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ABSTRACT. The split common fixed points problem for demicontractive operators has been studied in Hilbert
spaces. An iterative algorithm is considered and the weak convergence result is given under some mild assump-
tions.

1. INTRODUCTION

Let H1 and H2 be two real Hilbert spaces equipped up their own inner product ⟨·, ·⟩
and norm ∥ · ∥. Let S : H1 → H1 and T : H2 → H2 be two nonlinear operators. Denote
the fixed point sets of S and T by Fix(S) and Fix(T ), respectively. Let A : H1 → H2 be a
bounded linear operator with its adjoint A∗.

The present article focusses on the split common fixed point problem which is to find
a point u† ∈ H1 such that

(1.1) u† ∈ Fix(S) and Au† ∈ Fix(T ).

The split common fixed point problem (1.1) is a generalization of the split feasibility prob-
lem arising from signal processing and image restoration ([4, 6, 17, 18, 19, 21]), which is to
find a point u† such that

(1.2) u† ∈ C and Au† ∈ Q,

where C ⊂ H1 and Q ⊂ H2 are two nonempty closed convex sets. Problem (1.1) was
firstly introduced by Censor and Segal [7]. Note that solving (1.1) can be translated to
solve the fixed point equation

x∗ = S(x∗ − τA∗(I − T )Ax∗), τ > 0.

Whereafter, Censor and Segal proposed an algorithm for directed operators. Since then,
there has been growing interest in the split common fixed point problem ([1, 3, 5, 8, 12, 13,
14, 20, 22]). In particular, Wang [16] introduced the following new iterative algorithm for
the split common fixed point problem of firmly-nonexpansive mappings.

Algorithm 1.1. Choose an arbitrary initial guess x0.
Step 1. Given xn, compute the next iteration via the formula:

(1.3) xn+1 = xn − ρn[xn − Sxn +A∗(I − T )Axn], n ≥ 0.

Step 2. If the following equality

(1.4) ∥xn+1 − Sxn+1 +A∗(I − T )Axn+1∥ = 0.
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holds, then stop; otherwise go to step 1.
Subsequently, Wang [16] demonstrated the convergence analysis of Algorithm 1.1.

Theorem 1.1. Assume the following conditions are satisfied:
(A1) A is a bounded linear operator;
(A2) the solution set of problem (1.1), denoted by Ω, is nonempty;
(A3) both S and T are firmly nonexpansive operators.

Let {xn} be the sequence generated by Algorithm 1.1. If the sequence {ρn} satisfies
∑∞

n=0 ρn = ∞
and

∑∞
n=0 ρ

2
n < ∞, then {xn} converges weakly to a solution z of problem (1.1), where z =

limn→∞ projΩxn.

At the same time, Wang[16] gave the following remark.

Remark 1.1. It is readily seen that, in Algorithm 1.1, the selection of the stepsize does not
depend on the operator norm ∥A∥. It seems that the assumption (A3) cannot weaken to
directed operators.

Inspired by the work in the literature, the main purpose of this paper is to give an
answer to Remark 1.1. We will extend Wang’s [16] result from the firmly nonexpansive
operators to a more general demicontractive operators. We demonstrate the convergence
of Algorithm 1.1 for solving the split common fixed point problem (1.1). Weak conver-
gence theorem is given under some mild assumptions.

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H.

Definition 2.1. An operator T : C → C is said to be nonexpansive if

∥T u− T u†∥ ≤ ∥u− u†∥

for all u, u† ∈ C.

Definition 2.2. An operator T : C → C is said to be firmly nonexpansive if

∥T u− T u†∥2 ≤ ∥u− u†∥2 − ∥(I − T u− (I − T )u†∥2

for all u, u† ∈ C.

A typical example of firmly nonexpansive operators is an orthogonal projection projC
from H onto C defined by

projC(u) := argmin
v∈C

{∥u− v∥}, u ∈ H.

The metric projection projC of H onto C is characterized by

(2.5) ⟨u− projC(u), v − projC(u)⟩ ≥ 0

for all u ∈ H, v ∈ C.

Definition 2.3. An operator T : C → C is said to be directed if

∥T u− u†∥2 ≤ ∥u− u†∥2 − ∥T u− u∥2

for all u ∈ C and u† ∈ Fix(T ).

The class of directed operators is an important class since it includes the orthogonal
projections and the subgradient projectors which are fundamental in the convex opti-
mization.
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Definition 2.4. An operator T is called demicontractive if there exists a constant β ∈ [0, 1)
such that

∥T u− v∥2 ≤ ∥u− v∥2 + β∥u− T u∥2,
or equivalently,

(2.6) ⟨u− T u, u− v⟩ ≥ 1− β

2
∥u− T u∥2,

for all (u, v) ∈ H × Fix(T ).

Remark 2.2. It is clear that the demicontractive operators include the directed operators
as special cases. The class of demicontractive operators is fundamental because many
common types of operators arising in optimization belong to this class, see for example
?????????? [?] and references therein.

Definition 2.5. An operator T is said to be demiclosed if for any sequence {xn} which
weakly converges to x̃, and if the sequence {T (xn)} strongly converges to z, then T (x̃) =
z.

Definition 2.6. A sequence {xn} is called Fejér-monotone with respect to a given nonempty
set Ω if for every x ∈ Ω,

∥xn+1 − x∥ ≤ ∥xn − x∥, for all n ≥ 0.

Next we adopt the following notations:
· xn ⇀ x means that xn converges weakly to x;
· ωw(xn) := {x : ∃xnj

⇀ x} is the weak ω-limit set of the sequence {xn}.

Lemma 2.1. ([2]) Let Ω be a nonempty closed convex subset in H. If the sequence {xn} is Fejér
monotone with respect to Ω, then we have the following conclusions:

(i) xn ⇀ x† ∈ Ω iff ωw(xn) ⊂ Ω;
(ii) the sequence {projΩ(xn)} converges strongly;
(iii) if xn ⇀ x† ∈ Ω, then x† = limn→∞ projΩ(xn).

Lemma 2.2. ([15]) Let {an} and {bn} be positive real sequences such that
∑∞

n=0 bn < ∞. If
either an+1 ≤ (1 + bn)an or an+1 ≤ an + bn, then limn→∞ an exists.

3. MAIN RESULTS

In this section, we will give the convergence analysis of Algorithm 1.1 for solving the
split common fixed points problem (1.1). For the purpose, the following hypothesises are
involved.
(HP1): H1 and H2 are two real Hilbert spaces;
(HP2): S : H1 → H1 and T : H2 → H2 are two demicontractive operators with coefficients

β ∈ [0, 1) and µ ∈ [0, 1), respectively;
(HP3): S : H1 → H1 and T : H2 → H2 are Lipschitz continuous with Lipschitz constant

L > 1;
(HP4): A : H1 → H2 is a bounded linear operator with its adjoint operator A∗.
We use Ω to denote the solution set of problem (1.1), that is,

Ω = {z̄ : z̄ ∈ Fix(S) and Az̄ ∈ Fix(T )}.
Throughout, assume Ω is nonempty.

First, we have the following remark.

Remark 3.3. If (1.4) holds, then xn+1 solves problem (1.1). As a matter of fact, we have
the following a more general conclusion.
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Proposition 3.1. z† solves (1.1) iff ∥z† − Sz† +A∗(I − T )Az†∥ = 0.

Proof. If z† solves (1.1), then z† = Sz† and (I − T )Az† = 0. It is obvious that ∥z† − Sz† +
A∗(I − T )Az†∥ = 0.

To see the converse, assume that ∥z† − Sz† + A∗(I − T )Az†∥ = 0, then for any z ∈ Ω,
we obtain

(3.7)

0 = ∥z† − Sz† +A∗(I − T )Az†∥∥z† − z∥

≥ ⟨z† − Sz† +A∗(I − T )Az†, z† − z⟩

= ⟨z† − Sz†, z† − z⟩+ ⟨A∗(I − T )Az†, z† − z⟩

= ⟨z† − Sz†, z† − z⟩+ ⟨(I − T )Az†,Az† −Az⟩.

Since S and T are demicontractve, from (2.6), we deduce

(3.8) ⟨z† − Sz†, z† − z⟩ ≥ 1− β

2
∥z† − Sz†∥2,

and

(3.9) ⟨(I − T )Az†,Az† −Az⟩ ≥ 1− µ

2
∥(I − T )Az†∥2.

By (3.7)-(3.9), we get

(3.10)
0 ≥ ⟨z† − Sz† +A∗(I − T )Az†, z† − z⟩

≥ 1− β

2
∥z† − Sz†∥2 + 1− µ

2
∥(I − T )Az†∥2.

Since β, µ ∈ [0, 1), we deduce z† ∈ Fix(S) and Az† ∈ Fix(T ) by (3.10). Therefore, z† solves
problem (1.1). The proof is completed. □

We assume that the sequence {xn} generated by Algorithm 1.1 is infinite. In other
words, Algorithm 1.1 does not terminate in a finite number of iterations. In this case, we
demonstrate the convergence of the sequence {xn} generated by Algorithm 1.1.

Theorem 3.2. Assume the following conditions are satisfied

(i) I − S and I − T are demiclosed at zero;
(ii)

∑∞
n=0 ρn = ∞ and

∑∞
n=0 ρ

2
n < ∞.

Then the sequence {xn} generated by Algorithm 1.1 converges weakly to a solution z∗ of problem
(1.1), where z∗ = limn→∞ projΩ(xn).
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Proof. Firstly, we prove that the sequence {xn} is bounded. Let z ∈ Ω. Set yn = xn −
Sxn +A∗(I − T )Axn for all n ≥ 0. From (2.6), we have

(3.11)

⟨yn, xn − z⟩ = ⟨xn − Sxn +A∗(I − T )Axn, xn − z⟩
= ⟨xn − Sxn, xn − z⟩+ ⟨A∗(I − T )Axn, xn − z⟩

≥ 1− β

2
∥xn − Sxn∥2 +

1− µ

2
∥(I − T )Axn∥2

=
1− β

2
∥xn − Sxn∥2 +

(1− µ)∥A∥2

2∥A∥2
∥(I − T )Axn∥2

≥ 1− β

2
∥xn − Sxn∥2 +

(1− µ)

2∥A∥2
∥A∗(I − T )Axn∥2

≥ min{1− β, 1− µ}
2max{1, ∥A∥2}

(∥xn − Sxn∥2 + ∥A∗(I − T )Axn∥2)

≥ min{1− β, 1− µ}
4max{1, ∥A∥2}

(∥xn − Sxn∥+ ∥A∗(I − T )Axn∥)2

≥ min{1− β, 1− µ}
4max{1, ∥A∥2}

∥xn − Sxn +A∗(I − T )Axn∥2

=
min{1− β, 1− µ}
4max{1, ∥A∥2}

∥yn∥2

= τ∥yn∥2,

where τ =
min{1− β, 1− µ}
4max{1, ∥A∥2}

.

According to (1.3) and (3.11), we derive

(3.12)

∥xn+1 − z∥2 = ∥xn − z + ρnyn∥2

= ∥xn − z∥2 − 2ρn⟨yn, xn − z⟩+ ρ2n∥yn∥2

≤ ∥xn − z∥2 − 2ρnτ∥yn∥2 + ρ2n∥yn∥2.
Since S and T are L-Lipschitzian, we have

(3.13)

∥yn∥ = ∥xn − Sxn +A∗(I − T )Axn − [z − Sz +A∗(I − T )Az]∥
≤ ∥(I − S)xn − (I − S)z∥+ ∥A∗(I − T )Axn −A∗(I − T )Az∥
≤ (L+ 1)∥xn − z∥+ (L+ 1)∥A∥2∥xn − z∥
= (L+ 1)(1 + ∥A∥2)∥xn − z∥.

By (3.12) and (3.13), we get

(3.14)

∥xn+1 − z∥2 ≤ ∥xn − z∥2 − 2ρnτ∥yn∥2 + ρ2n∥yn∥2

≤ ∥xn − z∥2 + ρ2n(L+ 1)2(1 + ∥A∥2)2∥xn − z∥2 − 2ρnτ∥yn∥2

≤ ∥xn − z∥2 + ρ2n(L+ 1)2(1 + ∥A∥2)2∥xn − z∥2.

Noting that
∑∞

n=0 ρ
2
n < ∞, from Lemma 2.2 and (3.14), we deduce limn→∞ ∥xn−z∥ exists.

Hence, {xn} is bounded and so is {yn}.
Next, we show that every weak cluster point of the sequence {xn} belongs to the solu-

tion set of problem (1.1), i.e., ωw(xn) ⊂ Ω.
From (3.12), we obtain

2τρn∥yn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + ρ2n∥yn∥2

≤ ∥xn − z∥2 − ∥xn+1 − z∥2 + ρ2nM,
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where M = supn{∥yn∥2}.
An induction induces that

(3.15) 2τ

∞∑
n=0

ρn∥yn∥2 ≤ ∥x0 − z∥2 +M

∞∑
n=0

ρ2n < ∞,

which implies that

(3.16) lim inf
n→∞

∥yn∥ = 0

due to the fact that
∑∞

n=0 ρn = ∞.
Observe that

(3.17)

∥yn+1 − yn∥ = ∥xn+1 − Sxn+1 +A∗(I − T )Axn+1

− [xn − Sxn +A∗(I − T )Axn]∥
≤ ∥xn+1 − Sxn+1 − [xn − Sxn]∥
+ ∥A∗(I − T )A§n+1 −A∗(I − T )Axn∥

≤ (L+ 1)∥xn+1 − xn∥+ (L+ 1)∥A∥2∥xn+1 − xn∥
= (L+ 1)(1 + ∥A∥2)∥xn+1 − xn∥
= (L+ 1)(1 + ∥A∥2)ρn∥yn∥.

It follows that

(3.18)

∥yn+1∥2 = ∥yn∥2 + 2⟨yn, yn+1 − yn⟩+ ∥yn+1 − yn∥2

≤ ∥yn∥2 + 2∥yn∥∥yn+1 − yn∥+ ∥yn+1 − yn∥2

≤ ∥yn∥2 + 2(L+ 1)(1 + ∥A∥2)ρn∥yn∥2 + (L+ 1)2(1 + ∥A∥2)2ρ2n∥yn∥2.

From (3.15), we know that
∑∞

n=0 ρn∥yn∥2 < ∞. At the same time,
∑∞

n=0 ρ
2
n < ∞ by the

assumption. Thus, we can apply Lemma 2.2 to (3.18) to deduce limn→∞ ∥yn∥ exists. This
together with (3.16) implies that

(3.19) lim
n→∞

∥yn∥ = lim
n→∞

∥xn − Sxn +A∗(I − T )Axn∥ = 0.

Observe that

(3.20)

1− β

2
∥xn − Sxn∥2 +

1− µ

2
∥(I − T )Axn∥2

≤ ⟨xn − Sxn, xn − z⟩+ ⟨A∗(I − T )Axn, xn − z⟩
= ⟨xn − Sxn +A∗(I − T )Axn, xn − z⟩
≤ ∥xn − Sxn +A∗(I − T )Axn∥∥xn − z∥.

In view of (3.19) and (3.20), we have

(3.21) lim
n→∞

∥xn − Sxn∥ = 0 and lim
n→∞

∥(I − T )Axn∥ = 0.

By the demiclosedness (at zero) of I − S and I − T , we deduce immediately ωw(xn) ⊂ Ω.
To this end, the conditions of Lemma 2.1 are all satisfied. Consequently, xn ⇀ z∗ =
limn→∞ projΩ(xn). The proof is completed. □

Since the demicontractive operators include the directed operators and the firmly-
nonexpansive mappings operators as special cases, we have immediately the following
corollaries.

Corollary 3.1. Assume the following conditions are satisfied
(i) H1 and H2 are two real Hilbert spaces;

(ii) S : H1 → H1 and T : H2 → H2 are two directed operators;
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(iii) S : H1 → H1 and T : H2 → H2 are Lipschitz continuous with Lipschitz constant L > 1;
(iv) I − S and I − T are demiclosed at zero;
(v)

∑∞
n=0 ρ = ∞ and

∑∞
n=0 ρ

2
n < ∞.

Then the sequence {xn} generated by Algorithm 1.1 converges weakly to a solution z∗ of problem
(1.1), where z∗ = limn→∞ projΩ(xn).

Corollary 3.2. Assume the following conditions are satisfied
(i) H1 and H2 are two real Hilbert spaces;

(ii) S : H1 → H1 and T : H2 → H2 are two firmly-nonexpansive mappings;
(iii)

∑∞
n=0 ρn = ∞ and

∑∞
n=0 ρ

2
n < ∞.

Then the sequence {xn} generated by Algorithm 1.1 converges weakly to a solution z∗ of problem
(1.1), where z∗ = limn→∞ projΩ(xn).
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