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Coincidence point theorems for cyclic multi-valued and
hybrid contractive mappings

WARUT SAKSIRIKUN1, VASILE BERINDE2,3 and NARIN PETROT1,4

ABSTRACT. In this paper, we consider the existence theorem of coincidence point for a pair of single-valued
and multi-valued mapping that are concerned with the concepts of cyclic contraction type mapping. Some
illustrative examples and remarks are also discussed.

1. INTRODUCTION

It is well known that, in the case of single-valued mappings, the Banach contraction
principle (see [4]) is one of the most powerful tools in nonlinear analysis. It has been ex-
tended and generalized in many directions. One of the most significant extensions is due
to Kannan [18], who considered a contraction condition that does not force the mapping
to be continuous, as in the case of Banach contraction principle. Another important gen-
eralization has been established by Kirk et al. [25] who introduced the notion of cyclic
operators, which is a natural generalization of the Banach contraction principle. They
proved the following fixed point result.

Theorem 1.1. Let A and B be two nonempty closed subsets of a complete metric space. Suppose
T : A ∪B → A ∪B satisfies the following conditions:

i) T (A) ⊆ B and T (B) ⊆ A,
ii) there is r ∈ (0, 1) such that

d(Tx, Ty) ≤ rd(x, y), for all x ∈ A, y ∈ B.

Then T has a unique fixed point in A ∩B.

This theorem represents one of the important acquirements of fixed point theory for
cyclic mappings. In the same paper [25], Theorem 1.1 has been extended to the case of
arbitrary finite non-empty subsets of the metric space. For the other generalizations of
Banach contraction principle towards the cyclic type direction, one may see [10, 20, 21, 22,
31, 32, 35, 34, 38, 40, 43].

By considering the Pompeiu-Hausdorff metric H(·, ·) on the class of closed bounded
subsets CB(X) of a complete metric space (X, d), Nadler [30] obtained the following fixed
point theorem for multi-valued contractive type mappings.

Theorem 1.2. [30] Let (X, d) be a complete metric space and T : X → CB(X). Assume that
there exists r ∈ [0, 1) such that

H(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.(1.1)

Then there exists z ∈ X such that z ∈ Tz.
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Following Nadler’s theorem, the fixed point theory for multi-valued mapping has de-
veloped in many directions, see, for instance [2, 7, 13, 14, 15, 16, 17, 19, 26, 27, 29, 36, 42]
and the papers cited there, and has important applications in many branches in non-
linear analysis, for instance, control theory, differential equations, economics etc., see
[23, 28, 39, 41].

In 2008, Kikkawa and Suzuki [26] provided the significant improvement of Nadler’s
result by considering the following condition, now the so-called Suzuki type contractive
condition.

Theorem 1.3. [26] Let (X, d) be a complete metric space and T : X → CB(X). Define a strictly
decreasing function η : [0, 1) → ( 12 , 1] by

η(r) =
1

1 + r
,

and assume that there exists r ∈ [0, 1) such that

η(r)D(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rd(x, y)(1.2)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

On the other hand, Damjanović and Dorić [14] obtained the fixed point theorem for
multi-valued generalization of the well-known Kannan’s fixed point theorem from the
case of single-valued mappings.

Theorem 1.4. [14] Let (X, d) be a complete metric space and T : X → CB(X). Define a non-
increasing function ϕ : [0, 1) → (0, 1] by

ϕ(r) :=

{
1, if 0 ≤ r <

√
5−1
2 ;

1− r, if
√
5−1
2 ≤ r < 1.

Assume that

ϕ(r)D(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rmax{D(x, Tx), D(y, Ty)},(1.3)

for all x, y ∈ X . Then, there exists z ∈ X such that z ∈ Tz.

Later, in 2011, by focusing on the contractive condition part of above theorems, Dorić
and Lazović [16] presented another generalization of both Nadler’s result and Kannan’s
result by considering a Ćirić type strong quasi-contractive condition [12], see also [5].

Theorem 1.5. [16] Let (X, d) be a complete metric space and T : X → CB(X). Assume that
there exists r ∈ [0, 1) such that the function φ : [0, 1) → (0, 1] which is defined by

φ(r) :=

{
1, if 0 ≤ r < 1

2 ;

1− r, if 1
2 ≤ r < 1,

satisfies the following condition: if φ(r)d(x, Tx) ≤ d(x, y) then

H(Tx, Ty) ≤ rmax

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2

}
,

for all x, y ∈ X . Then, there exists z ∈ X such that z ∈ Tz.

In this work, motivated by Dorić and Lazović [16] results, we introduce a new class of
hybrid pair of single-valued and multi-valued mappings and establish some hybrid co-
incidence and common fixed point theorems in complete metric spaces. Moreover, some
illustrative examples and remarks are also discussed.
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2. MAIN RESULTS

Let (X, d) be a metric space. We denote by CB(X) for the family of nonempty closed
bounded subsets of X . The Pompeiu-Hausdorff metric induced by the metric d, H(·, ·), is
defined by

H(A,B) = max

{
sup
a∈A

D(a,B), sup
b∈B

D(A, b)

}
, for A,B ∈ CB(X),

where D(a,B) = inf
b∈B

d(a, b) is the distance from a point a to a set B ∈ CB(X). It is well

known that (CB(X), H) is a metric space. Moreover, (CB(X), H) is a complete metric
space if it is induced by a complete metric space (X, d).

The following lemmas will be needed to prove our main results.

Lemma 2.1. [30] For A,B ∈ CB(X) and for a ∈ A and q > 1, there exists an element b ∈ B
such that d(a, b) ≤ qH(A,B).

Lemma 2.2. [1] Let A be a nonempty subset of metric space (X, d). Then D(x,A) ≤ d(x, y) +
D(y,A) for any x, y ∈ X.

We now recall the concepts of fixed point, coincidence point and common fixed point.
Let (X, d) be a metric space, f : X → X be a single-valued mapping and T : X → CB(X)
be a multi-valued mapping. An element x ∈ X is called

i) a fixed point of T if x ∈ Tx.
ii) a coincidence point of f and T if fx ∈ Tx.

iii) a common fixed point of f and T if x = fx ∈ Tx.

For the mappings f : X → X and T : X → CB(X), we will denote by F (T ), C(f, T )
and F (f, T ) the set of all fixed points, coincidence points and commom fixed points, re-
spectively. Let T : X → CB(X) be a multi-valued mapping. For each A ⊆ X, we put

T (A) =
⋃
a∈A

Ta.(2.4)

Now, we present a coincidence point theorem by considering the following non-increasing
function φ : [0, 1) → (0, 1] defined by Dorić and Lazović [16], that is,

φ(r) :=

{
1, if 0 ≤ r < 1

2 ;

1− r, if 1
2 ≤ r < 1.

(2.5)

Theorem 2.6. Let (X, d) be a complete metric space, f : X → X be a single-valued mapping
and T : X → CB(X) be a multi-valued mapping. Let A1, A2, . . . , Am be nonempty subsets of X
such that T (Ai) ⊆ f(Ai+1), for each i = 1, . . . ,m − 1 and T (Am) ⊆ f(A1). Assume that the
following conditions are satisfied:

i) There is j̄ ∈ {1, . . . ,m} such that f(Aj̄) is a closed set.
ii) There exists r ∈ [0, 1) such that φ(r)D(fx, Tx) ≤ d(fx, fy) implies

(2.6) H(Tx, Ty) ≤ rmax

{
d(fx, fy), D(fx, Tx), D(fy, Ty),

D(fx, Ty) +D(fy, Tx)

2

}
,

for x ∈ Ai, y ∈ Ai+1, where i ∈ {1, . . . ,m} and Am+1 = A1.

Then there is z ∈ Aj̄ such that z ∈ C(f, T ). In addition, if ffz = fz and either f(Aj̄+1) or
f(Aj̄−1) is a closed set then fz ∈ F (f, T ).
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Proof. Let r1 be a real number with 0 ≤ r < r1 < 1. Consider x1 ∈ A1. By assumption
(i), we have T (x1) ⊆ f(A2). So there exists a point x2 in A2 such that fx2 ∈ Tx1 ⊆ f(A2).
Since φ(r) < 1, we have

φ(r)D(fx1, Tx1) ≤ D(fx1, Tx1) ≤ d(fx1, fx2).

By using the contractive condition (2.6), we obtain that

H(Tx1, Tx2) ≤ rmax

{
d(fx1, fx2), D(fx1, Tx1), D(fx2, Tx2),

D(fx1, Tx2) +D(fx2, Tx1)

2

}
= rmax

{
d(fx1, fx2), D(fx2, Tx2),

D(fx1, Tx2)

2

}
≤ rmax

{
d(fx1, fx2), D(fx2, Tx2),

d(fx1, fx2) +D(fx2, Tx2)

2

}
= rmax

{
d(fx1, fx2), D(fx2, Tx2)

}
.

Using this one, together with the fact that D(fx2, Tx2) ≤ H(Tx1, Tx2), we have

D(fx2, Tx2) ≤ rmax
{
d(fx1, fx2), D(fx2, Tx2)

}
.

If max
{
d(fx1, fx2), D(fx2, Tx2)

}
= D(fx2, Tx2), then we have

D(fx2, Tx2) ≤ rD(fx2, Tx2) < D(fx2, Tx2),

which is a contradiction. Thus, max
{
d(fx1, fx2), D(fx2, Tx2)

}
= d(fx1, fx2) and it fol-

lows that

D(fx2, Tx2) ≤ H(Tx1, Tx2) ≤ rd(fx1, fx2).(2.7)

Since fx2 ∈ Tx1 and r1
r > 1, by using Lemma2.1 together with (2.7), there exists x3 ∈ A3

with fx3 ∈ Tx2 such that
d(fx2, fx3) ≤ r1d(fx1, fx2).

By continuing this process, we construct a sequence {fxn} in X such that

fxn+1 ∈ Txn and d(fxn+1, fxn+2) ≤ r1d(fxn, fxn+1),(2.8)

where (xn, xn+1) ∈ (An, An+1). Next, from (2.8), we have
∞∑

n=1

d(fxn, fxn+1) ≤
∞∑

n=1

rn−1
1 d(fx1, fx2) < ∞,

since r1 ∈ (0, 1), this implies that {fxn} is a Cauchy sequence in the complete metric space
(X, d). Subsequently, let u ∈ X such that limn→∞ fxn = u. Moreover, by constructing
method of {fxn}, we have u ∈ f(Ai) for all i ∈ {1, . . . ,m}. Thus, since f(Aj̄) is a closed set
and ∩m

i=1f(Ai) ⊆ f(Aj̄) = f(Aj̄), there exists z ∈ Aj̄ such that fz = u. Moreover, we can
find a subsequence {fxn(k)} of {fxn} such that {fxn(k)} ⊆ f(Aj̄) and limk→∞ fxn(k) =

fz. By considering, such an index j̄, we now show that

(2.9) D(fz, Tx) ≤ rmax
{
d(fz, fx), D(fx, Tx)

}
,

for all x ∈ Aj̄−1∪Aj̄+1 such that fx ∈ X \{fz}. Assume that x ∈ Aj̄−1 and fx ∈ X \{fz}.
Note that, there is a natural number n1 ∈ N such that d(fz, fxn(k)) ≤ 1

3d(fz, fx) for all
k ≥ n1. Now, for each k ≥ n1 we consider

φ(r)D(fxn(k), Txn(k)) ≤ D(fxn(k), Txn(k)) ≤ d(fxn(k), fxn(k)+1)

≤ d(fxn(k), fz) + d(fz, fxn(k)+1) ≤ d(fx, fz)− d(fxn(k), fz) ≤ d(fxn(k), fx).



Coincidence point theorems for cyclic multi-valued and hybrid contractive mappings 89

Thus, we have φ(r)D(fxn(k), Txn(k)) ≤ d(fxn(k), fx) for all k ≥ n1. Then, in view of (2.6),
we get

H(Txn(k), Tx) ≤ rmax

{
d(fxn(k), fx), D(fxn(k), Txn(k)), D(fx, Tx),(2.10)

D(fxn(k), Tx) +D(fx, Txn(k))

2

}
.

Since fxn(k)+1 ∈ Txn(k), we have D(fxn(k)+1, Tx) ≤ H(Txn(k), Tx) and
D(fxn(k), Txn(k)) ≤ d(fxn(k), fxn(k)+1). Using this fact, from (2.10), we obtain

D(fxn(k)+1, Tx) ≤ rmax

{
d(fxn(k), fx), d(fxn(k), fxn(k)+1), D(fx, Tx),

D(fxn(k), Tx) + d(fx, fxn(k)+1)

2

}
,

for all k ≥ n1. Now, letting k → ∞, we have

D(fz, Tx) ≤ rmax

{
d(fz, fx), D(fx, Tx),

D(fz, Tx) + d(fx, fz)

2

}
,

for all x ∈ Aj̄−1, such that fx ∈ X \ {fz}, which is equivalent to

D(fz, Tx) ≤ rmax
{
d(fz, fx), D(fx, Tx)

}
.

Similarly, for the case x ∈ Aj̄+1, we can show that (2.9) holds. This proves the claim.

Finally, we will show that z ∈ C(f, T ). We divide the proof into the following two
cases.

Case I. 0 ≤ r < 1
2 .

Suppose on the contrary, that fz /∈ Tz. Let a ∈ Aj̄−1 such that fa ∈ Tz be such that
2rd(fz, fa) < D(fz, Tz). Note that we also have fa ̸= fz Now, we consider in the case
that fa ̸= fz. Thus, in view of (2.9), we have

(2.11) D(fz, Ta) ≤ rmax
{
d(fz, fa), D(fa, Ta)

}
.

On the other hand, since φ(r)D(fz, Tz) ≤ D(fz, Tz) ≤ d(fz, fa), we have

H(Tz, Ta) ≤ rmax

{
d(fz, fa), D(fz, Tz), D(fa, Ta),

D(fz, Ta) +D(fa, Tz)

2

}
≤ rmax

{
d(fz, fa), D(fa, Ta)

}
.(2.12)

So,
D(fa, Ta) ≤ H(Tz, Ta) ≤ rmax

{
d(fz, fa), D(fa, Ta)

}
.

Observe that, if max
{
d(fz, fa), D(fa, Ta)

}
= D(fa, Ta), we would have

D(fa, Ta) ≤ rD(fa, Ta) < D(fa, Ta)

which is a contradiction. Thus, by this observation and by (2.11) and (2.12), we have

D(fz, Ta) ≤ rd(fz, fa) and H(Tz, Ta) ≤ rd(fz, fa).

This implies

D(fz, Tz) ≤ D(fz, Ta)+H(Ta, Tz) ≤ rd(fz, fa)+rd(fz, fa) = 2rd(fz, fa) < D(fz, Tz),

which is a contradiction. Thus we must have fz ∈ Tz, as required.
Case II. 1

2 ≤ r < 1.
First, we will show that for all x ∈ Aj̄−1, such that fx ∈ X \ {fz}, one has

(2.13) φ(r)D(fx, Tx) ≤ d(fx, fz).
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Let x ∈ Aj̄−1, such that fx ∈ X/{fz} be given. Observe that,

D(fx, Tx) ≤ d(fx, fz) +D(fz, Tx).

Thus, by (2.9), it follows that

(2.14) D(fx, Tx) ≤ d(fx, fz) + rmax
{
d(fz, fx), D(fx, Tx)

}
.

If max
{
d(fz, fx), D(fx, Tx)

}
= d(fz, fx), from (2.14) we get

D(fx, Tx) ≤ d(fx, fz) + rd(fx, fz) = (1 + r)d(fx, fz).

So,

φ(r)D(fx, Tx) = (1− r)D(fx, Tx) ≤ 1

1 + r
D(fx, Tx) ≤ d(fx, fz),

and we conclude that (2.13) holds. Now, if

max
{
d(fz, fx), D(fx, Tx)

}
= D(fx, Tx),

from (2.14) and we get

D(fx, Tx) ≤ d(fx, fz) + rD(fx, Tx),

which implies that

φ(r)D(fx, Tx) = (1− r)D(fx, Tx) ≤ d(fx, fz),

we have that (2.13) holds, too. By using the assumption (2.6), we obtain that

(2.15) H(Tx, Tz) ≤ rmax

{
d(fx, fz), D(fx, Tx), D(fz, Tz),

D(fx, Tz) +D(fz, Tx)

2

}
,

for all x ∈ Aj̄−1, such that fx ∈ X \ {fz}.
If {fxn(k)} ⊆ f(Aj̄−1) satisfies limn→∞ fxn(k) = fz, then by (2.15) we obtain

D(fz, Tz) = lim
k→∞

D(fxn(k)+1, T z) ≤ lim
k→∞

H(Txn(k), T z) ≤ lim
k→∞

rmax
{
d(fxn(k), fz),

D(fxn(k), Txn(k)), D(fz, Tz),
D(fxn(k), T z) +D(fz, Txn(k))

2

}
≤ lim

k→∞
rmax

{
d(fxn(k), fz), D(fxn(k), fxn(k)+1), D(fz, Tz),

D(fxn(k), T z) +D(fz, fxn(k)+1)

2

}
= rD(fz, Tz).

Since r < 1, we can conclude that D(fz, Tz) = 0. This means that z ∈ C(f, T ).
Now, assume that ffz = fz and either f(Aj̄+1) or f(Aj̄−1) is a closed set. We will

show that fz ∈ F (f, T ).
Note that, since z ∈ C(f, T ) and ffz = fz, we have ffz = fz ∈ Tz. Let us consider for

the case fz ∈ f(Aj̄+1). We see that

φ(r)D(fz, Tz) ≤ D(fz, Tz) ≤ d(fz, ffz).

Thus, we using (2.6), we obtain

H(Tz, Tfz) ≤ rmax

{
d(fz, ffz), D(fz, Tz), D(ffz, Tz),

D(fz, Tfz) +D(ffz, Tz)

2

}
= rD(ffz, Tfz).

By using the above result together with the fact that ffz ∈ Tz, we get D(ffz, Tfz) ≤
rD(ffz, Tfz). Since r ∈ [0, 1), this implies D(ffz, Tfz) = 0. Thus, by the hypothesis
fz = ffz, we conclude that fz ∈ Tfz. This means fz ∈ F (f, T ), as required.

The proof for the case of fz ∈ f(Aj̄−1) is similar to the above case, so it is omitted. □
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In the following, we give an example of a pair of a single-valued and a multi-valued
mapping that satisfies all the hypotheses of Theorem 2.6.

Example 2.1. Consider the set of real numbers, R, with the usual metric and let T : R →
CB(R) and f : R → R be defined by

Tx =

{[
19
10 ,

−2x+25
10

]
, if x ≤ 7

2 ,[−2x+25
10 , 19

10

]
, if x > 7

2 ,

and fx =
x+ 2

2
, for all x ∈ X, respectively. Let us choose A1 =

[
0, 5

2

]
, A2 =

(
1, 7

2

)
and

A3 =
[
3
2 , 4

]
. We have

T (A1) =

[
19

10
,
5

2

]
, T (A2) =

(
9

5
,
23

10

)
, T (A3) =

[
7

4
,
11

5

]
,

f(A1) =

[
1,

9

4

]
, f(A2) =

(
3

2
,
11

4

)
, f(A3) =

[
7

4
, 3

]
.

Therefore, T (A1) ⊆ f(A2), T (A2) ⊆ f(A3) and T (A3) ⊆ f(A1) and it is clear that f(A1)
and f(A3) are closed set.

We will show that the mappings f and T satisfy condition ii) of Theorem 2.6 with r = 1
2 .

For each x ∈ A1 and y ∈ A2, such that φ(r)D(fx, Tx) ≤ d(fx, fy), we have

H(Tx, Ty) = H

([
19

10
,
−2x+ 25

10

]
,

[
19

10
,
−2y + 25

10

])
≤

∣∣∣∣−2x+ 25

10
− −2y + 25

10

∣∣∣∣
=

1

5
|x− y| ≤ 1

4
|x− y| = 1

2

∣∣∣∣x+ 2

2
− y + 2

2

∣∣∣∣ = 1

2
d(fx, fy)

≤ 1

2
max

{
d(fx, fy), D(fx, Tx), D(fy, Ty),

D(fx, Ty) +D(fy, Tx)

2

}
.

Similarly, one proves that the contraction condition holds if x ∈ A2 and y ∈ A3.

Hence, all requirements of the Theorem 2.6 are satisfied. In fact, we have C(f, T ) =[
9
5 ,

15
7

]
. Moreover, there is z = 2 ∈

[
9
5 ,

15
7

]
such that ffz = fz and thus fz = 2 ∈ F (f, T ).

The next example shows that, under the hypotheses of Theorem 2.6, the assumption
ffz = fz is essential for guaranteeing the existence of a common fixed point of f and T .

Example 2.2. Consider the set of real numbers, R, with the usual metric and let T : R →
CB(R) and f : R → R be defined by

Tx =

{[
0, −5x+1

10

]
, if x ≤ 2

5 ,[−5x+1
10 , 0

]
, if x > 2

5 ,

and
fx =

6x− 1

10
, for all x ∈ X.

One can check that F (f, T ) = ∅. Let us consider A1 =
(
−2, 2

5

)
, A2 = [0, 2]. So, f(A2) is a

closed set and

T (A1) = ∪a∈ATa =

(
− 1

10
,
11

10

)
⊆

[
− 1

10
,
11

10

]
= f(A2),

and

T (A2) = ∪b∈BTb =

[
− 9

10
,
1

10

]
⊆

(
−13

10
,
7

50

)
= f(A1).
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Next, we show that the mappings T and f satisfy condition ii) of Theorem 2.6 with
r = 5

6 . Indeed, for each x ∈ A1 and y ∈ A2, such that φ(r)D(fx, Tx) ≤ d(fx, fy), we have

H(Tx, Ty) = H

([
0,

−5x+ 1

10

]
,

[
−5y + 1

10
, 0

])
≤

∣∣∣∣−5x+ 1

10
− −5y + 1

10

∣∣∣∣ = 1

2
|x− y|

=
5

6

∣∣∣∣6x− 1

10
− 6y − 1

10

∣∣∣∣ = 5

6
d(fx, fy)

≤ 5

6
max

{
d(fx, fy), D(fx, Tx), D(fy, Ty),

D(fx, Ty) +D(fy, Tx)

2

}
.

This proves the claim. Thus, all requirements of Theorem 2.6 are satisfied and we have
C(f, T ) =

[
1
6 ,

2
11

]
but ffz ̸= fz, for all z ∈

[
1
6 ,

2
11

]
.

The following special case of our main result given by Theorem 2.6 is important by
itself.

Theorem 2.7. Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued
mapping. Let A1, A2, . . . , Am be nonempty subsets of X such that T (Ai) ⊆ Ai+1, for each
i = 1, . . . ,m− 1 and T (Am) ⊆ A1. If the following conditions are satisfied :

i) There is j̄ ∈ {1, . . . ,m} such that Aj̄ is a closed set.
ii) There exists r ∈ [0, 1) such that φ(r)D(x, Tx) ≤ d(x, y) implies

(2.16) H(Tx, Ty) ≤ rmax

{
d(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) +D(y, Tx)

2

}
,

when x ∈ Ai, y ∈ Ai+1, where i ∈ {1, . . . ,m}, Am+1 = A1 and the function φ is defined as
in (2.5).

Then, F (T ) ̸= ∅.

Remark 2.1. Taking A1 = A2 = . . . = Am = X in Theorem 2.7, we get Theorem 1.5.
However, if each Ai is a proper subset of X , it is worth to point out that Theorem 2.7
is a genuine generalization of Theorem 1.5. Moreover, Theorem 2.7 also improves the
important results with were presented by Ciric in [13].

The following example shows the generality of Theorem 2.7, by comparing with Theo-
rem 1.3.

Example 2.3. Consider X = (−∞, 4] equipped with the absolute valued metric distance.
Define T : X → CB(X) by

Tx =

{[
6−x
2 , x+9

6

]
, if x < 4,[

5
2 ,

13
5

]
, if x = 4.

For A1 =
[
0, 13

5

]
and A2 = [1, 4], we observe that

T (A1) =

[
3

2
, 3

]
⊆ [1, 4] = A2

and

T (A2) =

(
1,

5

2

]
∪
[
5

2
,
13

5

]
=

(
1,

13

5

]
⊆

[
0,

13

5

]
= A1.

Moveover, we can show that the condition (2.16) is satasified with r = 3
5 . Therefore,

all assumptions of Theorem 2.7 are satisfied and F (T ) =
[
9
5 , 2

]
.
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However, T does not satisfy Kikkawa and Suzuki’s condition (Theorem 1.3). Indeed,
for x = 3 and y = 4, we have

1

1 + r
D(3, T3) =

1

1 + r
D(3,

[
3

2
, 2

]
) =

1

1 + r
· 1 ≤ 1 = d(3, 4),

but H(T3, T4) = H
([

3
2 , 2

]
,
[
5
2 ,

13
5

])
= 1 > r(1) = rd(3, 4).

3. CONCLUSIONS

In this work, which basically rely on the results of Dorić and Lazović [16], we introduce
and study a new class of multi-valued mappings induced by the cyclic concept. Some
coincidence and fixed point theorems, examples and remarks are discussed.

It is important to point out that Theorem 2.6 is obtained by requiring only the assump-
tion that f(Aj̄) is a closed set, which is a weaker condition than those appearing in the
existing literature.
Acknowledgment. W. Saksirikun is supported by the Thailand Research Fund through
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[16] Dorić, D. and Lazović, R., Some Suzuki-type fixed point theorems for generalized multivalued mappings and appli-

cations, Fixed Point Theory Appl., 2011, 2011:40, 8 pp.
[17] Kamran, T., Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl., 299 (2004), No. 1,

235–241
[18] Kannan, R., Some results on fixed points, Bull. Calcutta Math. Soc., 10 (1968), 71–76
[19] Kaneko, H. and Sessa, S., Fixed point theorems for compatible multi-valued and single-valued mappings, Internat.

J. Math. Math. Sci., 12 (1989), No. 2, 257–262
[20] Karapinar, E., Fixed point theory for cyclic weak ϕ-contraction, Appl. Math. Lett., 24 (2011), No. 6, 822–825



94 Warut Saksirikun, Vasile Berinde and Narin Petrot

[21] Karapinar, E. and Nashine, H. K., Fixed point theorem for cyclic Chatterjea type contractions, J. Appl. Math.,
2012, Art. ID 165698, 15 pp.

[22] Karapinar, E. and Sadaranagni, K., Fixed point theory for cyclic ϕ-ψ-contraction, Fixed Point Theory Appl.,
2011, 2011:69, 8 pp.

[23] Khan, A. A. and Sama, M., Optimal control of multivalued quasi variational inequalities, Nonlinear Anal., 75
(2012), No. 3, 1419–1428.

[24] Khan, A. R., Abbas, M. and Ali, B., Tripled coincidence and common fixed point theorems for hybrid pair of
mappings, Creat. Math. Inform., 22 (2013), No. 1, 53–64

[25] Kirk, W. A., Srinivasan, P. S., and Veeramani, P., Fixed points for mappings satisfying cyclical contractive condi-
tions, Fixed Point Theory, 4 (2003), No. 1, 79–89

[26] Kikkawa, M. and Suzuki, T., Three fixed point theorems for generalized contractions with constants in complete
metric spaces, Nonlinear Anal., 69 (2008), No. 9, 2942–2949

[27] Kikkawa, M. and Suzuki, T., Some similarity between contractions and Kannan mappings, Fixed Point Theory
Appl., 2008, Art. ID 649749, 8 pp.

[28] Kilbas, A. A., Srivastava H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations,
North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006
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[36] Petruşel, A. and Petruşel, G., A note on multivalued Meir-Keeler type operators, Stud. Univ. Babeş-Bolyai Math.,
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