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The Abel-Steffensen inequality in higher dimensions

CONSTANTIN P. NICULESCU

ABSTRACT. The Abel-Steffensen inequality is extended to the context of several variables. Applications to
Fourier analysis and Riemann-Stieltjes integration are included.

1. INTRODUCTION

Abel’s partial summation formula is a polynomial identity that asserts that every pair
of families (ak)nk=1 and (bk)

n
k=1 of complex numbers verifies

n∑
k=1

akbk =

n−1∑
k=1

(ak − ak+1)

 k∑
j=1

bj

+ an

 n∑
j=1

bj

 .

An immediate consequence is the following inequality, known as Abel’s inequality:∣∣∣∣∣
n∑

k=1

akbk

∣∣∣∣∣ ≤ a1 max
1≤m≤n

∣∣∣∣∣
m∑

k=1

bk

∣∣∣∣∣ .
whenever a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and b1, b2, ..., bn ∈ C. It is this inequality that allowed
Abel [1] to prove his well known test of convergence for signed series. See Choudary and
Niculescu [4], for a complete account concerning the contribution of Abel to this matter.

One hundred years later, Steffensen [14] noticed another useful consequence of Abel’s
partial summation formula, that will be referred to as the Abel-Steffensen inequality: if

a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and
j∑

k=1

bk ≥ 0 for all j ∈ {1, 2, ..., n},

then
n∑

k=1

akbk ≥ 0.

Using this inequality, Steffensen succeeded to extend Jensen’s inequality for convex func-
tions beyond the framework of positive measures.
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70 Constantin P. Niculescu

As was noticed by Hardy [5], Abel’s partial summation formula can be easily extended
to the case of double series as follows:

p∑
i=1

q∑
j=1

aijuij =

p−1∑
i=1

q−1∑
j=1

∆ij

(
i∑

k=1

j∑
l=1

ukl

)
+

p−1∑
i=1

∆iq

(
i∑

k=1

q∑
l=1

ukl

)
(H)

+

q−1∑
j=1

∆pj

(
p∑

k=1

j∑
l=1

ukl

)
+ apq

(
p∑

k=1

q∑
l=1

ukl

)
,

where

∆ij =

 ai,j − ai+1,j − ai,j+1 + ai+1,j+1 if 1 ≤ i < p, 1 ≤ j < q
ai,q − ai+1,q if 1 ≤ i < p and j = q
ap,j − ap,j+1 if i = p and 1 ≤ j < q.

An immediate consequence is the Abel-Steffensen inequality for double sums:

Theorem 1.1. If a = (aij)i,j and u = (uij)i,j are two double sequences of real numbers such
that

aij ≥ 0, ∆ij ≥ 0 and
i∑

k=1

j∑
l=1

ukl ≥ 0

for all i ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., q}, then
p∑

i=1

q∑
j=1

aijuij ≥ 0.

The property ∆ij ≥ 0 of the double sequence a = (aij)i,j represents a 2-dimensional
analogue of the usual condition of downward monotonicity for real sequences. In what
follows we will refer to it as the property of 2d-monotone decreasing.

Hardy used the formula (H) to extend the Abel-Dirichlet criterion of convergence to
the case of multiple series such as ∑

m,n≥1

sin (mx+ ny)√
m+ n

.

His argument (inspired by the 1-dimensional case) combined the boundedness of the par-
tial sums of the trigonometric series

∑
m,n≥1 sin (mx+ ny) with the fact that the double

sequence ((m+ n)
−1/2

)
m,n≥1

is 2d-monotone decreasing (see Lemma 2.1 below).
In 1986, David and Jonathan Borwein [3] sketched the necessary formalism for defining

the general concept of Nd-monotonicity (for sequences f : NN → R) and established the
extension of Leibniz test of convergence to the framework of alternating multiple series.
Their work was motivated by the case of a chemical lattice sum,∑

m,n,p≥1

(−1)m+n+p√
m2 + n2 + p2

,

representing the so called Madelung’s constant for sodium chloride.
The aim of this paper is to prove an integral analogue of Theorem 1.1, in the setting of

2d-monotone functions and to outline several consequences of it to Fourier analysis and
Riemann-Stieltjes integral of several variables. See Theorem 3.2, Section 3. For reader’s
convenience we summarized in Section 2 the main features of 2d-monotonicity, the natu-
ral analogue of monotonicity for functions of two variables.
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2. 2d-MONOTONE FUNCTIONS

Let A = I × J be a rectangle in R2 (whose sides I and J are intervals parallel to the
coordinate axes).

Definition 2.1. A function f : I × J → R is called 2d-monotone if the f -measure of every
compact subinterval A = [a, b]× [c, d] ⊂ I × J is nonnegative, that is,

(2.1) [f ;A] = f(a, c)− f(a, d)− f(b, c) + f(b, d) ≥ 0.

The function f is called 2d-monotone increasing/decreasing if f is 2d-monotone and also
increasing/decreasing in each variable (when the other one is kept fixed). The function f
is called 2d-alternating if −f is 2d-monotone.

The terminology introduced by Definition 1 is motivated by the fact that any 2d-monotone
function f verifies an inequality of the type

(2.2) [f ;A] ≤ [f ;B]

for all compact subintervals A,B ⊂ I × J, with A ⊂ B.

Remark 2.1. One can easily show that f is 2d-monotone if and only if for every interval
A = [a, b] × [c, d] ⊂ I × J the function ∆b

af(x, y) = f(b, y) − f(a, y) is increasing on [c, d]
and the function ∆d

cf(x, y) = f(x, d)− f(x, c) is increasing on [a, b]. Notice that

[f ;A] = ∆d
c∆

b
af = ∆b

a∆
d
cf.

Example 2.1. The product f(x)g(y) of any pair of increasing/decreasing functions f : I →
R and g : J → R is 2d-monotone increasing on I×J ; if the functions have opposite mono-
tonicity then their product is 2d-alternating. Finite linear combinations

∑
k ckfk(x)gk(y),

(with positive coefficients) of such functions have the same nature.

Calculus offers the following useful criterion of 2d-monotonicity:

Lemma 2.1. Assume that f is a continuously differentiable function on a rectangle I × J which
admits a continuous second order partial derivative ∂2f

∂x∂y . Then f is 2d-monotone if and only if

(2.3)
∂2f

∂x∂y
≥ 0.

Under the assumptions of Lemma 2.1, one can prove that the partial derivative ∂2f
∂y∂x

also exists and equals ∂2f
∂x∂y . See [2].

Proof. The implication (2.3) ⇒ (2.1) follows by integration and a remark due to Aksoy
and Martelli [2] that asserts that the continuous differentiability of f together with the
existence of a continuous mixed derivative ∂2f

∂x∂y imply the existence of the other mixed
derivative and also their equality. Indeed, for every compact subinterval A = [a, b] ×
[c, d] ⊂ I × J we have

0 ≤
∫ b

a

∫ d

c

∂2f

∂x∂y
dydx

=

∫ b

a

[
∂f

∂x
(x, d)− ∂f

∂x
(x, c)

]
dx = f(b, d)− f(a, d)− f(b, c) + f(a, c).

Conversely, if the condition (2.1) is fulfilled, then by the mean-value theorem we get

∂2f

∂x∂y
(u, v) = lim

h→0

f(u, v)− f(u, v + h)− f(u+ h, v) + f(u+ h, v + h)

h2
≥ 0.

□
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According to Lemma 1, the following functions are 2d-monotone,

E(x, y) = x2 + y2 (on R2),

C(x, y) = (ex + ey − 1)−1 (on R2
+)

Π(x, y) = xy (on R2),

while h(x, y) = log(xn + yn) is 2d-alternating on (0,∞)× (0,∞) whenever n ≥ 1.
The convex functions give rise to 2d-monotone functions in a natural manner.

Example 2.2. Since any convex function F : R → R verifies the inequality

(z − y)F (x)− (z − x)F (y) + (y − x)F (z) ≥ 0

for all x < y < z (see [8], Lemma 1.3.2), one can attach to it a 2d-monotone function
on R× R via the formula f(x, y) = −F (x − y). In a similar way, if F : [0,∞) → R is
a convex function and λ > 0, then f(x, y) = F (λ (x+ y)) is a 2d-monotone function on
[0,∞)× [0,∞).

Example 2.3. If F : R → R is a convex function, then f(x, y) = F (x)+F (y)
2 − F

(
x+y
2

)
is

2d-alternating on R× R.
Probability and statistics provide yet another major source of 2d-monotone functions:

the functions that couple multivariate distribution functions to their one-dimensional
margin-al distribution functions, called copulas by Sklar.

Definition 2.2. (Hoeffding, Fréchet and Sklar [12]) A copula is a function C (x, y) : [0, 1] ×
[0, 1] → [0, 1] that has the following two properties: (a) (Boundary Conditions) C(x, 0) =
C(0, y) = 0 and C(x, 1) = x, C(1, y) = y for all x, y ∈ [0, 1]; (b) (2d-Monotonicity) If
0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1, then

C (x2, y2)− C (x1, y2)− C (x2, y1) + C (x1, y1) ≥ 0.

An important class of copulas is that of Archimedean copulas. They are constructed
through a continuous, strictly decreasing and convex generator φ as

Aφ(x, y) = φ−1 (φ(x) + φ(y)) .

Archimedean copulas represent examples of 2d-monotone increasing functions.
It is worth noticing that copulas are in a one-to-one correspondence with Markov oper-

ators T : L∞ ([0, 1]) → L∞ ([0, 1]) (as well as with doubly stochastic measures on the unit
square [0, 1]× [0, 1]). Details can be found in the book of Nelsen [7].

3. THE EXTENSION OF ABEL-STEFFENSEN INEQUALITY

The main feature of a positive measure is that the integral of a nonnegative function
is a nonnegative number. However, this property still works for some signed measures
when restricted to suitable subcones of the cone of positive integrable functions. This
phenomenon, first illustrated by the Abel-Steffensen inequality in dimension 1, received a
great deal of attention during the last two decades. See [9] and the references therein. The
following result provides an integral analogue of Abel-Steffensen inequality in dimension
2. Its argument can be extended in an evident manner to cover all dimensions, but details
are too technical to be included here.

Theorem 3.2. Suppose that f and w are two real-valued functions defined on [a, b] × [c, d] that
fulfill the following conditions: (i) f is continuously differentiable and 2d-monotone decreasing;
(ii) w is integrable and W (x, y) =

∫ x

a

∫ y

c
w(s, t)dtds ≥ 0 for all (x, y) ∈ [a, b]× [c, d]. Then∫ b

a

∫ d

c

f(x, y)w(x, y)dydx ≥ f(b, d)W (b, d).
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Proof. Using the technique of Dirac sequences of approximating continuous and inte-
grable functions f by infinitely differentiable functions we may restrict ourselves to the
case where the hypothesis (i) is replaced by the following stronger condition:

(i′)

{
f is nonnegative and twice continuously differentiable

∂f(x,d)
∂x ≤ 0, ∂f(b,y)

∂y ≤ 0 and ∂2f(x,y)
∂x∂y ≥ 0

for all (x, y) ∈ [a, b] × [c, d]. This can be done by replacing the initial function f with a
convolution product fn = ρn ∗ f, where

ρn(x, y) = n2ρ(nx, ny) for n ≥ 1,

ρ(x, y) =

{
c−1 exp

(
1/
(
x2 + y2 − 1

))
if x2 + y2 < 1

0 if x2 + y2 ≥ 1

and
c =

∫∫
x2+y2<1

exp
(
1/
(
x2 + y2 − 1

))
dxdy.

For details, see Choudary and Niculescu [4], Theorem 11.7.6 (c), p. 404. Now the proof
can be completed by using an identity proved by W. H. Young in [16], p. 38 (and rediscov-
ered later by Pečarić [10]). We provide here a shorter argument for Young’s identity, based
on repeated use of integration by parts for absolutely continuous functions. Details con-
cerning the formula of integration by parts can be found in the monograph of Hewitt and
Stromberg [6], Theorem 18.19, p. 287. Using the aforementioned formula of integration
by parts and Fubini’s theorem we have

I =

∫ b

a

∫ d

c

f(x, y)w(x, y)dydx

=

∫ b

a

[
f(x, d)

∫ d

c

w(x, y)dy −
∫ d

c

(∫ y

c

w(x, t)dt

)
∂f(x, y)

∂y
dy

]
dx

=

∫ b

a

(
f(x, d)

∫ d

c

w(x, y)dy

)
dx−

∫ b

a

[∫ d

c

(∫ y

c

w(x, t)dt

)
∂f(x, y)

∂y
dy

]
dx

=

∫ d

c

(∫ b

a

f(x, d)w(x, y)dx

)
dy −

∫ d

c

[∫ b

a

(∫ y

c

w(x, t)dtdx

)
∂f(x, y)

∂y
dx

]
dy,

so that

I =

∫ d

c

[
f(b, d)

∫ b

a

w(x, y)dx−
∫ b

a

∂f(x, d)

∂x

(∫ x

a

w(s, y)ds

)
dx

]
dy

−
∫ d

c

[(∫ b

a

∫ y

c

w(x, t)dtdx

)
∂f(b, y)

∂y

]
dy

+

∫ d

c

∫ b

a

[(∫ x

a

∫ y

c

w(s, t)dtds

)
∂2f(x, y)

∂x∂y
dx

]
dy

= f(b, d)W (b, d)−
∫ b

a

∂f(x, d)

∂x
W (x, d)dx

−
∫ d

c

W (b, y)
∂f(b, y)

∂y
dy +

∫ b

a

∫ d

c

W (x, y)
∂2f(x, y)

∂x∂y
dydx.
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Now the conclusion follows easily by taking into account the hypotheses (i′) and (ii). □

Remark 3.2. An inspection of the argument of Theorem 3.2 shows that the conclusion
still works if the hypothesis (i) is replaced by the following one: (i∗) f is nonnegative,
continuous, 2d-monotone decreasing and admits a representation of the form

(AC) f(x, y) = f(a, c) +

∫ x

a

g1(s)ds+

∫ y

c

g2(t)dt+

∫ x

a

∫ y

c

g(s, t)dtds,

for suitable g1 ∈ L1 ([a, b]) , g2 ∈ L1 ([c, d]) and g ∈ L1 ([a, b]× [c, d]) . The existence of the
representation (AC) is equivalent to the condition of absolute continuity in the sense of
Carathéodory. See Šremr [13].

Using a similar idea, one can prove the following companion of Theorem 3.2:

Theorem 3.3. Suppose that f and w are two real-valued functions defined on [a, b] × [c, d] that
fulfill the following conditions: (i) f is nonnegative, continuously differentiable and 2d-monotone
increasing; (ii)w is integrable and W̃ (x, y) =

∫ b

x

∫ d

y
w(s, t)dtds ≥ 0 for all (x, y) ∈ [a, b]×[c, d].

Then ∫ b

a

∫ d

c

f(x, y)w(x, y)dydx ≥ f(a, c)W̃ (a, c).

As above, the continuous differentiability of f can be relaxed to absolute continuity.
The proof of Theorem 3.3 parallels that of Theorem 3.2, using the following variant of

Young’s identity:∫ b

a

∫ d

c

f(x, y)w(x, y)dydx = f(a, c)W̃ (a, c) +

∫ b

a

W̃ (x, c)
∂f(x, c)

∂x
dx

+

∫ d

c

W̃ (a, y)
∂f(a, y)

∂y
dy +

∫ b

a

∫ d

c

W̃ (x, y)
∂2f(x, y)

∂x∂y
dydx.

A well known classical result concerning the Fourier coefficients of a convex function
of one variable asserts that∫ 2π

0

f(x) cosnxdx ≥ 0 for all positive integers n.

See [8], Exercise 7, p. 26. As a consequence,
∫ 2π

0

∫ 2π

0
f(x, y) cosmx cosnydxdy ≥ 0 for all

convex functions f : [0, 2π]× [0, 2π] → R and all positive integers m and n. When cosines
are replaced by sines, the corresponding inequality may fail even in the one variable case.
For example,

∫ 2π

0
x2 sinnxdx < 0 for all positive integers n. However, based on Theorem

3.2 and Theorem 3.3 we will prove the following result:

Proposition 3.1. For all monotone and convex functions f : [0, 4π] → R and all positive integers
m and n, ∫ 2π

0

∫ 2π

0

f(s+ t) sinms sinntdsdt ≥ 0.

Proof. Adding to f a suitable constant, we may assume that f ≥ 0. Then notice that

W (x, y) =

∫ x

0

∫ y

0

sinms sinntdsdt =
(1− cosmx) (1− cosny)

mn
≥ 0

and

W̃ (x, y) =

∫ 2π

x

∫ 2π

y

sinms sinntdsdt =
(1− cosmx) (1− cosny)

mn
≥ 0
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for all x, y ∈ [0, 2π]. The conclusion of the corollary follows from Theorem 3.2 when f is
decreasing, and from Theorem 3.3 when f is increasing. □

Remark 3.3. An inspection of the proof of Theorem 3.2 easily shows that the conclusion
remains valid when the hypotheses (i)&(ii) are replaced by the following ones: (i′′) f is
continuously differentiable, 2d-alternating and its partial derivatives ∂f(x,d)

∂x and ∂f(b,y)
∂y

are nonnegative; (ii′′) w is integrable and W (x, y) =
∫ x

a

∫ y

c
w(s, t)dtds ≤ 0 for all (x, y) ∈

[a, b]× [c, d]. An illustration is offered by the functions f(x, y) = ln
(
x2 + y2

)
and w(x, y) =

− sin (x+ y) on (0, 3π/4]× (0, 3π/4] :∫ 3π/4

0

∫ 3π/4

0

ln
(
x2 + y2

)
sin (x+ y) dxdy ≤ ln

9π2

8

∫ 3π/4

0

∫ 3π/4

0

sin (s+ t) dsdt.

A similar remark works in the case of Theorem 3.3.

4. AN APPLICATION TO RIEMANN-STIELTJES INTEGRAL OF SEVERAL VARIABLES

The Riemann-Stieltjes integrals provide a unified approach to the theory of random
variables and have proved useful in many fields like stochastic calculus and statistical
inference. In analogy with integration over R, the 2d-monotone functions f : A → R give
rise to Riemann-Stieltjes integrals. One first defines the integral of a characteristic function
of a subinterval [a, b]× [c, d] ⊂ A by the formula∫∫

R2

χ[a,b]×[c,d]df(x, y) = f(a, c)− f(a, d)− f(b, c) + f(b, d),

and then extends this formula by linearity and positivity to the linear space St (A) of
step functions, that is, to the linear combinations of characteristic functions of bounded
intervals included in A. Thus∣∣∣∣∫∫

A

h(x, y)df(x, y)

∣∣∣∣ ≤ [f ;A] · ∥h∥∞

for every h ∈ St (A) . Since the elements of Cc(A) (that is, the space of all real-valued con-
tinuous functions with compact support included in A) are uniform limits of step func-
tions, one can easily show that df(x, y) is actually a positive Radon measure on A.

Under certain circumstances, the Riemann-Stieltjes integral can be reduced to the Rie-
mann integral. For example, when f is of class C1 and admits continuous mixed deriva-
tives ∂2f

∂x∂y = ∂2f
∂y∂x , then∫∫

A

h(x, y)df(x, y) =

∫∫
A

h(x, y)
∂2f

∂x∂y
dxdy

for all h in Cc(A). The technique of Dirac sequences makes possible to approximate any
Stieltjes integral by Riemann integrals of this form. Precisely,∫∫

A

h(x, y)df(x, y) = lim
n→∞

∫∫
A

h(x, y)
∂2

∂x∂y
(ρn ∗ f) dxdy,

where ρ ∈ Cc(R2) is any nonnegative function such that
∫∫

R2 ρ(x, y)dxdy = 1 and ρn(x, y) =

n2ρ(nx, ny) for n ≥ 1. See Willem [15], Théorème 11.14, p. 57, for details.
Taking into account the above discussion, one can restate Theorem 3.2 as a formula of

integration by parts for the Riemann-Stieltjes integral:
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Theorem 4.4. Suppose that f and g are two real-valued functions defined on [a, b] × [c, d] that
fulfill the following conditions: (i) f is continuously differentiable and 2d-monotone; (ii) g is
absolutely continuous in the sense of Carathéodory. Then f is integrable with respect to g and∫ b

a

∫ d

c

f(x, y)dg(x, y) = f(b, d)g(b, d)

−
∫ b

a

∂f(x, d)

∂x
g(x, d)dx−

∫ d

c

∂f(b, y)

∂y
g(b, y)dy +

∫ b

a

∫ d

c

g(x, y)df(x, y).

For g(x, y) = (x− ⌊x⌋+ 1) (y − ⌊y⌋+ 1) , Theorem 4.4 yields a formula relating double
sums and double integrals

Corollary 4.1. If f(x, y) is a continuously differentiable function that admits a continuous second
order partial derivative ∂2f

∂x∂y in the rectangle [a, b]× [c, d], where a, b, c, d ∈ Z, then

∑
a<m≤b

∑
c<n≤d

f(m,n) =

∫ b

a

∫ d

c

f(x, y)dydx+

∫ b

a

∫ d

c

∂f(x, y)

∂x
(x− ⌊x⌋) dydx

+

∫ b

a

∫ d

c

∂f(x, y)

∂y
(y − ⌊y⌋) dydx+

∫ b

a

∫ d

c

∂2f(x, y)

∂x∂y
(x− ⌊x⌋) (y − ⌊y⌋) dydx.

Here ⌊t⌋ denotes the largest integer not greater than t.
A slightly more restrictive version of Corollary 4.1 was first noticed by V. V. Rane (see

[11], Corollary 2), who derived it from the Euler-Maclaurin formula.
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Differential Equations (EJDE), 2010 (2010), No. 154, 1–11

[14] Steffensen, J. F., On certain inequalities and methods of approximation, J. Inst. Actuaries, 51 (1919), 274–297
[15] Willem, M, Analyse fonctionnelle élémentaire, Cassini, Paris, 2003
[16] Young, W. H., On multiple integrals, Proc. Roy. Soc. Series A, 93 (1917), No. 647, 28–41



The Abel-Steffensen inequality in higher dimensions 77

ACADEMY OF ROMANIAN SCIENTISTS

SPLAIUL INDEPENDENŢEI 54
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