value

problem of fractional integro-differential evolution equation (4.10) has at least one mild
solution. □

5. AN EXAMPLE

In this section, we apply Theorem 4.4 to consider the existence of solutions for the
following fractional integro-differential equation

(5.14)


∂

3
4

∂t
3
4
u−∆u = g(z, t, u), (z, t) ∈ Ω× J,

u|∂Ω = 0,

x(z, 0) = x0(z), z ∈ Ω,

where J = [0, 1] Ω ∈ Rn is a bounded domain with sufficiently smooth boundary, ∆ is the
Laplace operator, g : Ω× J × R → R is continuous and satisfies the following condition:

(F ) (i) For any (z, t) ∈ Ω× J and u1, u2 ∈ R with u1 ≤ u2, one has

g(z, t, u1) ≤ g(z, t, u2).

(ii) There exist functions ρi ∈ L
1
σ (J,R+), where i = 1, 2 and σ ∈ [0, 1

2 ) such that

|g(z, t, u)| ≤ ρ1(t)|u|+ ρ2(t),

for all(z, t) ∈ Ω× J and u ∈ R.
(iii) There is a function γ ∈ L1(J,R+) such that

β(g(z, t,D)) ≤ γ(t) ln(1 + β(D)),

for any (z, t) ∈ Ω× J and any nonempty bounded subsets D ⊂ R.
Let X = Lp(Ω)(0 ≤ p < +∞). Then X is the partially ordered Banach space, whose

positive cone K := {u ∈ Lp(Ω) : u(x) ≥ 0, a.e.x ∈ Ω} is normal with constant N . Let

D(A) = {u ∈ W 2,p(Ω) : u|∂Ω = 0},
Au = −∆u.

Then −A : D(A) ⊂ X → X generates an analytic semigroup T (t)(t ≥ 0) in X . By
the maximum principle of ellipse equation, T (t)(t ≥ 0) is a positive C0-semigroup. Its
growth index is ν0 = −λ1, where λ1 > 0 is the first eigenvalue of Laplace operator −∆
with boundary condition u|∂Ω = 0. Therefore, there is a constant M > 0 such that

∥T (t)∥ ≤ M ∀t ≥ 0.
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Let u(t)(z) = u(z, t) and f(t, u(t))(z) = g(z, t, u(z, t)). Then the fractional differential
equation (5.14) can be rewritten into (4.10). It is clear that f(t, u) is a continuous and
nondecreasing function with respect to u ∈ X and the assumption (H2) holds. If there
exists a function ṽ ∈ C(J,X) such that

∂
3
4

∂t
3
4
ṽ −∆ṽ ≤ g(z, t, ṽ), (z, t) ∈ Ω× J,

ṽ|∂Ω = 0,

ṽ(z, 0) ≤ ṽ0(z), z ∈ Ω,

then ṽ satisfies the assumption (H3). Therefore, by Theorem 4.4, the fractional differential
equation (5.14) has at least one solution provided that

M∥γ∥L1

Γ( 34 )
<

3

16

and
Mb

Γ( 34 )
∥ρ1∥

L
1
σ
< 1,

where

b =

(
1− σ
1
2 − σ

)1−σ

.
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[23] Nieto, J. and Rodrı́guez-López, R., Contractive mapping theorems in partially ordered sets and applications to

ordinary differential equations, Order, 22 (2005), 223–239
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