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Ulam stability with respect to a directed graph for some
fixed point equations

APIMUK BUAKIRD and SATIT SAEJUNG

ABSTRACT. In this paper, we introduce a new concept of Ulam stability of fixed point equation with re-
spected to a directed graph. Two fixed point theorems of Matkowski and of Jachymski are discussed further in
the sense of this stability concept. Some examples about the validity of our notion are given. Finally, we discuss
the vagueness of the recent stability results of Sintunavarat [Sintunavarat, W., A new approach to α-ψ-contractive
mappings and generalized Ulam–Hyers stability, well-posedness and limit shadowing results, Carpathian J. Math., 31
(2015), 395–401].

1. INTRODUCTION

Ulam posed the following interesting question in 1940 (see also [19]).
Suppose that G1 := (G1, ∗) and G2 := (G2, ⋄) are two groups and d :
G2 ×G2 → [0,∞) is a metric. For a given ε > 0 does there exist a number
δ := δ(ε) > 0 such that if f : G1 → G2 satisfies

d(f(x ∗ y), f(x) ⋄ f(y)) ≤ δ for all x, y ∈ G1,

then one can find a homomorphismF : G1 → G2 such that d(f(x), F (x)) ≤
ε for all x ∈ G1?

Hyers [6] gave a partial answer to Ulam’s question in 1941 where G1 and G2 are Banach
spaces. In this setting, he also obtained that δ(ε) ≤ ε for all ε > 0.

There are strict connections between Ulam stability and fixed point theory and for fur-
ther information we refer to the survey by Brzdȩk et al. (see [2]). Ulam’s question was
reformulated in the context of fixed point equation as follows. For more detail, we refer
to the excellent survey by Rus and Şerban [14].

Suppose that X := (X, d) is a metric space and T : X → X is given with a
fixed point set Fix(T ) := {p ∈ X : p = Tp}. For a given ε > 0 does there
exist a number δ := δ(ε) > 0 such that if w ∈ X satisfies

d(w, Tw) ≤ δ,

then one can find a fixed point p ∈ Fix(T ) such that d(p, w) ≤ ε?
If the preceding is true for the mapping T , then we say that the fixed point equation
x = Tx is Ulam stable. For simplicity from now on, we simply say that T is Ulam stable if
the fixed point equation x = Tx is Ulam stable. If there exists a constant c > 0 such that
δ(ε) ≤ cε for all ε > 0, then we say that T is Ulam–Hyers stable. That is, T is Ulam–Hyers
stable if and only if there exists c > 0 such that for any pair (w, ε) ∈ X × (0,∞) with
d(w, Tw) ≤ ε there exists a fixed point p ∈ Fix(T ) such that d(p, w) ≤ cε. In the literature,
the following generalization of Ulam–Hyers stability was introduced.
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Definition 1.1. Let X := (X, d) be a metric space and T : X → X be given. We say that
T is generalized Ulam–Hyers stable [14] if there exists an increasing function ξ : [0,∞) →
[0,∞) such that ξ(0) = 0, ξ is continuous at zero, and for any pair (w, ε) ∈ X× (0,∞) with
d(w, Tw) ≤ ε there exists a fixed point p ∈ Fix(T ) such that d(p, w) ≤ ξ(ε).

Remark 1.1. If T is generalized Ulam–Hyers stable, then it is Ulam stable. To see this,
let ε > 0 be given. Since T is generalized Ulam–Hyers stable, there exists an increasing
function ξ : [0,∞) → [0,∞) such that ξ(0) = 0, ξ is continuous at zero, and for any pair
(w, η) ∈ X × (0,∞) with d(w, Tw) ≤ η there exists a fixed point p ∈ Fix(T ) such that
d(p, w) ≤ ξ(η). We choose η := ξ−1(ε) > 0. It follows that if w ∈ X satisfies

d(w, Tw) ≤ η,

then one can find a fixed point p ∈ Fix(T ) such that d(p, w) ≤ ξ(η) = ε. In particular, we
have the following implications.

Ulam–Hyers
stability =⇒

generalized
Ulam–Hyers

stability
=⇒ Ulam

stability

There are several other types of stability, for more detail we refer to [10] and [4]. It is
easy to see that every Banach contraction defined on a complete metric space is Ulam–
Hyers stable. Recall that a mapping T : X → X is a Banach’s contraction if there exists a
constant α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X.

In the literature, there are many generalizations of a Banach’s contraction. We are mainly
interested in the following two types of generalizations due to Matkowski [9] and to
Jachymski [7], respectively.

Matkowski’s contractions.

Definition 1.2. Let X := (X, d) be a metric space and ψ : [0,∞) → [0,∞) be a nonde-
creasing function such that limn→∞ ψn(t) = 0 for all t > 0. A mapping T : X → X is a
Matkowski’s contraction or ψ-contraction if

d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X.

Remark 1.2. If ψ(t) = αtwhere α ∈ (0, 1), then a ψ-contraction becomes a Banach’s contraction.

Jachymski’s contractions. Recently, Jachymski introduced a class of mappings including
all Banach’s contractions and proved a fixed point theorem for mappings in this class.
From now on, by saying that X is a metric space with a directed graph G on X , we mean
that the vertex set V (G) of G is X and the edge set E(G) of G is a subset of the Cartesian
product X ×X such that (x, x) ∈ E(G) for all x ∈ X .

Definition 1.3. Let X := (X, d) be a metric space with a directed graph G on X . A
mapping T : X → X is a Banach G-contraction if there exists α ∈ (0, 1) such that for all
(x, y) ∈ E(G) the following two conditions hold:

• (Tx, Ty) ∈ E(G);
• d(Tx, Ty) ≤ αd(x, y).

Remark 1.3. It is clear that if E(G) = X × X , then a Banach G-contraction becomes a
Banach’s contraction.

Remark 1.4. We note that not every Banach G-contraction is Ulam stable. See Example
2.1.
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In this paper, we introduce a new type of Ulam stability to explain the stability of
Banach G-contractions. In fact, our result includes a wider class of mappings whose con-
tractiveness in the sense of Matkowski is given with respect to a directed graph. We also
discuss some vague result proved by Sintunavarat [17] concerning the generalized Ulam–
Hyers stability. As pointed out by the referee, the results of the paper are related to some
simplified versions of outcomes in several other papers (which can be found in the refer-
ences of the survey [2]) such as Corollary 3.2 in [3].

2. MAIN RESULTS

In this paper we introduce the following concept.

Definition 2.4. Let (X, d) be a metric space with a directed graph G on X and T : X → X
be a mapping such that Fix(T ) ̸= ∅. We say that a mapping T : X → X is Ulam stable with
respect to G if for each ε > 0 there is a δ := δ(ε) > 0 such the following implication holds:

d(w, Tw) ≤ δ and (w, Tw) ∈ E(G) =⇒ there exists p ∈ Fix(T ) such that d(p, w) ≤ ε.

In the preceding notion, if there exists a constant c > 0 such that δ(ε) ≤ cε for all ε > 0,
then we say that T is Ulam–Hyers stable with respect to G.

Remark 2.5. In particular, if E(G) := X × X , then the Ulam stability with respect to G
(Ulam–Hyers stability with respect to G, respectively) becomes the Ulam stability (Ulam–
Hyers stability, respectively).

Inspired by the works of Matkowski [9] and of Jachymski [7], we introduce the follow-
ing mappings.

Definition 2.5. Let (X, d) be a metric space with a directed graph G on X . Define ψ :
[0,∞) → [0,∞) is a nondecreasing function. We say that T : X → X is

(i) a (ψ,G)-contraction of type I if the following conditions hold
•
∑∞

n=1 ψ
n(t) <∞ for all t > 0;

• (Tx, T 2x) ∈ E(G) whenever (x, Tx) ∈ E(G);
• d(Tx, Ty) ≤ ψ(d(x, y)) whenever (x, y) ∈ E(G);

(ii) a (ψ,G)-contraction of type II if the following conditions hold
• limn→∞ ψn(t) = 0 for all t > 0;
• (Tx, T 2x) ∈ E(G) whenever (x, Tx) ∈ E(G);
• d(Tx, Ty) ≤ ψ(d(x, y)) whenever (x, y) ∈ E(G).

Our stability results rely on the following two additional assumptions (see [7]).
(J1) If {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for all n ≥ 1 and xn → p for

some p ∈ X , then there exists a subsequence {xnk
} of {xn} such that (xnk

, p) ∈ E(G)
for all k ≥ 1.

(J2) For each x, y ∈ X if Tnkx → y and (Tnkx, Tnk+1x) ∈ E(G) for all k ≥ 1, then
T (Tnkx) → Ty.

Remark 2.6. • Since we will mention some fixed point theorems proved under a bit
stronger assumption than the condition (J1), we refer to this assumption as (J1*).
More precisely, it is defined as follows.

(J1*) If {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for all n ≥ 1 and
xn → p for some p ∈ X , then (xn, p) ∈ E(G) for all n ≥ 1.

• The condition (J2) is sometimes referred as the orbital G-continuity of T [7].

2.1. (ψ,G)-contractions of type I.
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2.1.1. Fixed point theorem.

Theorem 2.1. Let (X, d) be a complete metric space with a directed graph G on X . Suppose that
T : X → X is a (ψ,G)-contraction of type I and suppose that either the condition (J1) or (J2)
holds. If there exists an element x0 ∈ X such that (x0, Tx0) ∈ E(G), then Tnx0 → p for some
p ∈ Fix(T ), that is, Fix(T ) ̸= ∅.

Proof. Set x1 := x0 and xn+1 := Txn for all n ≥ 1. If d(x1, x2) = 0, then x1 = Tx1
and we are done. We now assume that d(x1, x2) > 0. Note that (xn, xn+1) ∈ E(G) and
d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) for all n ≥ 1. In particular,

d(xn+1, xn+2) ≤ ψn(d(x1, x2))

for all n ≥ 1. Note that
∑∞

n=1 ψ
n(d(x1, x2)) < ∞, and hence

∑∞
n=1 d(xn+1, xn+2) < ∞.

This implies that {xn} is a Cauchy sequence. By the completeness ofX , there is an element
p ∈ X such that xn → p. We now show that p = Tp. The proof is divided into 2 cases.

Case 1: We assume the condition (J1). Then there exists a subsequence {xnk
} of {xn}

such that (xnk
, p) ∈ E(G) for all k ≥ 1. We consider the following

d(p, Tp) ≤ d(p, xnk+1) + d(xnk+1, Tp)

= d(p, xnk+1) + d(Txnk
, Tp)

≤ d(p, xnk+1) + ψ(d(xnk
, p))

for all k ≥ 1. Letting k → ∞ gives p = Tp, that is, p is a fixed point of T .
Case 2: We assume the condition (J2). In this case, we have

p = lim
n→∞

xn+1 = lim
n→∞

Tnx1 = lim
n→∞

T (Tnx1) = Tp.

Then p is a fixed point of T .
This completes the proof. □

2.1.2. Ulam stability with respect to G.

Lemma 2.1. Let ψ : [0,∞) → [0,∞) be a nondecreasing function such that
∑∞

k=1 ψ
k(t) < ∞

for all t > 0. Then for each ε > 0 there exists δ > 0 such that

δ +

∞∑
k=1

ψk(δ) ≤ ε.

Proof. Let ε > 0 be given. Then
∑∞

k=1 ψ
k(ε) < ∞. In particular, there exists a positive in-

teger N such that
∑∞

k=N ψk(ε) ≤ ε. We now choose δ := ψN (ε). Hence, δ+
∑∞

k=1 ψ
k(δ) =∑∞

k=N ψk(ε) ≤ ε as desired. □

We present two Ulam stability results with respect to G for (ψ,G)-contractions of type
I.

Theorem 2.2. Let (X, d) be a complete metric space with a directed graph G on X . Suppose that
T : X → X is a (ψ,G)-contraction of type I. Suppose that either the condition (J1) or (J2) holds.
If Fix(T ) ̸= ∅, then T is Ulam stable with respect to G.

Proof. Suppose that T : X → X is a (ψ,G)-contraction of type I. Let ε > 0. By Lemma
2.1, there exists a δ > 0 such that δ +

∑∞
k=1 ψ

k(δ) ≤ ε. Let w be an element in X such
that (w, Tw) ∈ E(G) and d(w, Tw) ≤ δ. (Note that such an element w exists because
{(x, x) : x ∈ X} ⊂ E(G) and Fix(T ) ̸= ∅.) Set x1 := w and define xn+1 := Txn for all
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n ≥ 1. It follows from Theorem 2.1 that xn → p for some p ∈ Fix(T ). Furthermore, since
d(xk, xk+1) ≤ ψk(d(x1, x2)) ≤ ψk(δ), we also have

d(w, p) = lim
n→∞

d(x1, xn+1) ≤ lim
n→∞

n∑
k=1

d(xk, xk+1) ≤ δ+ lim
n→∞

n∑
k=1

ψk(δ) = δ+

∞∑
k=1

ψk(δ) ≤ ε.

Thus, T is Ulam stable with respect to G. □

The following example shows that our concept of Ulam stability with respect to G is
more suitable for (ψ,G)-contractions than the classical Ulam stability.

Example 2.1. Let X := [0, 1] be a metric space with a usual metric d. Define T : X → X
by

Tx :=

{
x/2 if x ∈ [0, 1/2] ∪ {1}
1 if x ∈ (1/2, 1).

Then the following statements are true.
(a) T is a (ψ,G)-contraction of type I where ψ(t) = t/2 for all t ≥ 0 andE(G) := [0, 1/2]2∪

{(x, x) : x ∈ (1/2, 1]}.
(b) T is not Ulam stable.
(c) T is Ulam stable with respect to G.

Proof. (a) It is clear that ψ is nondecreasing and
∑∞

n=1 ψ
n(t) < ∞ for all t > 0. Moreover,

if (x, y) ∈ E(G), then (Tx, Ty) ∈ E(G) and d(Tx, Ty) ≤ ψ(d(x, y)). Hence T is a (ψ,G)-
contraction of type I.

(b) To see this, we choose ε := 1/2 and set xn := (n+1)/(n+2) for all n ≥ 1. It follows
that d(xn, Txn) = d((n + 1)/(n + 2), 1) → 0. Note that 0 is the only one fixed point of T
and d(xn, 0) ≥ 1/2 for all n ≥ 1. Hence T is not Ulam stable.

(c) We conclude the result by using Theorem 2.2. In fact, we show that the condition
(J1) is satisfied. Suppose that {xn} is a sequence in X such that (xn, xn+1) ∈ E(G) for
all n ≥ 1 and xn → p for some p ∈ X . The result follows easily if p ̸= 1/2. We now
consider the case p = 1/2. If there exists an integer N such that xn > p for all n ≥ N , then
xn = xN for all n ≥ N which is impossible. Hence there exists a subsequence {xnk

} such
that xnk

≤ p for all k ≥ 1. In particular, (xnk
, p) ∈ E(G) for all k ≥ 1. So T is Ulam stable

with respect to G. □

2.2. (ψ,G)-contractions of type II.

2.2.1. Fixed point theorem.

Lemma 2.2 ([1]). Suppose that {xn} is a sequence in a metric space (X, d). If {xn} is not a
Cauchy sequence, then there exist a constant ε > 0 and two subsequences {xnk

} and {xmk
} of

{xn} such that the following two conditions hold: for all k ≥ 1 one has

nk < mk and d(xnk
, xmk−1) < ε ≤ d(xnk

, xmk
).

Theorem 2.3. Let (X, d) be a complete metric space with a directed graph G on X . Suppose that
G is transitive, that is, (x, z) ∈ E(G) whenever (x, y) ∈ E(G) and (y, z) ∈ E(G). Suppose that
T : X → X is a (ψ,G)-contraction of type II and suppose that either the condition (J1) or (J2)
holds. If there exists an element x0 ∈ X such that (x0, Tx0) ∈ E(G), then Tnx0 → p for some
p ∈ Fix(T ), that is, Fix(T ) ̸= ∅.

Proof. Set x1 := x0 and xn+1 := Txn for all n ≥ 1. If d(x1, x2) = 0, then x1 = Tx1
and we are done. We now assume that d(x1, x2) > 0. Note that (xn, xn+1) ∈ E(G) and
d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) for all n ≥ 1. In particular,

d(xn+1, xn+2) ≤ ψn(d(x1, x2))
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for all n ≥ 1. In particular, limn→∞ d(xn, xn+1) = 0. We show that {xn} is a Cauchy
sequence. Suppose that {xn} is not a Cauchy sequence. There exist an η > 0 and two
sequences {nk} and {mk} of {n} such that k ≤ nk ≤ mk and d(xnk

, xmk−1) < η ≤
d(xnk

, xmk
) for all k ≥ 1. We note from the transitivity of G that (xnk

, xmk−1) ∈ E(G)
and we obtain the following

η − d(xnk
, xnk+1) ≤ d(xnk

, xmk
)− d(xnk

, xnk+1)

≤ d(xnk+1, xmk
)

≤ ψ(d(xnk
, xmk−1))

≤ ψ(η).

Letting k → ∞ gives η ≤ ψ(η), that is, η = 0 which is a contradiction. Hence, {xn} is a
Cauchy sequence. By the completeness of X , there is an element p in X such that xn → p.
The proof that p is a fixed point of T follows exactly as the same as the proof of Theorem
2.1 so it is left for the reader to verify. □

2.2.2. Ulam stability with respect to G.

Lemma 2.3 ([15, 18]). If ψ : [0,∞) → [0,∞) is nonexpansive, that is, |ψ(s) − ψ(t)| ≤ |s − t|
for all s, t ≥ 0, then I − ψ is nondecreasing where I is the identity mapping.

We present the Ulam stability result with respect to G for (ψ,G)-contractions of type II.

Theorem 2.4. Let (X, d) be a complete metric space with a directed graph G on X . Suppose
that T : X → X is a (ψ,G)-contraction of type II where G is transitive and ψ is nonexpansive.
Suppose that either the condition (J1) or (J2) holds. If Fix(T ) ̸= ∅, then T is Ulam stable with
respect to G.

Proof. Suppose that T : X → X is a (ψ,G)-contraction mapping of type II where ψ is a
nonexpansive mapping and G is transitive. Let ε > 0. We choose δ := (ε− ψ(ε))/2. Let w
be an element in X such that (w, Tw) ∈ E(G) and d(w, Tw) ≤ δ. Set x1 := w and define
xn+1 := Txn for all n ≥ 1. It follows from Theorem 2.3 that xn → p where p ∈ Fix(T ). We
consider

d(w, p) = d(x1, p) ≤ d(x1, x2) + d(x2, p)

= d(x1, Tx1) + d(Tx1, Tp)

≤ d(x1, Tx1) + ψ(d(x1, p))

≤ δ + ψ(d(w, p)).

In particular, (I − ψ)(d(w, p)) ≤ δ. Suppose that ε < d(w, p). Then (I − ψ)(ε) ≤ (I −
ψ)(d(w, p)) ≤ δ = (ε − ψ(ε))/2 which is a contradiction. Hence, d(w, p) ≤ ε. Thus, T is
Ulam stable with respect to G. □

There exists a nondecreasing and nonexpansive function ψ : [0,∞) → [0,∞) such that
limn→∞ ψn(t) = 0 and

∑∞
n=1 ψ

n(t) = ∞ for all t > 0. In particular, this reveals the
importance of Theorem 2.4.

Example 2.2. Define ψ : [0,∞) → [0,∞) by ψ(t) = t/(1 + t) for all t ≥ 0. Then ψ is
nonexpansive, limn→∞ ψn(t) = 0, and

∑∞
n=1 ψ

n(t) = ∞ for all t > 0. In fact, for each
n ≥ 1, we note that ψn(t) = t

1+nt for all t ≥ 0.
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3. DEDUCED RESULTS AND SOME REMARKS

3.1. Ulam–Hyers stability with respect to G of Banach G-contractions. By Theorem 2.2,
we obtain the following result which supplements the result of Jachymski [7].

Corollary 3.1. Suppose that (X, d) is a complete metric space with a directed graph G on X .
Suppose that T : X → X is a Banach G-contraction with a fixed point. If either the condition (J1)
or (J2) holds, then T is Ulam–Hyers stable with respect to G.

Proof. Suppose that there exists a constant α ∈ (0, 1) such that (Tx, Ty) ∈ E(G) and
d(Tx, Ty) ≤ αd(x, y) for all (x, y) ∈ E(G). Put ψ(t) := αt for all t ≥ 0. Let ε > 0 be given.
Note that if δ = (1−α)ε, then δ+

∑∞
k=1 ψ

k(δ) = δ+
∑∞

k=1 α
kδ = ε. It follows from the proof

of Theorem 2.2 that for each w ∈ X with (w, Tw) ∈ E(G) and d(w, Tw) ≤ δ = (1 − α)ε
there exists a fixed point p of T such that d(p, w) ≤ ε. This completes the proof. □

3.2. Remarks on Sintunavarat’s results. We will discuss some vague statements in the
recent result of Sintunavarat [17]. His results are established in a different context but it
will be seen later that it is equivalent to the setting with a directed graph (see Remark
3.7(1)). We first recall some concepts.

Definition 3.6. Let (X, d) be a metric space. Suppose that ψ : [0,∞) → [0,∞) is a nonde-
creasing function such that

∑∞
n=1 ψ

n(t) <∞ for all t > 0. Suppose that α : X×X → [0,∞)
and T : X → X .

• T is weakly α-admissible if α(Tx, T 2x) ≥ 1 whenever α(x, Tx) ≥ 1.
• T is an (α,ψ)-contraction if α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)) for all x, y ∈ X .
• X is α-regular if whenever {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for

all n ≥ 1 and xn → p for some p ∈ X it follows that α(xn, p) ≥ 1 for all n ≥ 1.

Definition 3.7. Let (X, d) be a metric space and ε > 0. A point p ∈ X is an ε-fixed point of
a mapping T : X → X if d(p, Tp) ≤ ε.

We carefully restate the following result from [17, Theorems 2.1, 2.2, 2.3, and 3.4].

Theorem 3.5. Suppose that (X, d) is a complete metric space. Suppose that T : X → X is an
(α,ψ)-contraction and it is weakly α-admissible with α(x0, Tx0) ≥ 1 for some x0 ∈ X . Suppose
in addition that either T is continuous or X is α-regular. Then the following statements are true.
(a) Fix(T ) ̸= ∅.
(b) If α(p, q) ≥ 1 for all p, q ∈ Fix(T ), then Fix(T ) is a singleton.
(c) Suppose that I −ψ is strictly increasing and onto. If α(p′, q′) ≥ 1 for all ε-fixed points p′ and

q′ of T , then T is generalized Ulam–Hyers stable.

The remarks for the preceding theorem are as follows.

Remark 3.7. (1) Suppose that T : X → X is an (α,ψ)-contraction and it is weakly α-
admissible. We define a directed graph G on X by letting E(G) := {(x, y) : α(x, y) ≥
1}. It follows that T is a (ψ,G)-contraction of type I. In fact, if (x, y) ∈ E(G), then
α(x, y) ≥ 1 and hence

d(Tx, Ty) ≤ α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)).

The continuity of T can be replaced by the G-orbital continuity of T , that is, the con-
dition (J2). The α-regularity of X becomes the condition (J1*) which is a stronger
assumption than the condition (J1). On the other hand, suppose that T is a (ψ,G)-
contraction of type I. Now, we define α(x, y) := 1 if (x, y) ∈ E(G) and α(x, y) := 0 if
(x, y) /∈ E(G). It follows that T is an (α,ψ)-contraction and it is weakly α-admissible.
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(2) Our result for (ψ,G)-contractions of type II also provides a new information which is
beyond the scope of the work of [17].

(3) No quantifier about ε is given in the statement (c) of Theorem 3.5. (The same patterns
of vague statements are in [8, 11, 5, 16, 12, 13].) Moreover, in the proof of [17, Theorem
3.4] (page 400 line 7), the given ε > 0 is not arbitrary as required in the definition of the
generalized Ulam–Hyers stability. Finally, we discuss the validity of the assumption:
α(p′, q′) ≥ 1 for all ε-fixed points p′ and q′ of T . Note that if we set Xε := {x :
d(x, Tx) ≤ ε}, then it follows from the continuity of T or the α-regularity X that the
subsetXε is closed and hence complete. It is clear that T : Xε → Xε is a ψ-contraction.
From this point, the function α plays no role in the study.
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