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On the Krein-Milman theorem in CAT(κ) spaces
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ABSTRACT. Let κ > 0 and (X, ρ) be a complete CAT(κ) space whose diameter smaller than
π

2
√
κ

. It is shown

that if K is a nonempty compact convex subset of X, then K is the closed convex hull of its set of extreme points.
This is an extension of the Krein-Milman theorem to the general setting of CAT(κ) spaces.

1. INTRODUCTION AND PRELIMINARIES

One of the fundamental and celebrated results in functional analysis related to extreme
points is the Krein-Milman theorem. In [5], the authors proved that every compact convex
subset of a locally convex Hausdorff space is the closed convex hull of its set of extreme
points. This result was extended to a special class of metric spaces, namely, CAT(0) spaces,
by Niculescu [6] in 2007. Notice that Niculescu’s result can be applied to CAT(κ) spaces
with κ ≤ 0 since any CAT(κ) space is a CAT(κ′) space for κ′ ≥ κ (see e.g., [1]). However,
the result for κ > 0 is still unknown. In this paper, we extend Niculescu’s result to the
setting of CAT(κ) spaces with κ > 0.

Let (P,⪯) be a partially ordered set. An element p0 ∈ P is maximal in P if for each
p ∈ P, the following implication holds:

p0 ⪯ p =⇒ p0 = p.

Similarly, an element q0 ∈ P is minimal in P if for each p ∈ P, the following implication
holds:

p ⪯ q0 =⇒ p = q0.

An upper bound (resp. A lower bound) of a nonempty subset Q of P is an element p ∈ P
such that q ⪯ p (resp. p ⪯ q) for all q ∈ Q. A nonempty subset C of P is called a chain in P
if any two elements p and q in C are comparable, that is, p ⪯ q or q ⪯ p.

Lemma 1.1. (Zorn) If (P,⪯) is a partially ordered set such that every chain in P has an upper
(resp. lower) bound in P, then P contains a maximal (resp. minimal) element.

Let (X, ρ) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a function ξ from
the closed interval [0, ρ(x, y)] to X such that ξ(0) = x, ξ(l) = y, and ρ(ξ(t), ξ(t′)) = |t − t′|
for all t, t′ ∈ [0, ρ(x, y)]. The image of ξ is called a geodesic segment joining x and y which
is unique, denoted by [x, y]. This means that z ∈ [x, y] if and only if there exists α ∈ [0, 1]
such that

ρ(x, z) = (1− α)ρ(x, y) and ρ(y, z) = αρ(x, y).

In this case, we write z = αx⊕ (1−α)y. The space (X, ρ) is said to be a geodesic space (resp.
D−geodesic space) if every two points of X (resp. every two points of distance smaller than
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D) are joined by a geodesic path. A subset C of X is said to be convex if C includes every
geodesic segment joining any two of its points.

Now we introduce the model spaces M2
κ , for more details on these spaces the reader

is referred to [1, 3, 4, 8, 9]. We denote by ⟨·, ·⟩ the Euclidean scalar product in R3. By S2
we denote the unit sphere in R3, that is the set

{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1
}
. The

spherical distance on S2 is defined by

dS2(x, y) := arccos⟨x, y⟩ for all x, y ∈ S2.

Definition 1.2. Given κ ≥ 0, we denote by M2
κ the following metric spaces:

(i) if κ = 0 then M2
κ is the Euclidean space E2;

(ii) if κ > 0 then M2
κ is obtained from the spherical space S2 by multiplying the distance

function by 1/
√
κ.

A geodesic triangle △(x, y, z) in a geodesic space (X, ρ) consists of three points x, y, z
in X (the vertices of △) and three geodesic segments between each pair of vertices (the
edges of △). A comparison triangle for a geodesic triangle △(x, y, z) in (X, ρ) is a triangle
△(x̄, ȳ, z̄) in M2

κ such that

ρ(x, y) = dM2
κ
(x̄, ȳ), ρ(y, z) = dM2

κ
(ȳ, z̄), and ρ(z, x) = dM2

κ
(z̄, x̄).

It is well known that such a comparison triangle exists if ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dκ,
where Dκ = π/

√
κ for κ > 0 and D0 = ∞. Notice also that the comparison triangle

is unique up to isometry. A point ū ∈ [x̄, ȳ] is called a comparison point for u ∈ [x, y] if
ρ(x, u) = dM2

κ
(x̄, ū).

A metric space (X, ρ) is said to be a CAT(κ) space if it is Dκ−geodesic and for each two
points u, v of any geodesic triangle △(x, y, z) in X with ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dκ

and for their comparison points ū, v̄ in △(x̄, ȳ, z̄) the CAT(κ) inequality

ρ(u, v) ≤ dM2
κ
(ū, v̄),

holds. Notice also that Pre-Hilbert spaces, R−trees, Euclidean buildings are examples of
CAT(κ) spaces (see [1, 2]).

Recall that a geodesic space (X, ρ) is said to be R−convex for R ∈ (0, 2] ([7]) if for any
three points x, y, z ∈ X , we have

(1.1) ρ2(x, (1− α)y ⊕ αz) ≤ (1− α)ρ2(x, y) + αρ2(x, z)− R

2
α(1− α)ρ2(y, z).

The following lemmas will be needed.

Lemma 1.3. ([7]) Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for some ε ∈ (0, π/2). Then (X, ρ) is R−convex for R = (π − 2ε) tan(ε).

Lemma 1.4. ([1]) Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for some ε ∈ (0, π/2). Then

ρ((1− α)x⊕ αy, z) ≤ (1− α)ρ(x, z) + αρ(y, z),

for all x, y, z ∈ X and α ∈ [0, 1].

Let (X, ρ) be a geodesic space. The distance from a point x in X to a subset C of X is
defined by

dist(x,C) := inf{ρ(x, y) : y ∈ C}.
The set C is bounded if diam(C) := sup{ρ(x, y) : x, y ∈ C} < ∞.

Definition 1.5. Let f : C → R be a function. Then
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(i) f is said to be convex if f(αx⊕ (1− α)y) ≤ αf(x) + (1− α)f(y) for all α ∈ [0, 1] and
x, y ∈ C;

(ii) f is said to be strictly convex if f(αx⊕(1−α)y) < αf(x)+(1−α)f(y) for all α ∈ (0, 1)
and x, y ∈ C with x ̸= y.

Let A be a nonempty subset of X. The closed convex hull of A is defined by

conv(A) :=
⋂

{B ⊆ X : A ⊆ B and B is closed and convex}.

Let C be a convex subset of X. A subset A of C is called an extremal subset if it is
nonempty, closed and satisfies the following property: If x, y ∈ C and αx⊕ (1− α)y ∈ A
for some α ∈ (0, 1), then x, y ∈ A. Notice that if A is an extremal subset of B and B is an
extremal subset of C, then A is an extremal subset of C. A point z in C is called an extreme
point of C if {z} is an extremal subset of C. We denote by Ext(C) the set of all extreme
points of C.

Example 1.6. In the Euclidean space R2, the square A := {(x, y) : |x| ≤ 1, |y| ≤ 1} has four
extreme points while the strip B := {(x, y) : 0 ≤ x ≤ 1, y ∈ R} does not have an extreme
point.

2. MAIN RESULTS

We begin this section by proving a crucial lemma.

Lemma 2.1. Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for

some ε ∈ (0, π/2). If K is a nonempty compact convex subset of X, then every extremal subset of
K has an extreme point.

Proof. Let C be the family of all nonempty extremal subset of K. Since K ∈ C, it follows
that C is nonempty and it can be partially ordered by set inclusion. By Zorn’s Lemma, C
has a minimal element, say M. It is enough to show that M consists of exactly one point.
Suppose that it contains at least two points, say x0 and y0. Let f : M → R be defined by

f(x) := ρ2(x0, x) for all x ∈ M.

Since x0 ̸= y0, f is not a constant function. By (1.1), f is strictly convex. Let M0 := {x ∈
M : f(x) = supy∈M f(y)}. Since f is continuous and K is compact, M0 is nonempty.
Notice also that it is a closed proper subset of M. Next, we show that M0 is an extremal
subset of M. Let x′, x′′ ∈ M and M0 contains a point (1 − α)x′ ⊕ αx′′ for some α ∈ (0, 1).
By (1.1), we have

sup
y∈M

f(y) = f((1− α)x′ ⊕ αx′′)

≤ (1− α)f(x′) + αf(x′′)− α(1− α)ρ2(x′, x′′)

≤ sup
y∈M

f(y)− α(1− α)ρ2(x′, x′′),

which implies that x′ = x′′ ∈ M0. Thus M0 ∈ C which contradicts to the minimality of M
and hence the proof is complete. □

Theorem 2.2. Let κ > 0 and (X, ρ) be a complete CAT(κ) space with diam(X) ≤ π/2− ε√
κ

for

some ε ∈ (0, π/2). If K is a nonempty compact convex subset of X, then conv(Ext(K)) = K.
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Proof. (This proof is patterned after the proof of Theorem 3.1 in [6]). By Lemma 2.1,
Ext(K) ̸= ∅. Clearly, conv(Ext(K)) ⊆ K. Suppose that conv(Ext(K)) ̸= K. Let g : K → R
be defined by g(x) := dist(x, conv(Ext(K))) and let K0 := {x ∈ K : g(x) = supy∈K g(y)}.
Since g is continuous and K is compact, K0 is nonempty. Notice also that it is a closed
subset of K. Since conv(Ext(K)) ̸= K, we get that sup{g(y) : y ∈ K} > 0. By Lemma 1.4
for x, y ∈ K, α ∈ [0, 1] and z ∈ conv(Ext(K)) we have

ρ((1− α)x⊕ αy, z) ≤ (1− α)ρ(x, z) + αρ(y, z),

which implies that g is convex. Notice also that K0 is an extremal subset of K. Again, by
Lemma 2.1 there is a point z in K0 ∩ Ext(K). Thus 0 = g(z) = sup{g(y) : y ∈ K} which is
a contradiction. Hence conv(Ext(K)) = K. □

As a consequence of Theorem 2.2, we obtain the following corollary.

Theorem 2.3. ([6, Theorem 1]) Let (X, ρ) be a complete CAT(0) space and K be a nonempty
compact convex subset of X. Then conv(Ext(K)) = K.

Proof. It is well known that every convex subset of a CAT(0) space, equipped with the
induced metric, is a CAT(0) space (see e.g., [1]). Thus (K, ρ) is a CAT(0) space and hence
it is a CAT(κ) space for all κ > 0. Notice also that it is R−convex for R = 2. Since K

is bounded, we can choose ε ∈ (0, π/2) and κ > 0 such that diam(K) ≤ π/2− ε√
κ

. The

conclusion follows from Theorem 2.2. □

Acknowledgements. This research was supported by Chiang Mai University and Thai-
land Research Fund under Grant RSA6080076.

REFERENCES

[1] Bridson, M. and Haefliger, A., Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999
[2] Brown, K. S., Buildings, Springer, New York, 1989
[3] Cho, Y. J., Ciric, L. and Wang, S. H., Convergence theorems for nonexpansive semigroups in CAT (0) spaces,

Nonlinear Anal., 74 (2011), 6050–6059
[4] Cholamjiak, P., Abdou, A. A. N. and Cho, Y. J., Proximal point algorithms involving fixed points of nonexpansive

mappings in CAT (0) spaces, Fixed Point Theory Appl., 2015, 2015:227, 13 pp.
[5] Krein, M. G. and Milman, D. P., On extreme points of regular convex sets, Studia Math., 9 (1940), 133–137
[6] Niculescu, C. P., The Krein-Milman theorem in global NPC spaces, Bull. Math. Soc. Sci. Math. Roumanie., 50

(2007), 343–346
[7] Ohta, S., Convexities of metric spaces, Geom. Dedicata., 125 (2007), 225–250
[8] Pakkaranang, N., Sa Ngiamsunthorn, P., Kumam, P. and Cho, Y. J., Convergence theorems of the modified S-type

iterative method for (a, β)-generalized hybrid mappings in CAT (0) spaces, J. Math. Anal., 8 (2017), 103–112
[9] Saipara, P., Chaipunya, P., Cho, Y. J. and Kumam, P., On strong and ∆−convergence of modified S-iteration for

uniformly continuous total asymptotically nonexpansive mappings in CAT(κ) spaces, J. Nonlinear Sci. Appl., 8
(2015), 965–975

CENTER OF EXCELLENCE IN MATHEMATICS AND APPLIED MATHEMATICS

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE, CHIANG MAI UNIVERSITY

CHIANG MAI 50200 THAILAND

Email address: bancha.p@cmu.ac.th


