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Best Ulam constant for a linear difference equation

ALINA-RAMONA BAIAS, FLORINA BLAGA and DORIAN POPA

ABSTRACT. In this paper we provide some results on Ulam stability for the linear difference equation of
order one in Banach spaces and we determine its best Ulam constant. The main result is applied to a process of
loan amortization.

1. INTRODUCTION

The starting point of stability theory for functional equations was the problem of S. M.
Ulam concerning approximate homomorphisms of groups, formulated in 1940 during a
talk at Madison University, Wisconsin (see [24]).

The first answer to Ulam’s problem was given a year later by D. H. Hyers who proved
that Cauchy’s equation in Banach spaces is stable. Generally, we say that an equation is
stable in Ulam sense if for every approximate solution of it there exists an exact solution
of the equation near it. For more details and results on Ulam stability we refer the reader
to [1, 6, 13, 5].

The problem of Ulam stability for difference equations is connected to the notion of
perturbation of a discrete dynamical system. Results on Ulam stability of linear difference
equation were obtained by J. Brzdek, D. Popa and B. Xu [6, 8, 18, 19].

The best constant in Ulam stability was studied in [12, 23] where is given a character-
ization of Ulam stability for linear operators and a representation of their best constant.
The best constant for some classical operators in approximation theory was obtained by
D. Popa and I. Raşa in [20, 21, 22]. J. Brzdek, S. M. Jung and M. Th Rassias obtained sharp
estimates for the Ulam constant of some linear difference equations of the second order
[7, 14]. As far as we know the best Ulam constant for the linear difference equation with
complex coefficients was not provided yet, a result on the best constant for a first order
difference equation with real coefficients was obtained by M. Onitsuka in [17].

The goal of this paper is to give some new results on Ulam stability for the linear dif-
ference equation of order one in Banach spaces and to determine its best Ulam constant.

2. MAIN RESULTS

Let K be one of the fields R or C and (X, ∥ · ∥) a Banach space over K. By N we denote
the set of all nonnegative integers. We deal with Ulam stability of the linear difference
equation (recurrence)

(2.1) xn+1 = axn + bn, n ∈ N, x0 ∈ X,

where a ∈ K, a ̸= 0, is a constant and (bn)n≥0 is a sequence in X.

Lemma 2.1. If (xn)n≥0 satisfies the linear difference equation (2.1) then

(2.2) xn = anx0 + b0a
n−1 + b1a

n−2 + ...+ bn−2a+ bn−1, n ≥ 1.

Received: 08.06.2018. In revised form: 03.12.2018. Accepted: 10.12.2018
2010 Mathematics Subject Classification. 39A30, 39B82.
Key words and phrases. linear difference equations, Ulam stability, best constant.
Corresponding author: Dorian Popa; Popa.Dorian@math.utcluj.ro.

13



14 A. R. Baias, F. Blaga and D. Popa

Proof. Induction. □

Definition 2.1. The equation (2.1) is called stable in Ulam sense if there exists a constant
L ≥ 0 such that for every ε > 0 and every (xn)n≥0 in X satisfying

(2.3) ∥xn+1 − axn − bn∥ ≤ ε, n ≥ 0,

there exists a sequence (yn)n≥0 in X with the proprieties

(2.4) yn+1 = ayn + bn, n ≥ 0,

and

(2.5) ∥xn − yn∥ ≤ Lε, n ≥ 0.

A sequence (xn)n≥0 which satisfies (2.3) for some ε > 0 is called an approximate solu-
tion of the linear difference equation (2.1). So, we can reformulate Definition 2.1 as folows:
the equation (2.1) is called Ulam stable if for every approximate solution of it there exists
an exact solution close to it.

If in Definition 2.1 the number ε is replaced by a sequence of positive numbers (εn)n≥0

and Lε from (2.5) by a sequence of positive numbers (δn)n≥0 the equation (2.1) is called
generalized stable in Ulam sense.

The number L from (2.5) is called an Ulam constant of the equation (2.1). In what
follows, we will denote by LR the infimum of all Ulam constants of (2.1). If LR is an Ulam
constant for (2.1), then we call it the best Ulam constant or the Ulam constant of the equation
(2.1). In general the infimum of all Ulam constants of an equation is not an Ulam constant
of that equation (see [12, 21]).

In this paper we obtain a result on generalized Ulam stability of the equation (2.1) and
consequently we determine its best Ulam constant.

The next result improves the estimates between the approximate solution and the exact
solution for the equation (2.1) given in [18, 19].

Theorem 2.1. Let (εn)n≥0 be a sequence of nonnegatives numbers, a ∈ K, a ̸= 0, and suppose

that the series
∞∑

n=0

εn
|a|n is convergent. Then for every sequence (xn)n≥0 in X with the property

(2.6) ∥xn+1 − axn − bn∥ ≤ εn, n ≥ 0,

there exists a unique sequence (yn)n≥0 satisfying

(2.7) yn+1 = ayn + bn, n ≥ 0,

and

(2.8) ∥xn − yn∥ ≤
∞∑
k=0

εn+k

|a|k+1
, n ≥ 1.

Proof. Existence. Suppose that (xn)n≥0 is a sequence in X satisfying relation (2.6) and let

xn+1 − axn − bn =: cn, n ≥ 0.

Then
∥cn∥ ≤ εn, n ≥ 0,

and according the Lemma 2.1, we get

xn = an

(
x0 +

n∑
k=1

bk−1 + ck−1

ak

)
, n ≥ 1.
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Consider the series
∞∑

n=1

cn−1

an
.

Since
∥cn−1

an
∥ ≤ εn−1

|a|n
, n ≥ 1,

and the series
∞∑

n=1

εn−1

∥a∥n

is convergent it follows, in view of the first comparison test, that the series
∞∑

n=1

cn−1

an

is absolutely convergent. Let
∞∑

n=1

cn−1

an
= s, s ∈ X.

Define now the sequence (yn)n≥0 by the recurrence

yn+1 = ayn + bn, y0 = x0 + s, n ≥ 0.

Then, in view of Lemma 2.1, we get

yn = an

(
y0 +

n∑
k=1

bk−1

ak

)
, n ≥ 1.

Consequently,

xn − yn = an

(
x0 − y0 +

n∑
k=1

ck−1

ak

)
=

= an

(
−s+

n∑
k=1

ck−1

ak

)

= −an
∞∑
k=0

cn+k

an+k+1
, n ≥ 0,

hence

∥xn − yn∥ = |a|n
∥∥∥∥∥

∞∑
k=0

cn+k

an+k+1

∥∥∥∥∥ ≤ |a|n
∞∑
k=0

εn+k

|a|k+1+n

=

∞∑
k=0

εn+k

|a|k+1
, n ≥ 0,

and the existence is proved.
Uniqueness. Suppose that for a sequence (xn)n≥0 in X satisfying (2.6) there exist two

sequences (yn)n≥0, (zn)n≥0 satisfying the equation (2.1) and

∥xn − yn∥ ≤
∞∑
k=0

εn+k

|a|k+1
, n ≥ 0,

∥xn − zn∥ ≤
∞∑
k=0

εn+k

|a|k+1
, n ≥ 0.
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Then

∥yn − zn∥ ≤ ∥yn − xn∥+ ∥xn − zn∥ ≤ 2

∞∑
k=0

εn+k

|a|k+1
, n ≥ 0.

Now, taking account of Lemma 2.1, we get

∥an(y0 − z0)∥ ≤ 2

∞∑
k=0

εn+k

|a|k+1
,

or

(2.9) ∥y0 − z0∥ ≤ 2

|a|

∞∑
k=0

εn+k

|a|n+k
, n ≥ 0.

But

Rn =

∞∑
n=0

εn+k

|a|n+k
, n ≥ 0,

is the remainder of order (n− 1) of the convergent series
∞∑

n=0

cn
|a|n

,

therefore
lim
n→∞

Rn = 0.

Letting now n → ∞ in (2.9), we get y0 = z0, therefore yn = zn, for every n ≥ 0, hence
the uniqueness is proved. □

As a consequence, a results on classical Ulam stability of equation (2.1) is given below.
See also [18].

Corollary 2.1. Suppouse that |a| ̸= 1 and let ε > 0. Then for every sequence (xn)n≥0 in X with
the property

(2.10) ∥xn+1 − axn − bn∥ ≤ ε, n ≥ 0,

there exists a sequence (yn)n≥0 such that

(2.11) yn+1 = ayn + bn, n ≥ 0,

(2.12) ∥xn − yn∥ ≤ ε

||a| − 1|
, n ≥ 0.

Moreover, if |a| > 1 the sequence (yn)n≥0 is unique.

Proof. Let |a| > 1 and take εn = ε, n ≥ 0, in Theorem 2.1. Then the series
∞∑

n=0

εn
|a|n

= ε

∞∑
k=0

1

|a|n
=

ε|a|
|a| − 1

is convergent and
∞∑
k=0

εn+k

|a|k+1
= ε

∞∑
k=0

1

|a|k+1
=

ε

|a| − 1
.

Hence the conclusion of the theorem holds with uniqueness for (yn)n≥0 and the Ulam
constant

L =
1

|a| − 1
,

in view of Theorem 2.1.
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Let now |a| < 1 and let (xn)n≥0 be a sequence in X which satisfies (2.10). Let the
sequence (cn)n≥0 be given by

xn+1 − axn − bn =: cn, n ≥ 0.

Then, according to Lemma 2.1, we get

xn = anx0 + (b0 + c0)a
n−1 + ...+ (bn−2 + cn−2)a+ bn−1 + cn−1, n ≥ 1.

Define the sequence (yn)n≥0 by

yn+1 = ayn + bn, n ≥ 0, y0 = x0.

Then

∥xn − yn∥ =
∥∥c0an−1 + ...+ cn−2a+ cn−1

∥∥
≤ ∥c0∥ |a|n−1

+ ...+ ∥cn−2∥ |a|+ ∥cn−1∥

≤ ε(1 + |a|+ ...+ |a|n) ≤ ε

1− |a|
, n ≥ 1.

□

Corollary 2.2. Let (εn)n≥0 be a sequence of positive numbers, a ∈ K, a ̸= 0, and suppose that

lim sup
εn+1

|a| εn
< 1.

Then for every q and a with
lim sup

εn+1

|a| εn
< q < 1

and |a| q < 1 there exist n0 ∈ N such that for every sequence (xn)n≥0 with the property

∥xn+1 − axn − bn∥ ≤ εn, n ≥ 0,

there exists a unique (yn)n≥0 satisfying the relations

yn+1 = ayn + bn, n ≥ 0

∥xn − yn∥ ≤ εn0

|a| (1− q)
, n ≥ n0.

Proof. Let
un =

εn
|a|n

, n ≥ 0.

Then
lim sup

un+1

un
= lim sup

εn+1

|a| εn
< 1,

so the series
∞∑

n=0

εn
|a|n

is convergent. Then, according to Theorem 2.1 it follows that for every sequence (xn)n≥0

satisfying (2.6) there exists a unique sequence (yn)n≥0 such that relations (2.7) and (2.8)
are fulfilled.

Now let q be such that

lim sup
εn+1

|a| εn
< q < 1, |a|q < 1.

Then there exists n0 ∈ N such that
εn+1

|a| εn
≤ q,
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for all n ≥ n0 . This relation leads to

εn ≤ |qa|n−n0 · εn0 , n ≥ n0.

We get
∞∑
k=0

εn+k

|a|k+1
≤

∞∑
k=0

εn0
|qa|n+k−n0

|a|k+1

=
εn0

|a|
|aq|n−n0 (1 + q + q2 + ...)

=
εn0

|a|
|aq|n−n0 · 1

1− q

≤ εn0

|a|
· 1

1− q
, n ≥ n0.

□

Remark 2.1. In the theory of difference equations there exists also the notion of stability
of an equilibrium point. We will discuss here, the relation between this type of stability
and Ulam stability for the linear difference equation

(2.13) xn+1 = axn + b, n ≥ 0,

where a ∈ K, b ∈ X, x0 ∈ X.
An equilibrium point of the equation (2.13) is an element x∗ ∈ X with the property

that x∗ = ax∗ + b, i.e., x∗ is a fixed point of the function f : X → X, f(x) = ax+ b.
The equilibrium point x∗ of the equation (2.13) is called asymptotically stable (or attract-

ing) if there exists δ > 0 such that for all x0 ∈ X with the property ∥x0 −x∗∥ < δ it follows
lim

n→∞
xn = x∗.

If δ = +∞, then x∗ is called globally asymptotically stable or x∗ is said to be a global
attractor. For more details on the stability of an equilibrium point we refer the reader to
[10, Chapter 4].

According to [10, Theorem 4.13] the equilibrium point x∗ is asymptotically stable if
|a| < 1 and asymptotically unstable if |a| > 1.

Then we can conclude that for the linear difference equation with constant coefficients
the asymptotic stability of an equilibrium point is equivalent with the Ulam stability of
the equation only for the case |a| < 1, while for the case |a| > 1 the equation (2.13) is
Ulam stable and asymptotically unstable. Remark also that the notion of Ulam stability
concerns the stability of the equation while asymptotic stability concerns the solution of
the equation (the equilibrium point).

Theorem 2.2. The best Ulam constant of the equation (2.1) is

LR =
1

||a| − 1|
, a ∈ K, |a| ≠ 1.

Proof. Suppose that equation (2.1) admits an Ulam constant L < LR.
Let ε > 0, u ∈ X, ∥u∥ = 1, and let (xn)n≥0 be given by

xn+1 − axn − bn = ε · an+1

|a|n+1 · u, n ≥ 0.

Then
∥xn+1 − axn − bn∥ = ε, n ≥ 0,

so there exist (yn)n≥0, satisfying yn+1 = ayn + bn, n ≥ 0, such that

(2.14) ∥xn − yn∥ ≤ Lε, n ≥ 0.
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In view of Lemma 2.1 we obtain

xn = an

x0 +

n∑
k=1

bk−1 + ε ak

|a|k u

ak

 , n ≥ 1,

and

yn = an

(
y0 +

n∑
k=1

bk−1

ak

)
, n ≥ 1.

Then

xn − yn = an

(
x0 − y0 + εu

n∑
k=1

1

|a|k

)

= an
(
x0 − y0 + εu · |a|n − 1

|a|n (|a| − 1)

)
, n ≥ 1.

10. Let |a| > 1. We have

lim
n→∞

(
x0 − y0 + εu

|a|n − 1

|a|n (|a| − 1)

)
= x0 − y0 +

εu

|a| − 1
.

If
x0 − y0 +

εu

|a| − 1
̸= 0,

it follows
lim

n→∞
∥xn − yn∥ = +∞,

a contradiction with relation (2.14).
If

x0 − y0 +
εu

|a| − 1
= 0,

then it follows

xn − yn = − anεu

|a|n(|a| − 1)
, n ≥ 1,

so

∥xn − yn∥ =
ε

|a| − 1
= εLR > εL,

a contradiction with (2.14).
20. Let |a| < 1. Then

∥xn − yn∥ =

∥∥∥∥an(x0 − y0 + εu
|a|n − 1

|a|n(|a| − 1)

)∥∥∥∥
= |a|n

∥∥∥∥x0 − y0 + εu
|a|n − 1

|a|n(|a| − 1)

∥∥∥∥
=

∥∥∥∥|a|n(x0 − y0 + εu
|a|n − 1

|a| − 1

)∥∥∥∥ ,
therefore

lim
b→∞

∥xn − yn∥ =
ε

1− |a|
=

ε

||a| − 1|
= εLR,

a contradiction with (2.14).
□
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3. LOAN AMORTIZATION VIA LINEAR DIFFERENCE EQUATIONS

It is well known that a lot of economical and financial processes can be described by
means of recursive rules between two consecutive elements, which from a mathematical
point of view constitute a difference equations of the first order. This includes for example
simple and compound interest calculation and loan amortization. In the sequel we will
present a practical application of the results obtained in this paper in loan amortization.
Suppose that a loan is repaid by a sequence of periodic payments. We denote by pn the
outstanding principal after the n-th payment qn, n ∈ N. We denote by r the interest rate.
Then the sequence (pn)n≥0 satisfies the following difference equation (see[10])

(3.15) pn+1 = (1 + r)pn − qn, 0 ≤ n ≤ n1,

where p(0) = p0 is the initial debt. Then pn is given by the following relation

(3.16) pn = (1 + r)np0 −
n−1∑
k=0

(1 + r)n−k−1qk, 1 ≤ n ≤ n1.

Let us suppose now that we want to change the scheme of payment of the outstanding
principal. This will imply obviously a change of the periodic payments qn, consequently,
it is essential to know which are the differences between the two schemes of payments and
how this affects the client. On the other hand, it is reasonable to assume that the periodic
payments qn is restricted (due to some exterior conditions), which implies Qn = qn + tn,
n ≥ 0 with |tn| ≤ ε, n ≥ 0, where Qn denotes the n-th payment in the new scheme of
amortization, with the same rate. Therefore for the new scheme we have

(3.17) Pn+1 = (1 + r)Pn − qn − tn, 0 ≤ n ≤ n2,

where |tn| ≤ ε for some positive fixed ε, where Pn denotes the outstanding principal after
the n-th payment. The relation (3.17) is equivalent to

(3.18) |Pn+1 − (1 + r)Pn − qn| ≤ ε, 0 ≤ n ≤ n2.

Now, according to Corollary 2.1 it follows that for every Pn satisfying (3.18) there exists
pn such that

pn+1 = (1 + r)pn − qn, 0 ≤ n ≤ n1

and

(3.19) |Pn − pn| ≤
ε

r
, 0 ≤ n ≤ min{n1, n2}.

The process is in agreement with reality if n is sufficiently large, for instance for loans for
real estate purposes.

3.1. An illustrative example. Consider the case of home loans which are traditionally
15-year to 30-year fixed rate mortgages. Most people do not keep a loan for that long,
they refinance the loan at some point or simply they choose the change the amortization
schedule either by adding extra amounts of money to their monthly payments or by pay-
ing less, according with their financial situation. Any change of the amortization scheme
will imply obviously a change of the outstanding principal or a change of the length of
the loan period.

Example 3.1. As follows we will analyze the amortization schedule for 60, 000 EUR thirty
year loan charging 10% interest. This will lead to a monthly payment of qn = 527 EUR.
Now supposing that the client pays slightly more, i.e. Qn = 533 EUR monthly, this will
lead to a reduction of the loan period with 2 years. In the below table we present a reduced
form of both amortization schemes.
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qn Interest Principal Balance Qn Interest Principal Balance
q1 500 E 27 E 59,973 E Q1 500 E 33 E 59,967 E
q2 500 E 27 E 59,947 E Q2 500 E 33E 59,934 E
q3 500 E 27 E 59,920 E Q3 499 E 34 E 59,901 E
. . . . . . . . . . . . . . . . . . . . . . . . .

q120 455 E 72 E 54,491 E Q120 436 E 97 E 52,171 E
q240 334 E 193 E 59,947 E Q240 295 E 238 E 35,111 E
. . . . . . . . . . . . . . . . . . . . . . . . .

q334 106 E 421 E 12,261 E Q334 13 E 520 E 1,052 E
q335 102 E 424 E 11,839 E Q335 9 E 524 E 528 E

Comparing the principals from the two monthly payments for the common periods,
according to relation (3.19) it can be seen that the difference between the two principals
remains less then 100 EUR, which is in agreement with our stability result for ε = 10 and

r =
1

10
. In order to evaluate the maximum difference of the principals in two distinct

amortization schemes ε can be chose by the client.
Since our stability results hold for infinitely many values of n, the behavior of the model

on finite periods of time can influence the accuracy of the results.
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