Dedicated to Professor Yeol Je Cho on the occasion of his retirement

On the Krein-Milman theorem in CAT(κ) spaces

BANCHA PANYANAK

ABSTRACT. Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space whose diameter smaller than $\frac{\pi}{2\sqrt{\kappa}}$. It is shown that if K is a nonempty compact convex subset of X, then K is the closed convex hull of its set of extreme points. This is an extension of the Krein-Milman theorem to the general setting of $CAT(\kappa)$ spaces.

1. Introduction and preliminaries

One of the fundamental and celebrated results in functional analysis related to extreme points is the Krein-Milman theorem. In [5], the authors proved that every compact convex subset of a locally convex Hausdorff space is the closed convex hull of its set of extreme points. This result was extended to a special class of metric spaces, namely, CAT(0) spaces, by Niculescu [6] in 2007. Notice that Niculescu's result can be applied to CAT(κ) spaces with $\kappa \leq 0$ since any CAT(κ) space is a CAT(κ ') space for $\kappa' \geq \kappa$ (see e.g., [1]). However, the result for $\kappa > 0$ is still unknown. In this paper, we extend Niculescu's result to the setting of CAT(κ) spaces with $\kappa > 0$.

Let (\mathcal{P}, \preceq) be a partially ordered set. An element $p_0 \in \mathcal{P}$ is *maximal* in \mathcal{P} if for each $p \in \mathcal{P}$, the following implication holds:

$$p_0 \leq p \implies p_0 = p.$$

Similarly, an element $q_0 \in \mathcal{P}$ is *minimal* in \mathcal{P} if for each $p \in \mathcal{P}$, the following implication holds:

$$p \leq q_0 \implies p = q_0.$$

An upper bound (resp. A lower bound) of a nonempty subset \mathcal{Q} of \mathcal{P} is an element $p \in \mathcal{P}$ such that $q \leq p$ (resp. $p \leq q$) for all $q \in \mathcal{Q}$. A nonempty subset \mathcal{C} of \mathcal{P} is called a *chain* in \mathcal{P} if any two elements p and q in \mathcal{C} are comparable, that is, $p \leq q$ or $q \leq p$.

Lemma 1.1. (Zorn) If (\mathcal{P}, \preceq) is a partially ordered set such that every chain in \mathcal{P} has an upper (resp. lower) bound in \mathcal{P} , then \mathcal{P} contains a maximal (resp. minimal) element.

Let (X, ρ) be a metric space. A *geodesic path* joining $x \in X$ to $y \in X$ is a function ξ from the closed interval $[0, \rho(x,y)]$ to X such that $\xi(0) = x, \xi(l) = y$, and $\rho(\xi(t), \xi(t')) = |t-t'|$ for all $t, t' \in [0, \rho(x,y)]$. The image of ξ is called a *geodesic segment* joining x and y which is unique, denoted by [x,y]. This means that $z \in [x,y]$ if and only if there exists $\alpha \in [0,1]$ such that

$$\rho(x,z) = (1-\alpha)\rho(x,y)$$
 and $\rho(y,z) = \alpha\rho(x,y)$.

In this case, we write $z = \alpha x \oplus (1 - \alpha)y$. The space (X, ρ) is said to be a *geodesic space* (resp. D–*geodesic space*) if every two points of X (resp. every two points of distance smaller than

Received: 11.09.2017. In revised form: 25.04.2018. Accepted: 15.07.2018

2010 Mathematics Subject Classification. 47H09, 49J53.

Key words and phrases. $CAT(\kappa)$ spaces, extreme points, the Krein-Milman theorem.

D) are joined by a geodesic path. A subset C of X is said to be *convex* if C includes every geodesic segment joining any two of its points.

Now we introduce the model spaces M_κ^2 , for more details on these spaces the reader is referred to [1, 3, 4, 8, 9]. We denote by $\langle \cdot, \cdot \rangle$ the Euclidean scalar product in \mathbb{R}^3 . By \mathbb{S}^2 we denote the unit sphere in \mathbb{R}^3 , that is the set $\left\{(x_1,x_2,x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\right\}$. The spherical distance on \mathbb{S}^2 is defined by

$$d_{\mathbb{S}^2}(x,y) := \arccos\langle x,y \rangle \text{ for all } x,y \in \mathbb{S}^2.$$

Definition 1.2. Given $\kappa \geq 0$, we denote by M_{κ}^2 the following metric spaces:

- (i) if $\kappa = 0$ then M_{κ}^2 is the Euclidean space \mathbb{E}^2 ;
- (ii) if $\kappa > 0$ then M_{κ}^2 is obtained from the spherical space \mathbb{S}^2 by multiplying the distance function by $1/\sqrt{\kappa}$.

A geodesic triangle $\triangle(x,y,z)$ in a geodesic space (X,ρ) consists of three points x,y,z in X (the *vertices* of \triangle) and three geodesic segments between each pair of vertices (the *edges* of \triangle). A *comparison triangle* for a geodesic triangle $\triangle(x,y,z)$ in (X,ρ) is a triangle $\overline{\triangle}(\bar{x},\bar{y},\bar{z})$ in M_{κ}^2 such that

$$\rho(x,y) = d_{M_v^2}(\bar{x},\bar{y}), \ \rho(y,z) = d_{M_v^2}(\bar{y},\bar{z}), \ \text{ and } \ \rho(z,x) = d_{M_v^2}(\bar{z},\bar{x}).$$

It is well known that such a comparison triangle exists if $\rho(x,y)+\rho(y,z)+\rho(z,x)<2D_{\kappa}$, where $D_{\kappa}=\pi/\sqrt{\kappa}$ for $\kappa>0$ and $D_{0}=\infty$. Notice also that the comparison triangle is unique up to isometry. A point $\bar{u}\in[\bar{x},\bar{y}]$ is called a *comparison point* for $u\in[x,y]$ if $\rho(x,u)=d_{M_{\kappa}^{2}}(\bar{x},\bar{u})$.

A metric space (X,ρ) is said to be a $CAT(\kappa)$ space if it is D_{κ} —geodesic and for each two points u,v of any geodesic triangle $\triangle(x,y,z)$ in X with $\rho(x,y)+\rho(y,z)+\rho(z,x)<2D_{\kappa}$ and for their comparison points \bar{u},\bar{v} in $\overline{\triangle}(\bar{x},\bar{y},\bar{z})$ the $CAT(\kappa)$ inequality

$$\rho(u,v) \le d_{M_{\kappa}^2}(\bar{u},\bar{v}),$$

holds. Notice also that Pre-Hilbert spaces, \mathbb{R} —trees, Euclidean buildings are examples of $CAT(\kappa)$ spaces (see [1, 2]).

Recall that a geodesic space (X, ρ) is said to be R-convex for $R \in (0, 2]$ ([7]) if for any three points $x, y, z \in X$, we have

(1.1)
$$\rho^{2}(x,(1-\alpha)y \oplus \alpha z) \leq (1-\alpha)\rho^{2}(x,y) + \alpha\rho^{2}(x,z) - \frac{R}{2}\alpha(1-\alpha)\rho^{2}(y,z).$$

The following lemmas will be needed.

Lemma 1.3. ([7]) Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Then (X, ρ) is R-convex for $R = (\pi - 2\varepsilon)\tan(\varepsilon)$.

Lemma 1.4. ([1]) Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. Then

$$\rho((1-\alpha)x \oplus \alpha y, z) \le (1-\alpha)\rho(x, z) + \alpha\rho(y, z),$$

for all $x, y, z \in X$ and $\alpha \in [0, 1]$.

Let (X, ρ) be a geodesic space. The *distance* from a point x in X to a subset C of X is defined by

$$\operatorname{dist}(x,C) := \inf\{\rho(x,y) : y \in C\}.$$

The set C is bounded if $diam(C) := \sup\{\rho(x, y) : x, y \in C\} < \infty$.

Definition 1.5. Let $f: C \to \mathbb{R}$ be a function. Then

- (i) f is said to be *convex* if $f(\alpha x \oplus (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$ for all $\alpha \in [0, 1]$ and $x, y \in C$;
- (ii) f is said to be *strictly convex* if $f(\alpha x \oplus (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$ for all $\alpha \in (0,1)$ and $x,y \in C$ with $x \neq y$.

Let *A* be a nonempty subset of *X*. The *closed convex hull* of *A* is defined by

$$\overline{\operatorname{conv}}(A) := \bigcap \{ B \subseteq X : A \subseteq B \text{ and } B \text{ is closed and convex} \}.$$

Let C be a convex subset of X. A subset A of C is called an *extremal subset* if it is nonempty, closed and satisfies the following property: If $x,y \in C$ and $\alpha x \oplus (1-\alpha)y \in A$ for some $\alpha \in (0,1)$, then $x,y \in A$. Notice that if A is an extremal subset of B and B is an extremal subset of C, then A is an extremal subset of C. A point z in C is called an *extreme point* of C if $\{z\}$ is an extremal subset of C. We denote by Ext(C) the set of all extreme points of C.

Example 1.6. In the Euclidean space \mathbb{R}^2 , the square $A:=\{(x,y):|x|\leq 1,|y|\leq 1\}$ has four extreme points while the strip $B:=\{(x,y):0\leq x\leq 1,y\in\mathbb{R}\}$ does not have an extreme point.

2. Main results

We begin this section by proving a crucial lemma.

Lemma 2.1. Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $diam(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. If K is a nonempty compact convex subset of X, then every extremal subset of K has an extreme point.

Proof. Let \mathcal{C} be the family of all nonempty extremal subset of K. Since $K \in \mathcal{C}$, it follows that \mathcal{C} is nonempty and it can be partially ordered by set inclusion. By Zorn's Lemma, \mathcal{C} has a minimal element, say M. It is enough to show that M consists of exactly one point. Suppose that it contains at least two points, say x_0 and y_0 . Let $f: M \to \mathbb{R}$ be defined by

$$f(x) := \rho^2(x_0, x) \text{ for all } x \in M.$$

Since $x_0 \neq y_0$, f is not a constant function. By (1.1), f is strictly convex. Let $M_0 := \{x \in M : f(x) = \sup_{y \in M} f(y)\}$. Since f is continuous and K is compact, M_0 is nonempty. Notice also that it is a closed proper subset of M. Next, we show that M_0 is an extremal subset of M. Let $x', x'' \in M$ and M_0 contains a point $(1 - \alpha)x' \oplus \alpha x''$ for some $\alpha \in (0, 1)$. By (1.1), we have

$$\sup_{y \in M} f(y) = f((1 - \alpha)x' \oplus \alpha x'')$$

$$\leq (1 - \alpha)f(x') + \alpha f(x'') - \alpha (1 - \alpha)\rho^2(x', x'')$$

$$\leq \sup_{y \in M} f(y) - \alpha (1 - \alpha)\rho^2(x', x''),$$

which implies that $x' = x'' \in M_0$. Thus $M_0 \in \mathcal{C}$ which contradicts to the minimality of M and hence the proof is complete.

Theorem 2.2. Let $\kappa > 0$ and (X, ρ) be a complete $CAT(\kappa)$ space with $\operatorname{diam}(X) \leq \frac{\pi/2 - \varepsilon}{\sqrt{\kappa}}$ for some $\varepsilon \in (0, \pi/2)$. If K is a nonempty compact convex subset of X, then $\overline{conv}(Ext(K)) = K$.

Proof. (This proof is patterned after the proof of Theorem 3.1 in [6]). By Lemma 2.1, $\operatorname{Ext}(K) \neq \emptyset$. Clearly, $\overline{\operatorname{conv}}(\operatorname{Ext}(K)) \subseteq K$. Suppose that $\overline{\operatorname{conv}}(\operatorname{Ext}(K)) \neq K$. Let $g: K \to \mathbb{R}$ be defined by $g(x) := \operatorname{dist}(x, \overline{\operatorname{conv}}(\operatorname{Ext}(K)))$ and let $K_0 := \{x \in K : g(x) = \sup_{y \in K} g(y)\}$. Since g is continuous and K is compact, K_0 is nonempty. Notice also that it is a closed subset of K. Since $\overline{\operatorname{conv}}(\operatorname{Ext}(K)) \neq K$, we get that $\sup\{g(y) : y \in K\} > 0$. By Lemma 1.4 for $x, y \in K$, $\alpha \in [0, 1]$ and $z \in \overline{\operatorname{conv}}(\operatorname{Ext}(K))$ we have

$$\rho((1-\alpha)x \oplus \alpha y, z) \le (1-\alpha)\rho(x, z) + \alpha\rho(y, z),$$

which implies that g is convex. Notice also that K_0 is an extremal subset of K. Again, by Lemma 2.1 there is a point z in $K_0 \cap \operatorname{Ext}(K)$. Thus $0 = g(z) = \sup\{g(y) : y \in K\}$ which is a contradiction. Hence $\overline{\operatorname{conv}}(\operatorname{Ext}(K)) = K$.

As a consequence of Theorem 2.2, we obtain the following corollary.

Theorem 2.3. ([6, Theorem 1]) Let (X, ρ) be a complete CAT(0) space and K be a nonempty compact convex subset of X. Then $\overline{conv}(Ext(K)) = K$.

Proof. It is well known that every convex subset of a CAT(0) space, equipped with the induced metric, is a CAT(0) space (see e.g., [1]). Thus (K, ρ) is a CAT(0) space and hence it is a CAT(κ) space for all $\kappa > 0$. Notice also that it is K-convex for K = 2. Since K is bounded, we can choose $\varepsilon \in (0, \pi/2)$ and $\kappa > 0$ such that K = K conclusion follows from Theorem 2.2.

Acknowledgements. This research was supported by Chiang Mai University and Thailand Research Fund under Grant RSA6080076.

REFERENCES

- [1] Bridson, M. and Haefliger, A., Metric Spaces of Non-Positive Curvature, Springer, Berlin, 1999
- [2] Brown, K. S., Buildings, Springer, New York, 1989
- [3] Cho, Y. J., Ciric, L. and Wang, S. H., Convergence theorems for nonexpansive semigroups in CAT(0) spaces, Nonlinear Anal., 74 (2011), 6050–6059
- [4] Cholamjiak, P., Abdou, A. A. N. and Cho, Y. J., *Proximal point algorithms involving fixed points of nonexpansive mappings in CAT*(0) *spaces*, Fixed Point Theory Appl., **2015**, 2015:227, 13 pp.
- [5] Krein, M. G. and Milman, D. P., On extreme points of regular convex sets, Studia Math., 9 (1940), 133-137
- [6] Niculescu, C. P., The Krein-Milman theorem in global NPC spaces, Bull. Math. Soc. Sci. Math. Roumanie., 50 (2007), 343–346
- [7] Ohta, S., Convexities of metric spaces, Geom. Dedicata., 125 (2007), 225–250
- [8] Pakkaranang, N., Sa Ngiamsunthorn, P., Kumam, P. and Cho, Y. J., Convergence theorems of the modified S-type iterative method for (a, β) -generalized hybrid mappings in CAT(0) spaces, J. Math. Anal., 8 (2017), 103–112
- [9] Saipara, P., Chaipunya, P., Cho, Y. J. and Kumam, P., On strong and Δ—convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(κ) spaces, J. Nonlinear Sci. Appl., 8 (2015), 965–975

CENTER OF EXCELLENCE IN MATHEMATICS AND APPLIED MATHEMATICS DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE, CHIANG MAI UNIVERSITY

CHIANG MAI 50200 THAILAND

Email address: bancha.p@cmu.ac.th