CARPATHIAN J. MATH.
Volume 34 (2018), No. 3, Pages 433-439

Dedicated to Professor Yeol Je Cho on the occasion of his retirement

# Fixed point results of generalized almost $G$ - contractions in metric spaces endowed with graphs 

Jukrapong Tiammee


#### Abstract

The main aim of this paper is to introduce a class of generalized contractions in the sense of Berinde. Some examples and fixed point theorems for such introduced mappings in the setting of metric spaces endowed with a graph are discussed. Our results extend and include many existing results in the literature.


## 1. Introduction

Fixed point theory of multivalued mappings plays an important role in science and applied science. It has applications in control theory, convex optimization, differiential inclusions and economics.

For a metric space $(X, d)$, we let $C B(X)$ and $\operatorname{Comp}(X)$ to be the set of all nonempty closed bounded subsets of $X$ and the set of all nonempty compact subsets of $X$, respectively. A point $x \in X$ is a fixed point of a multivalued mapping $T: X \rightarrow 2^{X}$ if $x \in T x$. For any $A, B \in C B(X)$, define the function $H: C B(X) \times C B(X) \rightarrow \mathbb{R}^{+}$by

$$
H(A, B)=\max \{\delta(A, B), \delta(B, A)\}
$$

where

$$
\begin{aligned}
& \delta(A, B)=\sup \{d(a, B): a \in A\}, \\
& \delta(B, A)=\sup \{d(b, A): b \in B\}, \\
& d(a, C)=\inf \{\|a-x\|: x \in C\} .
\end{aligned}
$$

Note that $H$ is called the Pompeiu-Hausdorff metric induced by metric $d$ [10]. The first well-known theorem for multivalued contraction mappings was given by Nadler in 1969 [23].

Theorem 1.1. ([23]) Let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $C B(X)$. Assume that there exists $k \in[0,1)$ such that

$$
H(T x, T y) \leq k d(x, y) \text { for all } x, y \in X
$$

Then there exists $z \in X$ such that $z \in T z$.
The Nadler's fixed point theorem for multivalued contractive mappings has been extended in many directions (see [7], [9], [10], [16], [27]).

Definition 1.1. ([22]) A function $\varphi:[0, \infty) \rightarrow[0,1)$ is said to be $\mathcal{M T}$-function if

$$
\lim _{r \rightarrow t^{+}} \sup \varphi(r)<1 \quad \text { for each } t \in(0, \infty)
$$

[^0]In 1989, Mizoguchi and Takahashi proved the following fixed point theorem for multivalued mappings.
Theorem 1.2. ([22]) Let $(X, d)$ be a complete metric space and let $T: X \rightarrow C B(X)$. Suppose that there exists a $\mathcal{M} \mathcal{T}$-function $\varphi:[0, \infty) \rightarrow[0,1)$ such that

$$
H(T x, T y) \leq \varphi(d(x, y)) d(x, y), \text { for all } x, y \in X
$$

Then there exists $z \in X$ such that $z \in T z$.
In 2007, Berinde and Berinde [9] introduced a class of multivalued mappings which is more general than that of $\mathcal{M}$ - contractions.

Definition 1.2. ([9]) Let $(X, d)$ be a metric space and $T: X \rightarrow C B(X)$ a multivalued mapping. $T$ is said to be a generalized multivalued $(\alpha, L)$-weak contraction if there exist $L \geq 0$ and a $\mathcal{M T}$-function $\varphi:[0, \infty) \rightarrow[0,1)$ such that

$$
H(T x, T y) \leq \varphi(d(x, y)) d(x, y)+L d(y, T x), \text { for all } x, y \in X
$$

They also showed that in a complete metric space, every generalized multivalued $(\alpha, L)$-weak contraction has a fixed point. Note that the $(\alpha, L)$ contractive mapping is larger than those of Banach contractions, and it is not necessary to by a continuous mapping. For more works on this type of mappings, one may see ([6], [17], [19], [24], [25], [29]) and literatures therein, for example.

Most recently, Du and Hung [17] established a generalization of Mizoguchi-Takashi's fixed point theorem.
Theorem 1.3. ([17]) Let $(X, d)$ be a complete metric space and $T: X \rightarrow C B(X)$ be a multivalued mapping on $X$. Suppose that there exists an $\mathcal{M} \mathcal{T}$-function $\varphi$ such that

$$
\min \{H(T x, T y), d(y, T y)\} \leq \varphi(d(x, y)) d(x, y)
$$

for all $x, y \in X$ with $x \neq y$. Then there exists $z \in X$ such that $z \in T z$.
Next, we recall the concept of fixed point theorems in metric spaces endowed with graphs. Let $G=(V(G), E(G))$ be a directed graph, where $V(G)$ is a set of vertices of a graph and $E(G)$ be a set of its edges. Assume that $G$ has no parallel edges. We denote $G^{-1}$ by the directed graph obtained from reversing the direction of edges of $G$, that is,

$$
E\left(G^{-1}\right)=\{(x, y):(y, x) \in E(G)\}
$$

In 2008, Jachymski [21] combined the concept of fixed point theory and graph theory to study fixed point theory in a metric space endowed with a directed graph. He introduced a concept of $G$-contraction and generalized Banach contraction principle in a metric space endowed with a directed graph.
Definition 1.3. ([21]) Let $(X, d)$ be a metric space and $G=(V(G), E(G))$ be a directed graph such that $V(G)=X$ and $E(G)$ contains all loops, i.e., $\triangle=\{(x, x): x \in X\} \subseteq E(G)$. A mapping $f: X \rightarrow X$ is said to be $G$-contractive if $f$ preserves edges of $G$, i.e.,

$$
\forall x, y \in X,(x, y) \in E(G) \Longrightarrow(f(x), f(y)) \in E(G)
$$

and there exists $\alpha \in[0,1)$ such that, for any $x, y \in X$,

$$
(x, y) \in E(G) \Longrightarrow d(f(x), f(y)) \leq \alpha d(x, y)
$$

Property A ([21]) For any sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $X$. If $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for $n \in \mathbb{N}$, then there is a subsequence $\left(x_{n_{k}}\right)_{n \in \mathbb{N}}$ with $\left(x_{n_{k}}, x\right) \in E(G)$ for $n \in \mathbb{N}$.

Using this concept, in [21], he proved the following theorem by

Theorem 1.4. ([21]) Let $(X, d)$ be complete metric space. Suppose that a triple $(X, d, G)$ have the property A. Let $f: X \rightarrow X$ be a $G$-contractive mapping and $X_{f}=\{x \in X$ : $(x, f(x)) \in E(G)\}$. Then $F(T) \neq \emptyset$ if and only if $X_{f} \neq \emptyset$.

Jachymski's fixed point theorem has been generalized and extended in several directions, see for example ([1], [4], [7], [8], [12], [16], [20] [27], [28]).

Inspired by the works of Berinde [9], Du and Hung [17] and Jachymski [21], we introduced the concept of multivalued generalized $G$-almost contractions in metric spaces and establish some fixed point theorems for this type mappings in metric spaces endowed with a directed graph. We give some examples to illustrate our main results.

## 2. Main results

We start with defining a new type of multivalued mappings.
Definition 2.4. Let $(X, d)$ be a metric space, $G=(V(G), E(G))$ a directed graph such that $V(G)=X$ and $T: X \rightarrow C B(X) . T$ is said to be a generalized almost $G$-contraction if
(1) there exist an MT-function $\alpha:[0, \infty) \rightarrow[0,1)$ and $L \geq 0$ with

$$
\min \{H(T x, T y), d(y, T y)\} \leq \alpha(d(x, y)) d(x, y)+L D(y, T x)
$$

for all $x, y \in X$ such that $(x, y) \in E(G)$,
(2) if $u \in T x$ and $v \in T y$ are such that $d(u, v) \leq d(x, y)$ then $(u, v) \in E(G)$.

## Remark 2.1.

(1) The class of generalized multivalued $(\alpha, L)$-weak contraction is a special class of generalized almost $G$-contraction, when $E(G)=X \times X$.
(2) The class of generalized contractions in Theorem 1.3 is a special class of generalized almost $G$-contraction, when $E(G)=X \times X$ and $L=0$.

The following theorem is the main result in the framework of complete metric spaces endowed with graphs.

Theorem 2.5. Let $(X, d)$ be a complete metric space, $G=(V(G), E(G))$ a directed graph such that $V(G)=X$ and $X$ has Property $A$. Let $T: X \rightarrow C B(X)$ is a generalized $G$-almost contraction. Suppose that there exists $x_{0} \in X$ such that $\left(x_{0}, y\right) \in E(G)$, for some $y \in T x_{0}$. Then there exists $v \in X$ such that $v \in T v$.

Proof. Define the function $\mu:[0, \infty) \rightarrow[0,1)$ by

$$
\mu(t)=\frac{1+\varphi(t)}{2} \quad \text { for all } t \in[0, \infty)
$$

Therefore $0 \leq \varphi(t)<\mu(t)<1$ for all $t \in[0, \infty)$. Let $x_{0} \in X$ be such that $\left(x_{0}, x_{1}\right) \in E(G)$ where $x_{1} \in T x_{0}$. This implies that

$$
\begin{equation*}
\min \left\{H\left(T x_{0}, T x_{1}\right), d\left(x_{1}, T x_{1}\right)\right\} \leq \alpha\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)+L D\left(x_{1}, T x_{0}\right) . \tag{2.1}
\end{equation*}
$$

Since

$$
d\left(x_{1}, T x_{1}\right) \leq \sup _{u \in T x_{0}} d\left(u, T x_{1}\right) \leq H\left(T x_{0}, T x_{1}\right),
$$

we obtain

$$
\begin{equation*}
\min \left\{H\left(T x_{0}, T x_{1}\right), d\left(x_{1}, T x_{1}\right)\right\}=d\left(x_{1}, T x_{1}\right) . \tag{2.2}
\end{equation*}
$$

So, by (2.1) and (2.2), we get

$$
\begin{equation*}
d\left(x_{1}, T x_{1}\right)<\mu\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right) . \tag{2.3}
\end{equation*}
$$

By (2.3), there exists $x_{2} \in T x_{1}$ such that

$$
d\left(x_{1}, x_{2}\right)<\mu\left(d\left(x_{0}, x_{1}\right)\right) d\left(x_{0}, x_{1}\right)<d\left(x_{0}, x_{1}\right)
$$

Hence $\left(x_{1}, x_{2}\right) \in E(G)$. If $x_{2}=x_{1}$, then $x_{1} \in T x_{1}$ which means that $x_{1}$ is a fixed point of $T$ and the desired conclusion is proved. Assume that $x_{2} \neq x_{1}$. Since $T$ is a generalized $G$-almost contraction, we get

$$
\begin{aligned}
d\left(x_{2}, T x_{2}\right) & =\min \left\{H\left(T x_{1}, T x_{2}\right), d\left(x_{2}, T x_{2}\right)\right\} \\
& <\mu\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)+\operatorname{Ld}\left(x_{2}, T x_{1}\right) \\
& =\mu\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

So there exists $x_{3} \in T x_{2}$ such that

$$
d\left(x_{2}, x_{3}\right)<\mu\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)<d\left(x_{1}, x_{2}\right)
$$

Hence $\left(x_{2}, x_{3}\right) \in E(G)$. By induction, we obtain a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N} \cup\{0\}}$ such that for each $n \in \mathbb{N}$
(i) $x_{n} \in T x_{n-1}$ with $x_{n} \neq x_{n-1}$;
(ii) $d\left(x_{n}, x_{n+1}\right)<\mu\left(d\left(x_{n-1}, x_{n}\right)\right) d\left(x_{n-1}, x_{n}\right)<d\left(x_{n-1}, x_{n}\right)$;
(iii) $\left(x_{n}, x_{n+1}\right) \in E(G)$.

By (ii), the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}_{n \in \mathbb{N} \cup\{0\}}$ is strictly decreasing in $[0, \infty)$. Since $\varphi$ is an $\mathcal{M} \mathcal{T}$-function, by Definition 1.1, we have

$$
0 \leq \sup _{n \in \mathbb{N} \cup\{0\}} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)<1
$$

and hence deduces

$$
0<\sup _{n \in \mathbb{N} \cup\{0\}} \mu\left(d\left(x_{n}, x_{n+1}\right)\right)=\frac{1}{2}\left[1+\sup _{n \in \mathbb{N} \cup\{0\}} \varphi\left(d\left(x_{n}, x_{n+1}\right)\right)\right]<1
$$

We denote $\gamma:=\sup _{n \in \mathbb{N} \cup\{0\}} \mu\left(d\left(x_{n}, x_{n+1}\right)\right)$. Hence $\gamma \in[0,1)$. For each $n \in \mathbb{N} \cup\{0\}$, by (ii), we obtain

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<\mu\left(d\left(x_{n-1}, x_{n}\right)\right) d\left(x_{n-1}, x_{n}\right) \leq \gamma d\left(x_{n-1}, x_{n}\right) \tag{2.4}
\end{equation*}
$$

It follows from (2.4) that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<\gamma d\left(x_{n-1}, x_{n}\right)<\cdots<\gamma^{n} d\left(x_{0}, x_{1}\right) \tag{2.5}
\end{equation*}
$$

We denote $\xi_{n}=\frac{\gamma^{n}}{1-\gamma} d\left(x_{0}, x_{1}\right)$. For $m, n \in \mathbb{N}$ with $m>n$, by (2.5), we get

$$
d\left(x_{m}, x_{n}\right) \leq \sum_{j=n}^{m-1} d\left(x_{j}, x_{j+1}\right)<\xi_{n}
$$

Since $0<\gamma<1, \lim _{n \rightarrow \infty} \xi_{n}=0$, which implies that

$$
\lim _{n \rightarrow \infty} \sup \left\{d\left(x_{m}, x_{n}\right): m>n\right\}=0
$$

This implies that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $X$. By the completeness of $X$, there exists $v \in X$ such that $x_{n} \rightarrow v$ as $n \rightarrow \infty$. Since $X$ has Property (A), $\left(x_{n}, v\right) \in E(G)$ for all $n \in \mathbb{N}$. So, we have

$$
\begin{equation*}
\min \left\{H\left(T x_{n}, T v\right), d(v, T v)\right\} \leq \varphi\left(d\left(x_{n}, v\right)\right) d\left(x_{n}, v\right)+L d\left(v, T x_{n}\right) \quad \text { for all } n \in \mathbb{N} . \tag{2.6}
\end{equation*}
$$

Suppose that

$$
\mathcal{A}=\left\{n \in \mathbb{N}: \min \left\{H\left(T x_{n}, T v\right), d(v, T v)\right\}=H\left(T x_{n}, T v\right)\right\}
$$

We conclude that there are two possibilities.

Case 1. Assume that $\sharp(\mathcal{A})=\infty$, where $\sharp(\mathcal{A})$ denotes the cardinal number of $\mathcal{A}$. Thus there exists $\left\{n_{j}\right\} \subset \mathcal{A}$ such that

$$
\begin{equation*}
\min \left\{H\left(T x_{n_{k}}, T v\right), d(v, T v)\right\}=H\left(T x_{n_{k}}, T v\right) \quad \text { for all } k \in \mathbb{N} . \tag{2.7}
\end{equation*}
$$

Since $\left(x_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$, we obtain

$$
\begin{aligned}
d(v, T v) & \leq d\left(v, x_{n_{k}+1}\right)+d\left(x_{n_{k}+1}, T v\right) \\
& \leq d\left(v, x_{n_{k}+1}\right)+H\left(T x_{n_{k}}, T v\right) \\
& =d\left(v, x_{n_{k}+1}\right)+\min \left\{H\left(T x_{n_{k}}, T v\right), d(v, T v)\right\} \\
& \leq d\left(v, x_{n_{k}+1}\right)+\varphi\left(d\left(x_{n_{k}}, v\right)\right) d\left(x_{n_{k}}, v\right)+L d\left(v, T x_{n_{k}}\right) \\
& <d\left(v, x_{n_{k}+1}\right)+d\left(x_{n_{k}}, v\right)+L d\left(v, x_{n_{k}+1}\right)
\end{aligned}
$$

Since $x_{n_{k}} \rightarrow v$ as $k \rightarrow \infty$, it follows that $d(v, T v)=0$. By the closedness of $T v$, we conclude that $v \in T v$.
Case 2. Suppose that $\sharp(\mathcal{A})<\infty$. Then there exists a sequence $\left\{n_{k}\right\}$ of natural numbers such that

$$
\begin{equation*}
\min \left\{H\left(x_{n_{k}}, T v\right), d(v, T v)\right\}=d(v, T v) \quad \text { for all } k \in \mathbb{N} . \tag{2.8}
\end{equation*}
$$

Since $\left(x_{n_{k}}, v\right) \in E(G)$ for all $k \in \mathbb{N}$, we obtain

$$
\begin{aligned}
d(v, T v) & =\min \left\{H\left(x_{n_{k}}, T v\right), d(v, T v)\right\} \\
& \leq \varphi\left(d\left(x_{n_{k}}, v\right)\right) d\left(x_{n_{k}}, v\right)+\operatorname{Ld}\left(v, T x_{n_{k}}\right) \\
& <d\left(x_{n_{k}}, v\right)+L d\left(v, x_{n_{k}+1}\right) .
\end{aligned}
$$

Since $x_{n} \rightarrow v$ as $k \rightarrow \infty$, it follows that $d(v, T v)=0$. By the closedness of $T v$, we obtain $v \in T v$. The proof is completed.

Remark 2.2. Theorem 2.5 improves the the following results.
(a) If we take $E(G)=X \times X$ and $L=0$ in Theorem 2.5, then we obtain the result of Mizoguchi-Takahashi [22].
(b) If we take $E(G)=X \times X$ in Theorem 2.5, then we obtain the result of Berinde [9].
(c) If we take $E(G)=X \times X$ in Theorem 2.5, then we obtain Theorem 1.5
(d) If we take $C B(X)=\{\{x\}: x \in X\}, \varphi(t)=k$ where $0 \leq k<1$ and $L=0$ in Theorem 2.5, then we obtain the result of Jachymski [21].

Next, we give an example which can illustrate Theorem 2.5 but Mizoguchi-Takahashi's fixed point theorm is not applicable.

Example 2.1. Let $l^{\infty}$ be the Banach space consisting of all bounded real sequence with supremum norm $d_{\infty}$. Let $\left\{\tau_{n}\right\}$ be a sequence defined by $\tau_{n}=\frac{1}{n}$ for each $n \in \mathbb{N}$ and $\left\{e_{n}\right\}$ be the canonical basis of $l^{\infty}$. Put $v_{n}=\tau_{n} e_{n}$ for $n \in \mathbb{N}$ and $X=\left\{v_{n}\right\}_{n \in \mathbb{N}}$. Then $\left(X, d_{\infty}\right)$ be a complete metric space and $d_{\infty}\left(v_{n}, v_{m}\right)=\frac{1}{n}$ if $m>n$. Let $G=(V(G), E(G))$ be such that $V(G)=X$ and

$$
E(G)=\left\{\left(v_{n}, v_{m}\right) \in X \times X: m \geq n\right\} .
$$

Notice that $X$ has Property A. Let $T: X \rightarrow C B(X)$ be a mapping defined by

$$
T v_{n}= \begin{cases}\left\{v_{1}, v_{2}\right\} & , \text { if } n \in\{1,2\} \\ X \backslash\left\{v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right\} & , \text { if } n \geq 3\end{cases}
$$

Define $\varphi:[0, \infty) \rightarrow[0,1)$ by

$$
\varphi(t)= \begin{cases}\frac{\tau_{n+2}}{\tau_{n}} & , \text { if } t=\tau_{n} \text { for some } n \in \mathbb{N} \\ 0 & , \text { otherwise }\end{cases}
$$

We see that $\lim _{\sup _{s \rightarrow t^{+}}} \varphi(s)=0<1$ for all $t \in[0, \infty)$, so $\varphi$ is an $\mathcal{M} \mathcal{T}$-function. We now show that $T$ is generalized almost $G$ - contraction. Let $x, y \in X$ such that $(x, y) \in E(G)$, we consider the following necessary four cases.

Cases 1: Let $x=v_{1}, y=v_{2}$. Then $T v_{1}=T v_{2}=\left\{v_{1}, v_{2}\right\}$. Moreover, we get

$$
\min \left\{H\left(T v_{1}, T v_{2}\right), d\left(v_{2}, T v_{2}\right)\right\}=0<\tau_{3}=\varphi\left(d\left(v_{1}, v_{2}\right)\right) d\left(v_{1}, v_{2}\right) .
$$

Cases 2: Let $x=v_{1}, y=v_{m}$ for each $m \geq 3$. Then $T v_{1}=\left\{v_{1}, v_{2}\right\}$ and $T v_{m}=$ $\left\{v_{m+2}, v_{m+3}, \ldots\right\}$. Moreover, we get

$$
\min \left\{H\left(T v_{1}, T v_{m}\right), d\left(v_{m}, T v_{m}\right)\right\}=\tau_{m} \leq \varphi\left(d\left(v_{1}, v_{m}\right)\right) d\left(v_{1}, v_{m}\right)+2 d\left(v_{m}, T v_{1}\right) .
$$

Cases 3: Let $x=v_{2}, y=v_{m}$ for each $m \geq 3$. Then $T v_{2}=\left\{v_{1}, v_{2}\right\}$ and $T v_{m}=$ $\left\{v_{m+2}, v_{m+3}, \ldots\right\}$. Moreover, we get

$$
\min \left\{H\left(T v_{2}, T v_{m}\right), d\left(v_{m}, T v_{m}\right)\right\}=\tau_{m} \leq \varphi\left(d\left(v_{2}, v_{m}\right)\right) d\left(v_{2}, v_{m}\right)+2 d\left(v_{m}, T v_{2}\right) .
$$

Cases 4: Let $x=v_{n},=v_{m}$ for each $n \geq 3$ and $m>n$. Then $T v_{n}=\left\{v_{n+2}, v_{n+3}, \ldots\right\}$ and $T v_{m}=\left\{v_{m+2}, v_{m+3}, \ldots\right\}$. Moreover, we get

$$
\min \left\{H\left(T v_{n}, T v_{m}\right), d\left(v_{m}, T v_{m}\right)\right\}=\tau_{n+2}=\varphi\left(d\left(v_{n}, v_{m}\right)\right) d\left(v_{n}, v_{m}\right)+2 d\left(v_{m}, T v_{n}\right) .
$$

Hence, from the above cases, we can conclude that $T$ is generalized $G$-almost contraction or $(\varphi, 2)-G$-contraction. Choosing $v_{1} \in X$, we see that $\left(v_{1}, v_{2}\right) \in E(G)$ where $v_{2} \in T v_{1}=\left\{v_{1}, v_{2}\right\}$. Therefore, all conditions of Theorem 2.5 are satisfied and we see that $F(T)=\{1,2\}$. Notice that

$$
H\left(T v_{n}, T v_{m}\right)=\tau_{1}>\tau_{3}=\varphi\left(d\left(v_{1}, v_{m}\right)\right) d\left(v_{1}, v_{m}\right) \quad \text { for all } m \geq 3
$$

which means that Mizoguchi-Takahashi's fixed point theorem is not applicable here.
Acknowledgements. This work was supported by National Research Council of Thailand (NRCT) in 2018 and Chiang Mai Rajabhat University (CMRU).

## References

[1] Abbas, M., Alfuraidan, M. R., Nazir, T. and Rashed, M., Common fixed points of multivalued F-contractions on metric spaces with a directed graph, Carpathian J. Math., 32 (2016), No. 1, 1-12
[2] Ardelean, G. and Balog, L., An empirical study of the convergence area and convergence speed of Agarwal et al. fixed point iteration procedure, Creat. Math. Inform., 25 (2016), No. 2, 135-140
[3] Balog, L., Berinde, V. and Păcurar, M., Approximating fixed points of nonself contractive type mappings in Banach spaces endowed with a graph, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 24 (2016), No. 2, 27-43
[4] Balog, L. and Berinde, V. Fixed point theorems for nonself Kannan type contractions in Banach spaces endowed with a graph, Carpathian J. Math., 32 (2016), No. 3, 293-302
[5] Banach, S., Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181
[6] Beg, I. and Latif, A., Common fixed point and coincidence point of generalized contractions in ordered metric spaces, Fixed Point Theory Appl., 2012, 2012:229, 12 pp.
[7] Beg, I. and Butt, A. R., The contraction principle for set valued mappings on a metric space with graph, Comput. Math. Appl., 60 (2010), 1214-1219
[8] Beg, I. and Butt, A. R., Fixed point of set-valued graph contractive mappings, J. Inequal. Appl., 2013, 2013:252, 7 pp.
[9] Berinde, M. and Berinde, V., On a general class of multivalued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), No. 2, 772-782
[10] Berinde, V. and Păcurar, M., The role of Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform., 22 (2013), No. 2, 143-150
[11] Berinde, V. and Păcurar, M., Coupled and triple fixed point theorems for mixed monotone almost contractive mappings in partially ordered metric spaces, J. Nonlinear Convex Anal., 18 (2017), No. 4, 651-659
[12] Bojor, F., Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895-3901
[13] Choban, M. M. and Berinde, V., A general concept of multiple fixed point for mappings defined on spaces with a distance, Carpathian J. Math., 33 (2017), No. 3, 275-286
[14] Choban, M. M. and Berinde, V., Two open problems in the fixed point theory of contractive type mappings on quasimetric spaces, Carpathian J. Math., 33 (2017), No. 2, 169-180
[15] Choban, M. M. and Berinde, V., Multiple fixed point theorems for contractive and Meir-Keeler type mappings defined on partially ordered spaces with a distance, Appl. Gen. Topol., 18 (2017), No. 2, 317-330
[16] Dinevari, T. and Frigon, M., Fixed point results for multivalued contractions on a metric space with a graph, J. Math. Anal. Appl., 405 (2013), No. 2, 507-517
[17] Du, W. S. and Hung, Y. L., A generalization of Mizoguchi-Takahashi's fixed point theorem and its applications to fixed point theory, Int. J. Math. Anal., 11 (2017), No. 4, 151-161
[18] Fukhar-ud-din, H., Berinde, V., Fixed point iterations for Prešić-Kannan nonexpansive mappings in product convex metric spaces, Acta Univ. Sapientiae Math., 10 (2018), No. 1, 56-69
[19] Hussain, N., Ahmad, J. and Azam, A., Generalized fixed point theorems for multivalued $\alpha-\phi$ contractive mappings, J. Inequal. Appl., 2014, 2014:384
[20] Hussain, N., Ahmad, J. and Kutbi, M. A., Fixed point theorems for generalized Mizoguchi-Takahashi graphic contraction, J. Funct. Spaces, Vol., 2016 (2016), Article ID. 6514920, 7 pp.
[21] Jachymski, J., The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359-1373
[22] Mizoguchi, N. and Takahashi, W., Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177-188
[23] Nadler, S. B., Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-488
[24] Petruşel, A., Petruşel, G., Samet, B. and Yao, J. C., Scalar and vectorial approaches for multivalued fixed point and multivalued coupled fixed point problems in b-metric spaces, J. Nonlinear Convex Anal., 17 (2016), No. 10, 2049-2061
[25] Reich, S., Fixed points of contractive functions, Boll. Un. Mat. Ital., (4) 5 (1972), 26-42
[26] Shukri, S. A., Berinde, V. and Khan, A. R., Fixed points of discontinuous mappings in uniformly convex metric spaces, Fixed Point Theory, 19 (2018), No. 1, 397-406
[27] Tiammee, J. and Suantai, S., Coincidence point theorms for graph-preserving multivalued mappings, Fixed Point Theory Appl,. 2014 2014:70
[28] Tiammee, J., Cho, Y. J. and Suantai, S., Fixed point theorems for nonself $G$-almost contractive mappings in Banach spaces endowed with graphs, Carpathian J. Math., 32 (2016), No. 3, 375-382
[29] Zamfirescu, T., Fixd point theorems in metric spaces, Archiv Math., 23 (1972), 292-298

Department of Mathematics and Statistics<br>Chiang Mai Rajabhat University<br>Faculty of Science and Technology<br>Chiang Mai 50300 Thailand<br>Email address: jukrapong.benz@gmail.com


[^0]:    Received: 21.09.2017. In revised form: 08.06.2018. Accepted: 15.07.2018
    2010 Mathematics Subject Classification. 47H10, 54H25.
    Key words and phrases. fixed point theorems, multivalued mappings, almost contraction, $\mathcal{M T}$-function, directed graph.

