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Hemi-slant submanifolds in metallic Riemannian
manifolds

CRISTINA E. HRETCANU and ADARA M. BLAGA

ABSTRACT. The aim of our paper is to focus on some properties of hemi-slant submanifolds in metallic
(and Golden) Riemannian manifolds. We give some characterizations of hemi-slant submanifolds in metallic or
Golden Riemannian manifolds and we obtain integrability conditions for the distributions involved. Examples
of hemi-slant submanifolds in metallic and Golden Riemannian manifolds are given.

1. INTRODUCTION

The geometry of slant submanifolds in complex manifolds, studied by B. Y. Chen in
([7]) in the early 1990’s, was extended to semi-slant submanifold, pseudo-slant submani-
fold and bi-slant submanifold, respectively, in different types of differentiable manifolds.
The pseudo-slant submanifolds (also called hemi-slant submanifolds) in Kenmotsu or
nearly Kenmotsu manifolds ([1], [2]) or in locally decomposable Riemannian manifolds
([3]) were studied by M. Atçeken et al. Properties of hemi-slant submanifolds in locally
product Riemannian manifolds were studied by H. M. Taştan and F. Ozdem in ([15]).

The notion of metallic structure (and, in particular, Golden structure) on a Riemannian
manifold was initially studied in ([4], [5], [6], [8],[12],[13],[14]). In ([12]), the authors of the
present paper studied the properties of the slant and semi-slant submanifolds in metallic
or Golden Riemannian manifolds.

The purpose of the present paper is to investigate the properties of hemi-slant subman-
ifolds in metallic (or Golden) Riemannian manifolds. Using a polynomial structure on a
manifold ([9]) and the metallic numbers ([16]), we defined the metallic structure J ([14]).

The name of this structure is provided by the metallic number σp,q =
p+

√
p2+4q

2 (i.e. the
positive solution of the equation x2 − px− q = 0) for positive integer values of p and q. If
M is an m-dimensional manifold endowed with a tensor field J of type (1, 1) such that:

(1.1) J2 = pJ + qI,

for p, q ∈ N∗, where I is the identity operator on the Lie algebra Γ(TM), then the structure
J is a metallic structure. In this situation, the pair (M,J) is called metallic manifold.

In particular, if p = q = 1 one obtains the Golden structure ([8]) determined by a (1, 1)-
tensor field J which verifies J2 = J + I . In this case, (M,J) is called Golden manifold
([8]).

If (M, g) is a Riemannian manifold endowed with a metallic (or a Golden) structure J ,
such that the Riemannian metric g is J-compatible, i.e.:

(1.2) g(JX, Y ) = g(X, JY ),
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for any X,Y ∈ Γ(TM), then (g, J) is called a metallic (or a Golden) Riemannian structure
and (M, g, J) is a metallic (or a Golden) Riemannian manifold ([14]). Moreover, we have:

(1.3) g(JX, JY ) = g(J2X,Y ) = pg(JX, Y ) + qg(X,Y ),

for any X,Y ∈ Γ(TM) ([14]).
Any almost product structure F on M induces two metallic structures on M :

(1.4) J =
p

2
I ± 2σp,q − p

2
F,

where I is the identity operator on the Lie algebra Γ(TM) ([14]).

2. SUBMANIFOLDS IN THE METALLIC RIEMANNIAN MANIFOLDS

Let M be an m′-dimensional submanifold, isometrically immersed in the m-dimensional
metallic (or Golden) Riemannian manifold (M, g, J) with m,m′ ∈ N∗ and m > m′. Let
TxM be the tangent space of M in a point x ∈ M and T⊥

x M the normal space of M in x.
The tangent space TxM can be decomposed into the direct sum: TxM = TxM ⊕ T⊥

x M,

for any x ∈ M . Let i∗ be the differential of the immersion i : M → M . The induced Rie-
mannian metric g on M is given by g(X,Y ) = g(i∗X, i∗Y ), for any X,Y ∈ Γ(TM). For the
simplification of the notations, in the rest of the paper we shall note by X the vector field
i∗X , for any X ∈ Γ(TM). Properties of submanifolds in metallic Riemannian manifolds
was studied in ([10]) and ([11]). If we denote by TX and NX , respectively, the tangential
and normal parts of JX , for any X ∈ Γ(TM), then we get:

(2.1) JX = TX +NX,

T : Γ(TM) → Γ(TM), TX := (JX)T and N : Γ(TM) → Γ(T⊥M), NX := (JX)⊥. For
any V ∈ Γ(T⊥M), the tangential and normal parts of JV satisfy:

(2.2) JV = tV + nV,

t : Γ(T⊥M) → Γ(TM), tV := (JV )T and n : Γ(T⊥M) → Γ(T⊥M), nV := (JV )⊥.
We remark that the maps T and n are g-symmetric ([5]):

(2.3) (i) g(TX, Y ) = g(X,TY ), (ii) g(nU, V ) = g(U, nV ),

for any X,Y ∈ Γ(TM) and U, V ∈ Γ(T⊥M). Moreover, we get

(2.4) g(NX,U) = g(X, tU),

for any X ∈ Γ(TM) and U ∈ Γ(T⊥M). By using (2.1), (2.2) and (1.1), we obtain:

Remark 2.1. If M is a submanifold in a metallic Riemannian manifold (M, g, J), then:

(2.5) (i) T 2X = pTX + qX − tNX, (ii) pNX = NTX + nNX,

(2.6) (i) n2V = pnV + qV −NtV, (ii) ptV = TtV + tnV,

for any X ∈ Γ(TM) and V ∈ Γ(T⊥M).
For p = q = 1 and M is a submanifold in a Golden Riemannian manifold (M, g, J)

then, for any X ∈ Γ(TM) we get T 2X = TX +X − tNX , NX = NTX + nNX and for
any V ∈ Γ(T⊥M) we get n2V = nV + V −NtV , tV = TtV + tnV .

Remark 2.2. ([11]) Let (M, g) be a Riemannian manifold endowed with an almost product
structure F and let J be one of the two metallic structures induced by F on M . If M is
a submanifold in the almost product Riemannian manifold (M, g, F ) and for any X ∈
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Γ(TM), V ∈ Γ(T⊥M) we have FX = fX + ωX , FV = BV + CV , with fX := (FX)T ,
ωX := (FX)⊥, BV := (FV )T and CV := (FV )⊥, then:

(2.7) (i) TX =
p

2
X ± 2σ − p

2
fX, (ii)NX = ±2σ − p

2
ωX

(2.8) (i) tV = ±2σ − p

2
BV, (ii) nV =

p

2
V ± 2σ − p

2
CV.

In the next considerations we denote by ∇ and ∇ the Levi-Civita connections on (M, g)
and its submanifold (M, g), respectively. The Gauss and Weingarten formulas are given
by:

(2.9) (i)∇XY = ∇XY + h(X,Y ), (ii)∇XV = −AV X +∇⊥
XV,

for any X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h is the second fundamental form and
AV is the shape operator. The second fundamental form and the shape operator verify:

(2.10) g(h(X,Y ), V ) = g(AV X,Y ).

Definition 2.1. ([10]) If (M, g, J) is a metallic (or Golden) Riemannian manifold and J
is parallel with respect to the Levi-Civita connection ∇ on M (i.e. ∇J = 0), we say that
(M, g, J) is a locally metallic (or locally Golden) Riemannian manifold.

The covariant derivatives of the tangential and normal parts of JX (and JV ), T and N
(t and n, respectively) are given by ([10],[1]):

(2.11) (i) (∇XT )Y = ∇XTY − T (∇XY ), (ii) (∇XN)Y = ∇⊥
XNY −N(∇XY ),

(2.12) (i) (∇Xt)V = ∇XtV − t(∇⊥
XV ), (ii) (∇Xn)V = ∇⊥

XnV − n(∇⊥
XV ),

for any X , Y ∈ Γ(TM) and V ∈ Γ(T⊥M). From g(JX, Y ) = g(X, JY ), it follows:

(2.13) g((∇XJ)Y,Z) = g(Y, (∇XJ)Z),

for any X , Y , Z ∈ Γ(TM). Moreover, if M is an isometrically immersed submanifold in
the metallic Riemannian manifold (M, g, J), then ([6]):

(2.14) g((∇XT )Y,Z) = g(Y, (∇XT )Z),

for any X , Y , Z ∈ Γ(TM).

Lemma 2.1. ([11]) If M is a submanifold in a locally metallic (or Golden) Riemannian manifold
(M, g, J), then the covariant derivatives of T and N verify:

(2.15) (i)(∇XT )Y = ANY X + th(X,Y ), (ii) (∇XN)Y = nh(X,Y )− h(X,TY ),

(2.16) (i)(∇Xt)V = AnV X − TAV X, (ii) (∇Xn)V = −h(X, tV )−NAV X,

for any X , Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

Remark 2.3. If M is a submanifold in a locally metallic (or locally Golden) Riemannian
manifold (M, g, J), then we obtain:

(2.17) g((∇XN)Y, V ) = g((∇Xt)V, Y ),

for any X , Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

Proof. From (2.15) (ii) and (2.3) (ii) we get g((∇XN)Y, V ) = g(h(X,Y ), nV )−g(h(X,TY ), V ) =
g(AnV X − TAV X,Y ) and using (2.16)(i) we obtain (2.17). □
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Theorem 2.1. Let M be a submanifold in a locally metallic (or locally Golden) Riemannian man-
ifold (M, g, J). Then (∇XN)Y = 0 and (∇Xt)V = 0, for any X , Y ∈ Γ(TM), V ∈ Γ(T⊥M)
if and only if the shape operator A verifies:

(2.18) AnV X = TAV X = AV TX.

Proof. From (2.3)(ii) we get g(nh(X,Y ), V ) = g(h(X,Y ), nV ), for any X,Y ∈ Γ(TM),
V ∈ Γ(T⊥M). Thus, we obtain:

g((∇XN)Y, V ) = g(h(X,Y ), nV )− g(h(X,TY ), V ) = g(AnV X,Y )− g(AV X,TY ),

for any X,Y ∈ Γ(TM), V ∈ Γ(T⊥M). From (2.15)(ii) and (2.10) we have

(2.19) g((∇XN)Y, V ) = g(AnV X − TAV X,Y ) = g(AnV Y −AV TY,X),

for any X,Y ∈ Γ(TM), V ∈ Γ(T⊥M). Thus, from (2.19) and (2.17) we obtain the conclu-
sion. □

Theorem 2.2. ([11]) If M is a submanifold in a locally metallic (or locally Golden) Riemannian
manifold (M, g, J), then:

(2.20) T ([X,Y ]) = ∇XTY −∇Y TX −ANY X +ANXY

(2.21) N([X,Y ]) = h(X,TY )− h(TX, Y ) +∇⊥
XNY −∇⊥

Y NX,

for any X,Y ∈ Γ(TM), where ∇ is the Levi-Civita connection on Γ(TM).

3. HEMI-SLANT SUBMANIFOLDS IN METALLIC RIEMANNIAN MANIFOLDS

In this section we recall the definition of a slant distribution and of a bi-slant subman-
ifold in a metallic (or Golden) Riemannian manifold. Then, we define the hemi-slant
submanifold and find some properties regarding the distributions involved in this type of
submanifold, using a similar definition as for Riemannian product manifold ([15]).

Definition 3.2. ([11]) Let M be an immersed submanifold in a metallic (or Golden) Rie-
mannian manifold (M, g, J). A differentiable distribution D on M is called a slant distri-
bution if the angle θD between JXx and the vector subspace Dx is constant, for any x ∈ M
and any nonzero vector field Xx ∈ Γ(Dx). The constant angle θD is called the slant angle
of the distribution D.

Theorem 3.3. ([11]) Let D be a differentiable distribution on a submanifold M of a metallic (or
Golden) Riemannian manifold (M, g, J). The distribution D is a slant distribution if and only if
there exists a constant λ ∈ [0, 1] such that:

(3.1) (PDT )2X = λ(pPDTX + qX),

for any X ∈ Γ(D), where PD is the orthogonal projection on D. Moreover, if θD is the slant angle
of D, then it satisfies λ = cos2 θD.

Definition 3.3. ([11]) Let M be an immersed submanifold in a metallic (or Golden) Rie-
mannian manifold (M, g, J). We say that M is a bi-slant submanifold of M if there exist two
orthogonal differentiable distribution D1 and D2 on M such that TM = D1⊕D2, and D1,
D2 are slant distributions with the slant angles θ1 and θ2, respectively. Moreover, M is a
proper bi-slant submanifold of M if dim(D1) · dim(D2) ̸= 0.

Definition 3.4. An immersed submanifold M in a metallic (or Golden) Riemannian mani-
fold (M, g, J) is a hemi-slant submanifold if there exist two orthogonal distributions Dθ and
D⊥ on M such that:

(1) TM admits the orthogonal direct decomposition TM = Dθ ⊕D⊥;



Hemi-slant submanifolds in metallic Riemannian manifolds 63

(2) The distribution Dθ is slant with angle θ ∈ [0, π
2 ];

(3) The distribution D⊥ is anti-invariant distribution (i.e. J(D⊥) ⊆ Γ(T⊥M )).
Moreover, if dim(Dθ) · dim(D⊥) ̸= 0 and θ ∈ (0, π

2 ), then M is a proper hemi-slant
submanifold.

Remark 3.4. If M is a hemi-slant submanifold in a metallic Riemannian manifold (M, g, J),
with TM = Dθ ⊕D⊥, for particular cases we get:

(1) if θ = 0 and dim(D⊥) = 0, then M is an invariant submanifold;
(2) if dim(Dθ) = 0 or θ = π

2 , then M is an anti-invariant submanifold;
(3) if dim(D⊥) = 0 and θ ̸= 0, then M is a slant submanifold;
(4) if dim(Dθ) · dim(D⊥) ̸= 0 and θ = 0, then M is a semi-invariant submanifold.

Remark 3.5. If M is a hemi-slant submanifold in a metallic Riemannian manifold (M, g, J),
with TM = Dθ ⊕D⊥, then we get that M is an anti-invariant submanifold if θ = π

2 and
g(JX, Y ) = 0, for any X ∈ Γ(Dθ) and X ∈ Γ(D⊥).

Let M be a hemi-slant submanifold in a metallic Riemannian manifold (M, g, J), with
TM = Dθ ⊕ D⊥ and let P1 and P2 be the orthogonal projections on Dθ and D⊥, respec-
tively. Thus, for any X ∈ Γ(TM), we can consider the decomposition of X = P1X +P2X ,
where P1X ∈ Γ(Dθ) and P2X ∈ Γ(D⊥). From J(D⊥) ⊆ Γ(T⊥M) we obtain:

Lemma 3.2. If M is a hemi-slant submanifold in a metallic (or Golden) Riemannian manifold
(M, g, J) then, for any X ∈ Γ(TM) we have:

(3.2) JX = TP1X +NP1X +NP2X = TP1X +NX

(3.3) (i)JP2X = NP2X, (ii)TP2X = 0, (iii)TP1X ∈ Γ(Dθ).

Remark 3.6. If M is a hemi-slant submanifold in a metallic (or Golden) Riemannian man-
ifold (M, g, J), then:

(3.4) T⊥M = N(Dθ)⊕N(D⊥)⊕ µ,

where µ is an invariant subbundle of T⊥M .

Proof. For any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥) we get g(NX,NZ) = g(JX, JZ) = pg(X,TZ)+
qg(X,Z) = 0. Thus, the distributions N(Dθ) and N(D⊥) are mutually perpendicular in
T⊥M . If we denote by µ the orthogonal complementary subbundle of J(TM) in T⊥M ,
then we obtain (3.4). □

Remark 3.7. If M is a hemi-slant submanifold in a metallic (or Golden) Riemannian man-
ifold (M, g, J), then: g(JP1X,TP1X) = cos θ(X)∥TP1X∥ · ∥JP1X∥ and the cosine of the
slant angle θ(X) =: θ of the distribution Dθ is constant, for any nonzero X ∈ Γ(TM).
Thus, for any nonzero X ∈ Γ(TM), we get:

(3.5) cos θ =
g(JP1X,TP1X)

∥TP1X∥ · ∥JP1X∥
=

∥TP1X∥
∥JP1X∥

.

Theorem 3.4. If M is a hemi-slant submanifold in a metallic Riemannian manifold (M, g, J)
then, for any X , Y ∈ Γ(TM), we have:

(3.6) g(TP1X,TP1Y ) = cos2 θ[pg(TP1X,P1Y ) + qg(P1X,P1Y )]

(3.7) g(NX,NY ) = sin2 θ[pg(TP1X,P1Y ) + qg(P1X,P1Y )].
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Proof. Taking X + Y in (3.5) then, for any X , Y ∈ Γ(TM) we have
g(TP1X,TP1Y ) = cos2 θg(JP1X, JP1Y ) = cos2 θ[pg(JP1X,P1Y ) + qg(P1X,P1Y )], and
using (3.3)(iii) we get (3.6). Thus, from (3.2) we get, for any X , Y ∈ Γ(TM):
g(TP1X,TP1Y ) = g(JP1X,JP1Y )− g(NX,NY ) and (3.7) holds. □

Remark 3.8. A hemi-slant submanifold M in a Golden Riemannian manifold (M, g, J)
with the slant angle θ of the distribution Dθ verifies (3.6) and (3.7) with p = q = 1.

Theorem 3.5. Let M be a hemi-slant submanifold in a metallic Riemannian manifold (M, g, J)
with the slant angle θ of the distribution Dθ. Then:

(3.8) (TP1)
2 = cos2 θ(pTP1 + qI),

where I is the identity on Γ(Dθ) and

(3.9) ∇((TP1)
2) = p cos2 θ∇(TP1).

Remark 3.9. Let M be a hemi-slant submanifold in a metallic (or Golden) Riemannian
manifold (M, g, J), with TM = Dθ ⊕D⊥. Then T (Dθ) = Dθ and T (D⊥) = 0.

Proof. By using (2.3)(i), we get g(TX,Z) = g(X,TZ) = 0, for any X ∈ Γ(Dθ), Z ∈ Γ(D⊥).
Thus, T (Dθ) ⊥ D⊥. Since T (Dθ) ⊂ Γ(TM) we obtain that T (Dθ) ⊆ Dθ. Moreover,
from (3.8) we obtain X = 1

qT (TX − p cos2 θX), for any X ∈ Γ(Dθ) (i.e. P1X = X),
where (M, g, J) is a metallic Riemannian manifold. If (M, g, J) is a Golden Riemannian
manifold, then X = T (TX − cos2 θX), for any X ∈ Γ(Dθ). Thus, Dθ ⊆ T (Dθ). Since
T (Dθ) ⊆ Dθ, we get T (Dθ) = Dθ. By using (3.3)(ii) we obtain that D⊥ is anti-invariant
with respect to J and T (D⊥) = 0. □

Theorem 3.6. Let M be an immersed submanifold in a metallic Riemannian manifold (M, g, J).
Then M is a hemi-slant submanifold in M if and only if there exists a constant λ ∈ [0, 1] such that
D = {X ∈ Γ(TM)|T 2X = λ(pTX + qX)} is a distribution and TY = 0, for any Y orthogonal
to D, Y ∈ Γ(TM), where p, q ∈ N∗.

Proof. If M is a hemi-slant submanifold in a metallic Riemannian manifold (M, g, J), with
Dθ := D and TM = Dθ ⊕D⊥ then, from (3.8) and θ(X) ̸= 0 we have λ = cos2 θ ∈ [0, 1].
Conversely, if there exists a real number λ ∈ [0, 1] such that T 2X = λ(pTX + qX), for any
X ∈ Γ(D), it follows that cos2 θ(X) = λ which implies that θ(X) = arccos(

√
λ) does not

depend on X . If we consider the orthogonal direct sum TM = D ⊕D⊥, since T (D) ⊆ D
and TY = 0, for any Y orthogonal to D, Y ∈ Γ(TM), we obtain that M is a hemi-slant
submanifold in M with Dθ := D. □

Example 3.1. Let R4 be the Euclidean space endowed with the usual Euclidean metric
< ·, · >. Let f : M → R4 be the immersion given by: f(u, v) = (u cos t, u sin t, v, σ√

qv),

where M := {(u, v) | u > 0, t ∈ (0, π
2 )} and σ := σp,q =

p+
√

p2+4q

2 is the metallic number
σ = p − σ (p, q ∈ N∗). We can find a local orthonormal frame on TM given by: Z1 =

cos t ∂
∂x1

+ sin t ∂
∂x2

, and Z2 = ∂
∂x3

+ σ√
q

∂
∂x4

. We define the metallic structure J : R4 → R4

by:
J(X1, X2, X3, X4) = (σX1, σX2, σX3, σX4), and we can easily verify that J2X = pJ + qI
and < JX, Y >=< X, JY >, for any X := (X1, X2, X3, X4), Y := (Y1, Y2, Y3, Y4) ∈ R4.
We remark that JZ2 ⊥ span{Z1, Z2} and cos θ = <JZ1,Z1>

∥Z1∥·∥JZ1∥ = σ cos2 t+σ sin2 t√
σ2 cos2 t+σ2 sin2 t

.

We define the distributions D⊥ = span{Z2} (J(D⊥) ⊂ Γ(T⊥M)) and Dθ = span{Z1}
is a slant distribution with the slant angle θ. The Riemannian metric tensor of Dθ ⊕ D⊥
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is given by g = du2 + pσ+2q
q dv2. Thus, M is a hemi-slant submanifold in the metallic

Riemannian manifold (R4, < ·, · >, J), with TM = Dθ ⊕D⊥.

Example 3.2. If we consider p = q = 1 in the example 3.1 and ϕ := σ1,1 is the Golden
number (ϕ := 1 − ϕ), for M given in the example 3.1 we define the immersion f : M →
R4 by f(u, v) = (u cos t, u sin t, v, ϕv). The Golden structure J : R4 → R4 is defined by
J(X1, X2, X3, X4) = (ϕX1, ϕX2, ϕX3, ϕX4). The distribution Dθ = span{Z1} has the slant
angle θ = arccos ϕ cos2 t+ϕ sin2 t√

(ϕ cos2 t+ϕ sin2 t)+1
and D⊥ = span{Z2}. The Riemannian metric tensor

of Dθ ⊕D⊥ is given by g = du2 + (ϕ+ 2)dv2. Thus, M is a hemi-slant submanifold in the
Golden Riemannian manifold (R4, < ·, · >, J).

Example 3.3. If M and f are the same as in the example 3.1, we define the metallic
structure J : R4 → R4 given by J(X1, X2, X3, X4) = (σX1, σX2, σX3, σX4). We obtain:
JZ1 = σZ1, the distributions D⊥ = span{Z2} and Dθ = span{Z1} has the slant angle
θ = 0. Thus, TM = Dθ ⊕ D⊥ and M is a semi-invariant submanifold in the metallic
Riemannian manifold (R4, < ·, · >, J). Similarly, for p = q = 1 we obtain that M is a
semi-invariant submanifold in the Golden Riemannian manifold (R4, < ·, · >, J).

Example 3.4. Let R7 be the Euclidean space endowed with the usual Euclidean metric
< ·, · >. Let f : M → R7 be the immersion given by:

f(u, v, w) =

(
1√
3
u cos t,

1√
3
u sin t, v,

σ
√
q
v,

√
q

σ
w,w,

√
2√
3
u

)
,

where M := {(u, v, w) | u > 0, t ∈ (0, π
2 )} and σ := σp,q is the metallic number (p, q ∈ N∗).

We can find a local orthonormal frame on TM given by: Z1 = 1√
3
cos t ∂

∂x1
+ 1√

3
sin t ∂

∂x2
+

√
2√
3

∂
∂x7

, Z2 = ∂
∂x3

+ σ√
q

∂
∂x4

, and Z3 =
√
q

σ
∂

∂x5
+ ∂

∂x6
. We define the metallic structure

J : R7 → R7 by: J(X1, X2, X3, X4, X5, X6, X7) = (σX1, σX2, σX3, σX4, σX5, σX6, σX7)
and we can easily verify that J2X = pJ + qI and < JX, Y >=< X, JY >, for any X :=
(X1, X2, X3, X4, X5, X6, X7), Y := (Y1, Y2, Y3, Y4, Y5, Y6, Y7) ∈ R7. We find that JZ2 ⊥
span{Z1, Z2, Z3} and JZ3 ⊥ span{Z1, Z2, Z3}. Thus, we get cos θ = σ(cos2 t+2)+σ sin2 t√

3[σ2(cos2 t+2)+σ2 sin2 t]
.

We define the distributions D⊥ = span{Z2, Z3} (J(D⊥) ⊂ Γ(T⊥M)) and Dθ = span{Z1}
is a slant distribution, with the slant angle θ. The Riemannian metric tensor of Dθ ⊕ D⊥

is given by g = du2 + pσ+2q
q dv2 + pσ+2q

pσ+q dw
2. Thus, TM = Dθ ⊕D⊥ and M is a hemi-slant

submanifold in the metallic Riemannian manifold (R7, < ·, · >, J).

Example 3.5. We consider p = q = 1 in the example 3.4 and ϕ := σ1,1 is the Golden
number (ϕ := 1−ϕ). We define, for M given in the example 3.1, the immersion f : M → R7

by

f(u, v, w) = (
1√
3
u cos t,

1√
3
u sin t, v, ϕv, ϕw,w,

√
2√
3
u),

and the Golden structure J : R7 → R7 by

J(X1, X2, X3, X4, X5, X6, X7) = (ϕX1, ϕX2, ϕX3, ϕX4, ϕX5, ϕX6, ϕX7).

The distributions D⊥ = span{Z2, Z3} verifies J(D⊥) ⊂ Γ(T⊥M) and the slant distribu-
tion Dθ = span{Z1} has the slant angle θ = arccos ϕ(cos2 t+2)+ϕ sin2 t√

3[ϕ2(cos2 t+2)+ϕ
2
sin2]

. The Riemannian

metric tensor of Dθ⊕D⊥ is given by g = du2+(ϕ+2)dv2+ ϕ+2
ϕ+1dw

2. Thus, M is a hemi-slant
submanifold in the Golden Riemannian manifold (R7, < ·, · >, J).
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Example 3.6. If M and f are the same as in the example 3.4 and the metallic structure J :

R7→R7 is defined by J(X1, X2, X3, X4, X5, X6, X7)=(σX1, σX2, σX3, σX4, σX5, σX6, σX7).

then we get: JZ1 = σZ1. We obtain the distributions D⊥ = span{Z2, Z3} and Dθ =
span{Z1} with the slant angle θ = 0. Thus, TM = Dθ ⊕ D⊥ and M is a semi-invariant
submanifold in the metallic Riemannian manifold (R7, < ·, · >, J). Similarly, for p = q = 1
we obtain that M is a semi-invariant submanifold in the Golden Riemannian manifold
(R7, < ·, · >, J).

4. ON THE INTEGRABILITY OF THE DISTRIBUTIONS OF A HEMI-SLANT SUBMANIFOLD

In this section we investigate the conditions for the integrability of the distributions of
a hemi-slant submanifold in a metallic (or Golden) Riemannian manifold.

Theorem 4.7. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Riemann-
ian manifold (M, g, J), then

(4.1) ∇XTY −∇Y TX −ANY X +ANXY ∈ Γ(Dθ),

for any X,Y ∈ Γ(Dθ).

Proof. By using (2.3)(i), we obtain: g(T ([X,Y ]), Z) = g([X,Y ], TZ) = 0, for any X,Y ∈
Γ(Dθ) and Z ∈ Γ(D⊥) (i.e. TZ = 0). Thus, T ([X,Y ]) ∈ Γ(Dθ) and from (2.20) we get
(4.1). □

Theorem 4.8. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Riemann-
ian manifold (M, g, J), then the distribution Dθ is integrable.

Proof. By using (1.3), we have g(∇XY,Z) = 1
q [g(J∇XY, JZ) − pg(∇XY, JZ)], for any

X,Y ∈ Γ(Dθ), Z ∈ Γ(D⊥). From ∇J = 0 we get J∇XY = ∇XJY and using JZ = NZ,
for any Z ∈ Γ(D⊥), we obtain qg(∇XY,Z) = g(∇XJY,NZ) − pg(∇XY,NZ). From (2.9)
and (2.10) we get qg(∇XY, Z) = g(h(X,TY ), NZ) + g(∇⊥

XNY,NZ) − pg(h(X,Y ), NZ).
From (2.11)(ii) and (2.15)(ii) we obtain ∇⊥

XNY = nh(X,Y )− h(X,TY ) +N∇XY, for any
X,Y ∈ Γ(Dθ). From qg(∇XY,Z) = g(nh(X,Y ), NZ)+g(N∇XY,NZ)−pg(h(X,Y ), NZ),
we get qg([X,Y ], Z) = g(N∇XY,NZ)−g(N∇Y X,NZ) = g(N [X,Y ], NZ), for any X,Y ∈
Γ(Dθ) and Z ∈ Γ(D⊥). Thus, from (3.7) and (2.3)(i) we have

qg([X,Y ], Z) = sin2 θ[pg(P1[X,Y ], TP1Z) + qg(P1[X,Y ], P1Z)].

By using P1Z = 0 for any Z ∈ Γ(D⊥) (where P1Z is the projection of Z on Γ(Dθ)), we
obtain g([X,Y ], Z) = 0, for any X,Y ∈ Γ(Dθ), Z ∈ Γ(D⊥) which implies that [X,Y ] ∈
Γ(Dθ). □

Theorem 4.9. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden) Rie-
mannian manifold (M, g, J). Then the distribution D⊥ is integrable if and only if, for any
Z,W ∈ Γ(D⊥) we have

(4.2) ANZW = 0.

Proof. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Riemann-
ian manifold (M, g, J) then, for any Z,W ∈ Γ(D⊥) we have TZ = TW = 0 which im-
plies ∇ZTW = ∇WTZ = 0. By using (3.3)(ii) and (2.20) we get T ([Z,W ]) = 0 if and
only if ANZW = ANWZ holds, for any Z,W ∈ Γ(D⊥). From (2.15)(i), for any X ∈
Γ(TM) and Z,W ∈ Γ(D⊥), we get g(ANZX,W ) + g(th(X,Z),W ) = g((∇XT )Z,W ) =
−g(∇XZ, TW ) = 0, which implies g(ANZX,W ) = −g(th(X,Z),W ). From

g(ANZX,W ) = g(ANZW,X) = g(ANWZ,X) = g(h(X,Z), NW ) = g(th(X,Z),W ),
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we obtain g(ANZW,X) = 0 for any X ∈ Γ(TM) and Z,W ∈ Γ(D⊥). Thus, (4.2) holds.
Conversely, if ANZW = 0, for any Z,W ∈ Γ(D⊥) then g(th(X,Z),W ) = g(ANWZ,X) = 0
and from (2.15)(i) we get 0 = g((∇ZT )W,X) = g(T∇ZW,X) = g(∇ZW,TX), for any
Z,W ∈ Γ(D⊥), X ∈ Γ(Dθ). From T (Dθ) = Dθ, we obtain ∇ZW ∈ Γ(D⊥) which implies
[Z,W ] ∈ Γ(D⊥). □

Theorem 4.10. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden) Rie-
mannian manifold (M, g, J). Then, the anti-invariant distribution D⊥ is integrable if and only if,
for any Z,W ∈ Γ(D⊥) we have

(4.3) (∇ZT )W = (∇WT )Z.

Proof. By using (2.13) we get (∇ZT )W − (∇WT )Z = ANWZ − ANZW , for any Z,W ∈
Γ(D⊥) and using (4.2) we obtain the conclusion. □

Remark 4.10. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden)
Riemannian manifold (M, g, J). If (∇ZT )W = 0, for any Z,W ∈ Γ(D⊥), then D⊥ is
integrable.

Theorem 4.11. Let M be a hemi-slant submanifold in a locally metallic (or locally Golden) Rie-
mannian manifold (M, g, J). If (∇XN)Y = 0, for any X,Y ∈ Γ(Dθ) then, either M is a Dθ

geodesic submanifold (i.e h(X,Y ) = 0) or h(X,Y ) is an eigenvector of n, with eigenvalues

(4.4) λ1 =
p cos2 θ + cos θ

√
p2 cos2 θ + 4q

2
, λ2 =

p cos2 θ − cos θ
√
p2 cos2 θ + 4q

2
.

Proof. By using (∇XN)Y = 0 for any X,Y ∈ Γ(Dθ) and (2.15)(ii) we obtain nh(X,Y ) =
h(X,TY ). From (3.8) we get n2h(X,Y ) = h(X,T 2Y ) = p cos2 θnh(X,Y )+q cos2 θh(X,Y ),
for any X,Y ∈ Γ(Dθ). Thus, we obtain either M is a Dθ geodesic submanifold or h(X,Y )
is an eigenvector of n with eigenvalue λ, which verifies λ2 − p cos2 θλ − q cos2 θ = 0 and
(4.1) holds. □

5. MIXED TOTALLY GEODESIC HEMI-SLANT SUBMANIFOLDS

We consider hemi-slant submanifolds in a locally metallic (or locally Golden) Riemann-
ian manifold and we find some conditions for these submanifolds to be Dθ −D⊥ mixed
totally geodesic (i.e. h(X,Y ) = 0, for any X ∈ Γ(Dθ) and Y ∈ Γ(D⊥)).

Theorem 5.12. If M is a hemi-slant submanifold in a locally metallic (or locally Golden) Rie-
mannian manifold (M, g, J), then M is a Dθ−D⊥ mixed totally geodesic submanifold if and only
if AV X ∈ Γ(Dθ) and AV Y ∈ Γ(D⊥), for any X ∈ Γ(Dθ), Y ∈ Γ(D⊥) and V ∈ Γ(T⊥M).

Proof. From g(AV X,Y ) = g(AV Y,X) = g(h(X,Y ), V ), for any X ∈ Γ(Dθ), Y ∈ Γ(D⊥)
and V ∈ Γ(T⊥M) we obtain that M is a Dθ −D⊥ mixed totally geodesic submanifold in
the locally metallic (or locally Golden) Riemannian manifold if and only if AV X ∈ Γ(Dθ)
and AV Y ∈ Γ(D⊥), for any X ∈ Γ(Dθ), Y ∈ Γ(D⊥) and V ∈ Γ(T⊥M). □

Theorem 5.13. Let M be a proper hemi-slant submanifold in a locally metallic (or locally Golden)
Riemannian manifold (M, g, J). If (∇XN)Z = 0, for any X ∈ Γ(TM) and Z ∈ Γ(D⊥), then
M is a Dθ −D⊥ mixed totally geodesic submanifold in M .

Proof. If X ∈ Γ(Dθ) and Z ∈ Γ(D⊥) then, from (∇XN)Z = 0, (2.15)(ii) and TZ = 0 we
get h(Z, TX) = nh(X,Z) = h(X,TZ) = 0. From n2h(Z,X) = h(Z, T 2X) = 0 and (3.8) we
get p cos2 θnh(Z, TX) + q cos2 θh(Z,X) = 0. From nh(Z, TX) = 0 and θ ̸= π

2 and q ̸= 0,
we obtain h(X,Z) = 0, for any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥). □
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