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ABSTRACT. We improve a recent accelerated proximal gradient (APG) method in [Li, Q., Zhou, Y., Liang,
Y. and Varshney, P. K., Convergence analysis of proximal gradient with momentum for nonconvex optimization, in
Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017]
for nonconvex optimization by allowing variable stepsizes. We prove the convergence of the APG method
for a composite nonconvex optimization problem under the assumption that the composite objective function
satisfies the Kurdyka-Łojasiewicz property.

1. INTRODUCTION

In this paper we consider a composite optimization problem of the form

(1.1) min
x∈H

F (x) := f(x) + g(x),

where H = Rd is a Euclidean d-space, and f and g are proper, lower-semicontinuous
functions from H to (−∞,∞].

In the convex case (i.e., f and g are convex functions), the proximal gradient method [6]
can well be used to solve (1.1); moreover, Nesterov’s acceleration technique can be used
to speed up the rate of convergence from O( 1k ) to O( 1

k2 ) [3]. However, this remains open
for nonconvex optimization.

Very recently in [10], Li, et al proposed a new algorithm which is known as an accel-
erated proximal gradient (APG) method which constructs three sequences (xk), (yk) and
(vk) in such a way that xk is produced from yk through the composite of the proximal
mapping of g and the gradient ∇f of f (f is assumed to have Lipschitz continuous gra-
dient), and vk is simply a linear combination of xk and xk−1. Li, et al proved that their
algorithm guarantees, under certain conditions, that the sequence (xk) is bounded, each
cluster point of (xk) is a critical point of F , and F is constant on the set of cluster points
of (xk). They also obtained errors on the residual of F (xk)− inf F under the uniformized
Kurdyka-Łojasiewicz property with desingularizing function φ(t) = ctθ, where c is a con-
stant and θ ∈ (0, 1].

We continue working in this line by improving the algorithm and results of Li, et al
[10] in twofold. First we allow the stepsizes to vary with the iteration steps and obtain
the same convergence results of [10, Theorem 3]. Secondly, we prove convergence with
finite length of our algorithm under the Kurdyka-Łojasiewicz property with a genaral
desingularizing function, which is not discussed in Li, et al [10].
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2. PRELIMINARIES

Let d ≥ 1 be a given integer and consider the Euclidean d-space Rd with inner product
⟨·, ·⟩ and norm ∥ · ∥ (i.e., ∥ · ∥2). By Γ(Rd) we denote the family of all functions f : Rd →
(−∞,∞] =: R which are proper and lower-semicontinuous (lsc).

2.1. Subdifferential of Nonconvex Functions.

Definition 2.1. Let f ∈ Γ(Rd) and x ∈ dom(f) be given. We say that x∗ ∈ Rd is a Fréchet
derivative of f at x if

lim inf
z→x

f(z)− f(x)− ⟨x∗, z − x⟩
∥z − x∥

≥ 0.

The set of Fréchet derivatives of f at x, denoted ∂̂f(x), is said to be the Fréchet differential
of f at x.

The (Mordukhovich) limiting-subdifferential (or simply, subdifferential) of f at x, de-
noted ∂f(x), is defined as

∂f(x) = {x∗ ∈ H : ∃x∗k → x∗, x∗k ∈ ∂̂f(xk) with xk
f−→ x}.

Here “
f−→” means f -convergence, that is, xk

f−→ x if and only if xk → x and f(xk) →
f(x).

Definition 2.2. We say that a point x is a critical point of f if 0 ∈ ∂f(x). The lazy slope of
f at a point x is defined as

|∂f(x)| := inf{∥z∥ : z ∈ ∂f(x)} = dist(0, ∂f(x)).

Proposition 2.1. [7] Let f, g ∈ Γ(Rd) and x ∈ Rd be given.

(i) We have ∂̂f(x) ⊂ ∂f(x). Moreover, ∂̂f(x) is convex and ∂f(x) is closed (not necessarily
convex). If f is convex, then both sets are reduced to the subdifferential in the sense of
convex analysis.

(ii) If the sequences (xk) an (yk) are such that xk
f−→ x, yk → y, and yk ∈ ∂f(xk) for all k,

then y ∈ ∂f(x).
(iii) The Fermat’s rule remains true: if x is a local minimizer of f , then x is a critical point (or

stationary point) of f , that is, 0 ∈ ∂f(x).
(iv) If g is continuously differentiable, then ∂(f + g)(x) = ∂f(x) +∇g(x).
(v) We have that ∂f is closed in the sense that if {(xk, yk)} is a sequence in the graph of ∂f ,

G(∂f) := {(z, w) : z ∈ dom(∂f), w ∈ ∂f(z)}, such that xk
f−→ x and yk → y, it

follows that (x, y) ∈ G(∂f).

(vi) If xk
f−→ x and lim infk→∞ |∂f(xk)| = 0, then x is a critical point of f .

2.2. Kurdyka-Łojasiewicz Property. The Kurdyka-Łojasiewicz property [8, 9] plays a cen-
tral part in the nonconvex optimization theory.

Definition 2.3. [2] We say that a function f ∈ Γ(Rd) satisfies the Kurdyka-Łojasiewicz
property (KŁP) at x∗ ∈ dom(∂f) if there exist η ∈ (0,∞], a neighborhood U of x∗, and a
continuous concave function φ : [0, η) → R+ such that

(i) φ(0) = 0,
(ii) φ ∈ C1(0, η),

(iii) φ′(t) > 0 for all t ∈ (0, η),
(v) there holds the Kurdyka-Łojasiewicz inequality:

(2.2) φ′(f(x)− f(x∗))|∂f(x)| ≥ 1

for all x ∈ U ∩ {x : f(x∗) < f(x) < f(x∗) + η}.
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We say that f ∈ Γ(Rd) is a KŁ-function provided it satisfies KŁP at each point x∗ ∈
dom(∂f).

The KŁ inequality (2.2) (at a single point) can, in some circumstances, be extended to a
compact set, as shown below.

Lemma 2.1. [5, Lemma 6] (Uniformized KŁ property) Let f ∈ Γ(Rd) and let Ω ⊂ Rd be a
nonempty compact set. Assume that f is constant on Ω and satisfies the KŁ property at each point
of Ω. Then there exist ε > 0 and η > 0, and φ satisfying properties (i)-(iii) of Definition 2.3 such
that for all ū ∈ Ω and all u ∈ Rd with the property:

(2.3) u ∈ {u ∈ Rd : dist(u,Ω) < ε} ∩ {f(ū) < f(u) < f(ū) + η},

the following uniformized KŁ inequality holds:

(2.4) φ′(f(u)− f(ū))|∂f(u)| ≥ 1.

More discussions on can be found in [1, 2, 7, 4]

2.3. Proximal Mappings.

Definition 2.4. Let f ∈ Γ(Rd) and let λ > 0. The proximal mapping of f (of index λ) is
defined as

(2.5) proxλf (x) := argmin

{
f(y) +

1

2λ
∥y − x∥2 : y ∈ Rd

}
, x ∈ Rd.

Note that if f is, in addition, convex, then proxλf is single-valued and well defined
over the entire space Rd. However, in the general nonconvex case, proxλf is set-valued
and may be defined on a subset of Rd (more details can be found [12]).

The following inequality (2.7) is widely used in optimization theory (see [11]). How-
ever, for the sake of completeness, we include a proof.

Lemma 2.2. Assume that f : Rd → R is continuously differentiable and its gradient ∇f is
L-Lipschitz continuous for some constant L ≥ 0:

(2.6) ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥ for all x, y ∈ R.

Then we have

(2.7) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2 for all x, y ∈ R.

Proof. Let x, y ∈ R and define a function φ by

φ(t) := f(x+ t(y − x)), t ∈ R.

Then φ′(t) = ⟨∇f(x+ t(y − x)), y − x⟩. It turns out that

f(y)− f(x) =

∫ 1

0

φ′(t)dt =

∫ 1

0

⟨∇f(x+ t(y − x)), y − x⟩dt

= ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩dt.

Using the Lipschitz condition (2.6), we get

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+ L∥y − x∥2
∫ 1

0

tdt

and the desired inequality (2.7) follows immediately. □
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Lemma 2.3. Let f, g ∈ Γ(Rd) and set F = f + g. Let λ > 0 be given. Assume that the gradient
∇f of f is L-Lipschitz continuous. Then, for any u ∈ Rd and setting

û := proxλg(u− λ∇f(u)),
we have

(2.8) F (û) ≤ F (u)− 1

2

(
1

λ
− L

)
∥û− u∥2.

Proof. We have

û = argmin
z
g(z) +

1

2λ
∥z − u+ λ∇f(u)∥2

= argmin
z
g(z) +

1

2λ
∥z − u∥2 + ⟨z − u,∇f(u)⟩.

Since û is a minimizer of the function

(2.9) z 7→ ψ(z) := g(z) +
1

2λ
∥z − u∥2 + ⟨z − u,∇f(u)⟩

it turns out that

(2.10) g(û) +
1

2λ
∥û− u∥2 + ⟨û− u,∇f(u)⟩ ≤ g(u).

On the other hand, since ∇f is L-Lipschitz, we can use Lemma 2.2 to get the inequality:

(2.11) f(û) ≤ f(u) + ⟨∇f(u), û− u⟩+ L

2
∥û− u∥2.

Adding up (2.10) and (2.11) immediately yields (2.8). □

2.4. Convergence Lemma. We also need the following basic result regarding conver-
gence of nonnegative series.

Lemma 2.4. Let {an} be a sequence of real nonnegative numbers such that

(2.12) ak+1 ≤ γak + bk, k ≥ 0,

where γ ∈ [0, 1) and bk ≥ 0 such that
∑∞

k=0 bk <∞. Then
∑∞

k=0 ak <∞.

3. MAIN RESULTS

Consider the following composite optimization problem

(3.13) min
x∈Rd

F (x) := f(x) + g(x),

where f, g ∈ Γ(Rd).
The following accelerated proximal gradient (APG) algorithm is introduced by Li, et al

[10, Algorithm 3].

Algorithm 1 (Algorithm APG nonconvex problem)

Input: y1 = x0, βk = k
k+3 , λ < 1

L

for k = 1, 2, · · · do
xk = proxλg(yk − λ∇f(yk)).
vk = xk + βk(xk − xk−1).
if F (xk) ≤ F (vk), then yk+1 = xk,
else if F (xk) ≥ F (vk), then yk+1 = vk.
end if

end for



Accelerated proximal gradient method 453

The following result regarding Algorithm 1 is proved in [10].

Theorem 3.1. [10, Theorem 1] Let the following assumptions be satisfied:
(A1) f, g ∈ Γ0(Rd), infx∈Rd F (x) > −∞, and for each α ∈ R, the sublevel set {x ∈ Rd :

F (x) ≤ α} is bounded;
(A2) f has a continuous gradient ∇f that is L-Lipschitz continuous, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, x, y ∈ Rd.

Let {xk} be a generated by Algorithm 1 with stepsize λ < 1
L . Then

(i) {xk} is a bounded sequence;
(ii) The set Ω of limit points of {xk} forms a compact set, on which the objective function F is

constant;
(iii) All elements of Ω are critical points of F .

Below we slightly improve the above algorithm by allowing the stepsizes to depend on
the steps, that is, we take λ := λk, where k is the number of iterations. We also readjust
the parameter βk (in our convergence proof we actually only require βk ≤ 1− β for some
β ∈ (0, 1)).

Algorithm 2 (Algorithm APG nonconvex problem with variable stepsizes)

Input: y1 = x0, βk = 1
k+1 , λk < 1

L

for k = 1, 2, · · · do
xk = proxλkg

(yk − λk∇f(yk)).
vk = xk + βk(xk − xk−1).
if F (xk) ≤ F (vk), then yk+1 = xk,
else if F (xk) > F (vk), then yk+1 = vk.
end if

end for

The main results in this paper show that the conclusions of Theorem 3.1 remain true
for variable stepsizes, and moreover, convergence of the trajectories is guaranteed if, in
addition, the composite function F satisfies the Kurdyka-Łojasiewicz property.

Theorem 3.2. Consider a sequence {xk} generated by Algorithm 2. Assume the conditions (A1)
and (A2) of Theorem 3.1 hold, and in addition, the stepsize sequence {λk} satisfies the property:

0 < a ≤ λk ≤ b <
1

L
for all k. Then the following conclusions hold.

(i) {xk} is a bounded sequence;
(ii) The set Ω of limit points of {xk} forms a compact set, on which the objective function F is

constant;
(iii) All elements of Ω are critical points of F .

Moreover, if, in addition, F = f + g is a KL function, then {xk} converges to a critical point of F
with finite length, that is,

(3.14)
∞∑
k=0

∥xk+1 − xk∥ <∞.

Proof. Apply (2.8) to the case where λ := λk and u := yk to find that

(3.15) F (xk) ≤ F (yk)−
1

2

(
1

λk
− L

)
∥xk − yk∥2.

In particular, F (xk) ≤ F (yk) for λk < 1
L .
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It is a straightforward observation from the definition of Algorithm 2 that F (yk+1) ≤
F (xk) which together with (3.15) immediately results in that

(3.16) F (yk+1) ≤ F (xk) ≤ F (yk) ≤ F (xk−1) ≤ · · · ≤ F (y1) ≤ F (x0).

Consequently, limk→∞ F (xk) = limk→∞ F (yk) exists. Moreover, by (A1), we know that
{xk} and {yk} are bounded. Rewrite (3.15) as

1

2

(
1

λk
− L

)
∥xk − yk∥2 ≤ F (yk)− F (xk) ≤ F (xk−1)− F (xk).

Since λk ≤ b < 1
L for all k, this implies that

1

2

(
1

b
− L

) ∞∑
k=1

∥xk − yk∥2 ≤ F (x0)− lim
k→∞

F (xk) <∞.

In particular,

(3.17) lim
k→∞

∥xk − yk∥ = 0.

Now let Ω be the set of cluster points of {xk}, that is,

Ω ≡ ω({xk}) := {x ∈ Rd : ∃xki
→ x}.

The boundedness of {xk} ensures that Ω ̸= ∅, and due to (3.17), we also have Ω = ω({yk}).
Now let x̄ ∈ Ω and let {xki} be a subsequence of {xk} such that xki → x̄. By definition

of the algorithm, we have

(3.18) xk = arg min
z∈Rd

g(z) +
1

2λ
∥z − (yk − λ∇f(yk))∥2.

By the optimality condition, we obtain

0 ∈ ∂g(xk) +
1

λk
(xk − yk) +∇f(yk).

Equivalently,

(3.19)
1

λk
(yk − xk)−∇f(yk) ∈ ∂g(xk).

Applying (3.19) to the subsequence {ki} we get

(3.20)
1

λki

(yki
− xki

)−∇f(yki
) ∈ ∂g(xki

).

With no loss of generality (up to a further convergent subsequence of {λki
} if necessary),

we may assume λki → λ̄ ∈ [a, b].

Now since xki → x̄, yki → x̄, and
1

λki

(yki − xki) → 0, we may take the limit in (3.20) as

i→ ∞ and by the closedness of the subdifferential ∂g of g to obtain

−∇f(x̄) ∈ ∂g(x̄).

This is rewritten as 0 ∈ ∂F (x̄) = ∇f(x̄) + ∂g(x̄). Hence, x̄ is a critical point of F .
We finally verify that F is constant on Ω; it suffices to show that

(3.21) F (x̄) = lim
k→∞

F (xk).

Here x̄ ∈ Ω and xki
→ x̄ as above. Since F (x̄) = f(x̄) + g(x̄) and since f is continuous, all

we need to prove is that
lim
i→∞

g(xki) = g(x̄).
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On the one hand, from (3.18) we immediately deduce that

g(xki
) ≤ g(x̄) +

1

2λki

(∥x̄− yki
+ λki

∇f(yki
)∥2 − ∥xki

− yki
+ λki

∇f(yki
)∥2)

= g(x̄) +
1

2λki

(∥x̄− yki∥2 − ∥xki − yki∥2) + ⟨x̄− xki ,∇f(yki)⟩.(3.22)

Since xki → x̄, ∥xki − yki∥ → 0, and {λki} is bounded away from 0 from below, it turns
out from (3.22) that lim supi→∞ g(xki) ≤ g(x̄).

On the other hand, the lower semicontinuity of g implies that g(x̄) ≤ lim infi→∞ g(xki
).

Consequently, we have verified that limi→∞ g(xki
) = g(x̄) exists. Furthermore, since f

is continuous, we have limk→∞ F (xk) = limi→∞ F (xki
) = limi→∞(f(xki

) + g(xki
)) =

f(x̄) + g(x̄) = F (x̄). This proves (3.21).
Finally we prove (3.14) under the additional condition that F satisfies the KL property.

Observe that the conclusions in part (ii) guarantee that

(3.23) lim
k→∞

dist(xk,Ω) = 0.

As previously, assume xki → x̄; then we have proved that x̄ is a critical point of F .
We may assume xk ̸= yk (since, if xk = yk for some k, xk is a critical point of F and the
iteration process is terminated); hence F (xk) < F (yk), and furthermore, F (xk+1) < F (xk)
by (3.16). Recall that we have F (x̄) = limk→∞ F (xk).

By (3.23) we can apply Lemma 2.1 to get

(3.24) φ′(F (xk)− F (x̄))|∂F (xk)| ≥ 1

for all k ≥ k0. Here k0 is big enough so that dist(xk,Ω) < ε for all k ≥ k0. Before further
proceeding, we notice the following two facts:

• Fact 1: F (xk) ≤ F (yk) − c1∥xk − yk∥2 ≤ F (xk−1) − c1∥xk − yk∥2, where c1 =
1

2

(
1

b
− L

)
> 0. This follows from (3.15) and the fact that λk ≤ b.

• Fact 2: ∥wk∥ ≤ c2∥xk−yk∥, where wk = ∇f(xk)−∇f(yk)+
1

λk
(yk−xk) ∈ ∂F (xk),

and c2 = L +
1

a
. This is due to (3.19) and the facts that ∥∇f(xk) − ∇f(yk)∥ ≤

L∥xk − yk∥ and λk ≥ a.
Applying (3.24) and Fact 1, we derive that, for k ≥ k0,

(3.25) φ′(F (xk)− F (x̄)) ≥ 1

∥wk∥
≥ 1

c2

1

∥xk − yk∥
.

Since φ is concave, we have the inequality:

φ(x)− φ(y) ≥ φ′(x)(x− y), x, y ∈ R.
It follows that

φ(F (xk)− F (x̄))− φ(F (xk+1)− F (x̄)) ≥ φ′(F (xk)− F (x̄))(F (xk)− F (xk+1))

≥ φ′(F (xk)− F (x̄))c1∥xk+1 − yk+1∥2.
This, combining with (3.25), yields

φ(F (xk)− F (x̄))− φ(F (xk+1)− F (x̄)) ≥ c1
c2

∥xk+1 − yk+1∥2

∥xk − yk∥
.

In other words,

(3.26)
∥xk+1 − yk+1∥2

∥xk − yk∥
≤ c2
c1

[φ(F (xk)− F (x̄))− φ(F (xk+1)− F (x̄))].
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Fix γ ∈ (0, 1). It is then not hard to get from (3.26)

(3.27) ∥xk+1 − yk+1∥ ≤ γ∥xk − yk∥+
1

γ

c2
c1

[φ(F (xk)− F (x̄))− φ(F (xk+1)− F (x̄)].

for all k ≥ 1. By Lemma 2.4, (3.27) guarantees that
∞∑
k=1

∥xk − yk∥ <∞.

Note that yk+1 is either xk if F (xk) ≤ F (vk) or vk = xk+βk(xk−xk−1) if F (xk) > F (vk).
In the latter case, we have ∥xk − xk+1∥ ≤ ∥yk+1 − xk+1∥ + βk∥xk − xk−1∥ and we have
estimates on the partial sums:

k∑
i=1

∥xi − xi+1∥ ≤
k∑

i=1

∥yi+1 − xi+1∥+
k∑

i=1

βi∥xi − xi−1∥.

It turns out that
k−1∑
i=1

(1− βi+1)∥xi − xi+1∥ ≤
k∑

i=1

∥yi+1 − xi+1∥+ β1∥x1 − x0∥.

Since βi+1 =
1

i+ 2
, 1− βi+1 =

i+ 1

i+ 2
≥ 2

3
for i ≥ 1. Consequently, we derive from the last

inequality that
∞∑
i=1

∥xi − xi+1∥ ≤ 3

2

( ∞∑
i=1

∥yi+1 − xi+1∥+ ∥x1 − x0∥

)
<∞

and (3.14) is proved. □
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