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An efficient iterated local search heuristic algorithm for the
two-stage fixed-charge transportation problem
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ABSTRACT. This paper concerns the two-stage transportation problem with fixed charges associated to the
routes and proposes an efficient multi-start Iterated Local Search (ILS) procedure for the total distribution costs
minimization. Our heuristic approach constructs an initial solution, uses a local search procedure to increase
the exploration, a perturbation mechanism and a neighborhood operator in order to diversify the search. Com-
putational experiments were performed on two sets of instances: one that consists of 20 benchmark instances
available in the literature and a second one that contains 10 new randomly generated larger instances. The
achieved computational results prove that our proposed solution approach is highly competitive in comparison
with the existing approaches from the literature.

1. INTRODUCTION

The transportation problem has a venerable history in mathematics and economics.
The problem was considered for the first time in 1781 by Monge, who encountered it in a
practical application, namely the soil-transportation problem. In the standard transporta-
tion problem, given a number of sources and a number of destinations, we look for an
optimum transportation schedule keeping in mind the minimization of the transporta-
tion costs. Hitchcok stated this kind of problem in 1941 and Kantorovich considered the
continous case of the problem.

The importance and famousness of the transportation problem originates from several
facts: there exist very efficient algorithms for solving the standard version of the prob-
lem, it has several real-world applications and it has been successfully applied to many
other optimization problems. However, for many researchers the extensions of the clas-
sical transportation problem are more attractive, being more difficult and having many
practical applications.

This work deals with a variant of the transportation problem, namely the fixed-cost
transportation problem (FCTP) in a two-stage supply chain network. In this extension,
our aim is to identify and select the manufacturers and the distribution centers fulfilling
the demands of the customers under minimal costs. The main characteristic of the fixed-
charge transportation problem is that a fixed charge is associated with each route that
may be opened in addition to the variable transportation cost which is proportional to the
amount of goods shipped.

The two-stage transportation problem was introduced by Geoffrion and Graves [8].
Since then several variants of the problem have been studied and several methods, based
on exact and heuristic algorithms, have been proposed for solving them.
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Marin and Pelegrin [12] proposed a solution approach using Lagrangian decomposi-
tion and branch-and-bound techniques in the case when the manufacturers and the distri-
bution centers have no capacity constraints and there are fixed costs associated to opening
the distribution centers and the number of opened distribution centers is fixed and estab-
lished in advance. Marin [14] presented a mixed integer programming formulation and
provided lower bounds of the optimal objective values using different Lagrangian relax-
ations for an uncapacitated version of the problem when both manufacturers and distri-
bution centers have associated fixed costs when they are used. Pirkul and Jayaraman [18]
investigated a multi-commodity, multi-plant, capacitated facility location version of the
problem and described a mixed integer programming model and a solution approach us-
ing a Lagrangian relaxation of the problem. The same authors in [11] extended their model
by taking into consideration the acquisition of raw material and described a heuristic algo-
rithm that uses the solution generated by a Lagrangian relaxation of the problem. Amari
[1] studied a different version of the problem, allowing the use of several capacity levels of
the manufacturers and distribution centers and developed an efficient solution approach
based on Lagrangian relaxation for solving it. Calvete et al. [2] investigated a bi-level op-
timization problem that deals with the planning of a distribution system that permits to
take into account the manner in which decisions made at the distribution stage of the sup-
ply chain can affect and be affected by decisions made at the manufacturing stage. They
proposed a mixed integer formulation of the considered transportation problem and as
well a hybrid solution approach that combines the use of an evolutionary algorithm to
control the supply of distribution centers with optimization techniques to determine the
delivery from distribution centers to customers and the supply from manufacturers to
distribution centers.

In one of these variants, there exists only one manufacturer and this version was con-
sidered by Molla et al.[14]. They described an integer programming mathematical for-
mulation of the problem and they proposed also a spanning tree-based genetic algorithm
with a Prüfer number representation and an artificial immune algorithm for solving it.
Some comments concerning the mathematical formulation of the problem were published
by El-Sherbiny [6]. Pintea et al. [15] described some hybrid classical approaches and Pin-
tea and Pop [17] developed an improved hybrid algorithm combining the Nearest Neigh-
bor search heuristic with a local search procedure for solving the two-stage transportation
problem with fixed costs. Pop et al. [20] described a novel hybrid heuristic approach ob-
tained by combining a genetic algorithm based on a hash table coding of the individuals
with a powerful local search procedure. Recently, Cosma et al. [5] proposed an efficient
hybrid heuristic approach that constructs an initial solution while using a local search
procedure whose aim is to increase the exploration and for the purpose of diversifying
the search, a neighborhood structure is used.

Another version of the two-stage transportation problem takes into consideration its
impact on the environment by limiting the greenhouse gas emissions and was introduced
by Santibanez-Gonzales [24] for dealing with a practical application from the public sec-
tor. For this variant of the problem, Pintea et al. [16] provided a set of classical hybrid
heuristic approaches and Pop et al. [19] proposed an efficient reverse distribution system
for solving it.

Raj and Rajendran [22] considered two scenarios of the problem: the first scenario (Sce-
nario 1) takes into consideration fixed costs associated to the routes in addition to unit
transportation costs and unlimited capacities of the distribution centers, while the sec-
ond one (Scenario 2) which takes into consideration the opening costs of the distribution
centers in addition to unit transportation costs. Recently, Calvete et al. [3], in the case
of Scenario 2, proposed a hybrid evolutionary algorithm whose main characteristic is the
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use of a chromosome encoding that provides information about the distribution centers
used within the distribution system.

In the form considered in our paper, the problem was defined by Jawahar and Balaji
[10]. They described a genetic algorithm (GA) with a specific coding scheme suitable
for two-stage problems. The same authors introduced a set of 20 benchmark instances
and their computational results have been compared to lower bounds and approximate
solutions obtained from a relaxation. Raj and Rajendran [22] called this variant Scenario-
1 and developed a two-stage genetic algorithm (TSGA) in order to solve the problem.
They also proposed a solution representation that allows a single-stage genetic algorithm
(SSGA) [23] to solve it. The major feature of these methods is a compact representation
of a chromosome based on a permutation. Recently, Pop et al. [21] described a hybrid
algorithm that combines a steady-state genetic algorithm with a local search procedure.

Our paper is organized as follows. In Section 2, we define the two-stage fixed-charge
transportation problem. The developed multi-start Iterated Local Search algorithm is pre-
sented in Section 3 and the computational experiments and the achieved results are pre-
sented, analyzed and discussed in Section 4. Finally, in the last section, we point out the
results obtained in this paper and present future research directions.

2. DEFINITION OF THE TWO-STAGE TRANSPORTATION PROBLEM WITH FIXED COSTS
ASSOCIATED TO THE ROUTES

In order to define the considered two-stage fixed-cost transportation problem, we start
by defining the related sets, decision variables and parameters:

p the number of manufacturers
q the number of distribution centers
r the number of customers
i manufacturer identifier, i ∈ {1, ..., p}
j distribution center identifier, j ∈ {1, ..., q}
k customer identifier, k ∈ {1, ..., r}
Dk the demand of customer k
Si capacity of manufacturer i
fij the fixed transportation charges for the link from manufacturer i to distribution center j
gjk the fixed transportation charges for the link from distribution center j to customer k
bij unit cost of transportation from manufacturer i to distribution center j
cjk unit cost of transportation from distribution center j to customer k
xij the number of units transported from manufacturer i to distribution center j
yjk the number of units transported from distribution center j to customer k
Z the total cost of the distribution solution
outi the number of units delivered by manufacturer i
indj the number of units supplied to distribution center j
inck the number of units supplied to customer k

Given a set of p manufacturers, a set of q distribution centers (DC’s) and a set of r
customers with the following properties:

• Each manufacturer may ship to any of the q distribution centers at a transportation
cost bij per unit from manufacturer i, where i ∈ {1, ..., p}, to DC j, where j ∈
{1, ..., q}, plus a fixed-charge fij for operating the route.

• Each DC may ship to any of the r customers at a transportation cost cjk per unit
from DC j,where j ∈ {1, ..., q}, to customer k, where k ∈ {1, ..., r}, plus a fixed-
charge gjk for operating the route.
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• Each manufacturer i ∈ {1, ..., p} has Si units of supply and each customer k ∈
{1, ..., r} has a demand Dk.

The aim of the two-stage fixed-cost transportation problem is to determine the routes to be
opened and corresponding shipment quantities on these routes, such that the customer
demands are fulfilled, all shipment constraints are satisfied, and the total distribution
costs are minimized.

By introducing the linear variables:

xij representing the number of units transported from manufacturer i to DC j,
yjk representing the number of units transported from DC j to customer k,

and the binary variables:

zij is 1 if the route from manufacturer i to DC j is used and 0 otherwise,
wjk is 1 if the route from DC j to customer k is used and 0 otherwise,

then the two-stage transportation problem with fixed costs associated to the routes can be
modeled as the following mixed integer problem described by Raj and Rajendran [22]:

min

p∑
i=1

q∑
j=1

(bijxij + fijzij) +

q∑
j=1

r∑
k=1

(cjkyjk + gjkwjk)

s.t.

q∑
j=1

xij ≤ Si, ∀ i ∈ {1, ..., p}(2.1)

q∑
j=1

yjk = Dk, ∀ k ∈ {1, ..., r}(2.2)

p∑
i=1

xij =

r∑
k=1

yjk, ∀ j ∈ {1, ..., q}(2.3)

xij ≥ 0, ∀ i ∈ {1, ..., p}, ∀ j ∈ {1, ..., q}(2.4)
yjk ≥ 0, ∀ j ∈ {1, ..., q},∀ k ∈ {1, ..., r}(2.5)
zij ∈ {0, 1}, ∀ i ∈ {1, ..., p}, ∀ j ∈ {1, ..., q}(2.6)
wjk ∈ {0, 1}, ∀ j ∈ {1, ..., q},∀ k ∈ {1, ..., r}(2.7)

The objective function minimizes the total distribution cost: the fixed costs and trans-
portation per-unit costs. Constraints (2.1) guarantee that the quantity shipped out from
each manufacturer does not exceed the available capacity, constraints (2.2) guarantee that
the total shipment received from DCs by each customer is equal to its demand and con-
straints (2.3) are the flow conservation conditions and they guarantee that the units re-
ceived by a DC from manufacturers are equal to the units shipped from the distribution
centers to the customers. The last four constraints (2.4)-(2.7) ensure the integrality and
non-negativity of the decision variables.

The presence of the fixed-charge associated to the routes makes the problem more dif-
ficult. Hirsch and Dantzig [9] showed that even the fixed-charge transportation problem
is an NP-hard problem and therefore our considered two-stage fixed-cost transportation
problem which is an extension of the FCTP is as well NP-hard. Since the considered
transportation problem is NP-hard, the necessary computational time in order to obtain
an exact solution of the problem increases in an exponential manner and very rapidly be-
comes extremely difficult and long as the size of the problem increases. That is why in
order to tackle the two-stage fixed-cost transportation problem we proposed an efficient
multi-start Iterated Local Search algorithm.
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An illustration of the investigated two-stage fixed-charge transportation problem is
presented in the next figure.

FIGURE 1. Illustration of the two-stage fixed-charge transportation problem

3. DESCRIPTION OF THE ITERATED LOCAL SEARCH HEURISTIC

The following terms and abbreviations will be used in the description of our proposed
algorithm:
Manufacturer i will be called not depleted, if si − outi > 0.
Customer k will be called completed, if dk − ink = 0
A transportation link from manufacturer i to DC j, denoted Lij , will be called nonzero, if
xij > 0.
A transportation link from DC j to customer k, denoted Ljk will be called nonzero, if
yjk > 0
A route Rijk is a set of two transportation links: Lij and Ljk. A route Rijk connects
manufacturer i to customer k through distribution center j. The capacity of route Rijk ,
denoted xyijk, is the smallest value of xij and yjk, i.e. xyijk = min{xij , yjk}. Route Rijk

will be called nonzero if xyijk > 0.
The operation of reserving a units on the link Lij is defined as follows:

reserve(link Lij , amount a)
1. xij ← xij + a
2. outi ← outi + a
3. indj ← indj + a

The operation of canceling a units from the link Lij is defined as follows:
cancel(link Lij , amount a)
1. reserve(Lij ,−a)

The operation of reserving a units on the route Rijk is defined as follows:
reserve(route Rijk, amount a)
1. reserve(Lij , a)
2. yjk ← yjk + a
3. inck ← inck + a
4. indj ← indj − a

The operation of canceling a units from the route Rijk is defined as follows:
cancel(route Rijk, amount a)
1. reserve(Rijk,−a)
The algorithm consists of a multi-start heuristic, mainly based on an Iterated Local

Search (ILS). Initial solutions are constructed using a minimum cost procedure applied
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for each customer, combined with a quick neighborhood operator, while local search is
performed using a powerful neighborhood operator. When a solution is trapped in a local
optimum, a perturbation mechanism is applied that builds a new solution from scratch.

The main module of our ILS executes a fixed number of iterations which was previ-
ously established based on the number of customers. At each iteration, the customers are
placed in a random order that has not been used before. For this purpose, we used the
Fischer-Yates shuffle algorithm and the resulting order is placed in a hash set, so that its
uniqueness can be efficiently checked. Next an initial solution is built, supplying the cus-
tomers in the order previously set. Then the initial solution is enhanced by several local
search operations, that continue as long as the solution improves. When improvement is
no longer possible, a new solution is being built, processing the customers in a different
order.
The process of supplying customer k involves the following operations:

supply(customer k)
1. Solve the problem defined by relations (3.8) to (3.12), resulting the pair j, i and the

available quantity d̃k
2. perform a reserve(Rijk, d̃k) operation
3. if inck < dk, then continue with step 1

min
j,i

(cjk + g̃jk + bij + f̃ij)(3.8)

g̃jk =

{
0, yjk ̸= 0
gjk
d̃k

, yjk = 0
(3.9)

f̃ij =

{
0, xij ̸= 0
fij
d̃k

, xij = 0
(3.10)

d̃k = min{si − outi, dk − inck}(3.11)

d̃k > 0.(3.12)

The demand of each customer k is satisfied by solving the problem defined by re-
lations (3.8) to (3.12). The result is the j, i pair and the available amount d̃k. Then, a
reserve(Rijk, d̃k) operation is performed. If after the first iteration inck < dk, then satisfy-
ing the demand of customer k requires more iterations which are carried out as described
above. Relations (3.11) and (3.12) guarantee that only un depleted manufacturers will be
taken into account. The process finishes when the customer becomes completed.

If there were no fixed costs for opening transport routes and if the production capaci-
ties of the manufacturers were not limited, the initial solution building process described
above would find the optimal solution in the first attempt. But this is unlikely to happen,
because of the distribution system restrictions.

After ensuring the demand of each customer, the distribution system changes as part of
the manufacturers production was consumed and new transport routes could be opened.
A quick neighborhood operator was designed to verify whether previously established
routes can be improved under the new conditions. The quick search is performed when
the processing of a customer finishes. Experiments showed that for less complex distri-
bution systems, this step can significantly increase the efficiency of the optimal solution
search process.
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The quick search operator systematically destroys older parts of the solution and then
rebuilds them according to the current configuration of the distribution system, seeking
a better alternative. Previously established routes are canceled first, and then they are
rebuilt. All nonzero transportation routes Rijk are reconsidered as follows:

quickSearchMove(route Rijk)
1. a← xyijk
2. cancel(Rijk, a)
3. reserve(Rijk, a).
Customers are processed in the same order they were processed in the initial solution

building process. The first reconsidered routes are the ones connected to the first supplied
customer. Since usually there is a relatively small number of nonzero routes, the quick
search operator works fast and can be called after the supply of each customer finishes.
The number of operations involved in quick search increase as the number of supplied
customers increases. If the quick search does not improve the solution, all the changes are
abandoned, thus restoring the previous solution.

In Figures 2 and 3 we present a distribution system under construction, and the pos-
sible effect of a quickSearchMove operation. Within the nodes we marked the quanti-
ties available at the manufacturers si and the demands of the customers dk and on the
arcs, we marked the number of transported units xij and yjk. The parameter Rijk of the
quickSearchMove operation is shown in figure 2. Figure 3 shows the new Rijk route
discovered by quickSearchMove, and the final state of the distribution system.

FIGURE 2. Illustration of a distribution system under construction and a
route to be removed by the quickSearchMove operation

FIGURE 3. Illustration of a new alternative route discovered by the
quickSearchMove operation for the removed route and the new distri-
bution system structure
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The local search operator is useful in the case of higher complexity distribution sys-
tems, for which the quick search fails to find the optimal solution. The local search opera-
tor uses the same search principle as the quick search operator: destroy and rebuild. The
difference lies in the fact that the local search operator is applied after the initial solution
construction is finished, and it destroys larger portions of the solution. This increases the
search area, thus increasing the probability of improving the solution.

Our proposed local search is an iterative process. At each iteration a nonzero link Lij

and two nonzero routes R′
i′j′k′ and R′′

i′′j′′k′′ are picked randomly. The selection process
is designed so that all possible variants are tested only once. This operation is possible,
because the number of nonzero links and routes is relatively small. Each selected set
(Lij , R

′
i′j′k′ , R′′

i′′j′′k′′) is processed as follows:
localSearchMove(linkLij , routeR

′
i′j′k′ , routeR′′

i′′j′′k′′)

1. a← xij ; a
′ ← xyi′j′k′ ; a′′← xyi′′j′′k′′

2. cancel(Lij , a)
3. cancel(R′

i′j′k′ , a′)

4. cancel(R′′
i′′j′′k′′ , a′′)

5. reserve(R′
i′j′k′ , a′)

6. reserve(R′′
i′′j′′k′′ , a′′)

7. solve the problem defined by relations (3.13) to (3.16). The result is themanufacturer
identification number i, and the supported quantity ã
8. reserve(Lij , ã)
9. if indj < 0 then continue with step 7
10. if the solution worsened, then restore the initial solution.

min
i
(bij + f̃ij)(3.13)

f̃ij =

{
0, xij ̸= 0
fij
ã , xij = 0

(3.14)

ã = min{si − outi, −indj}(3.15)
ã > 0.(3.16)

Each localSearchMove operation uses 3 parameters: A nonzero link Lij and two nonzero
routes R′

i′j′k′ and R′′
i′′j′′k′′ . After canceling the link L and the two routes R′ and R′′, the

two routes are reserved again. The new reservations could find better alternatives in the
new conditions. The cancellation of the Lij link aims to increase the likelihood of finding
a more advantageous variant for replacing R′ and R′′ routes.

However, the cancellation of this link has diminished the number of units entering DC
j, without changing the number of units leaving this DC. Thus indj becomes negative.
Next, the most advantageous variant for correcting the solution is sought as follows:

The number of units with which the stock of DC j decreased after cancelling the Lij link
is -indj . The correction involves solving the previously defined optimization problem. If
-indj ≤ si-outi , then the correction finishes in one step. Otherwise, more iterations are
required to complete the initial stock of DC j.

Because the order in which customer demands are resolved is decisive for the result, it
is useful to perform an extra localSearchMove operation with the two routes in reversed
order.

In figures 4 and 5 we show the way a solution can be modified by the localSearchMove
operation. Figure 4 presents an initial solution, a link Lij and two routes R′

i′j′k′ and
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R′′
i′′j′′k′′ that could be picked for a localSearchMove operation. Figure 5 shows the new

discovered routes, the necessary correction and the final distribution system. Such a trans-
formation cannot be accomplished by quick search moves. Therefore, local search moves
can find solutions that the quick search moves cannot reach.

The local search operations can generate a significant number of duplicate solutions.
For the efficient removal of duplicates, a hash code is calculated for each new solution,
that is stored in a hash set. However, this technique cannot be applied in the case of large
instances.

FIGURE 4. Illustration of an initial solution, a link and two routes that are
transmitted to the localSearchMove operation

FIGURE 5. Illustration of the new routes and the new solution of the problem

4. COMPUTATIONAL RESULTS

In order to analyze the performance of our proposed ILS heuristic algorithm, we tested
it on two sets of instances. The first one was generated by Jawahar and Balaji [10] and it
consists of 20 test problems of small sizes. The second set of problems contains 10 new
randomly generated instances of larger sizes. The files of the two sets of instances are
available at the following address: https://sites.google.com/view/tstp-instances/.

Our algorithm was coded in Java 8 and we performed 30 independent runs for each
instance on a PC with Intel Core i5-4590 3.3GHz, 4GB RAM, Windows 10 Education 64 bit
operating system.

Table 1 presents the computational results of our proposed heuristic ILS algorithm in
comparison with the genetic algorithm described by Jawahar and Balaji [10], called JRGA,
the two genetic algorithms introduced by Raj and Rajendran [22], denoted by TSGA and
SSGA and the hybrid genetic algorithm (HGA) described by Pop et al. [21]. The first
column in the Table 1 gives the size of the instances, the next columns provide the solution



162 Ovidiu Cosma, Petrică C. Pop and Corina Pop Sitar

achieved by the genetic algorithm described by Jawahar and Balaji [10], the two genetic
algorithms introduced by Raj and Rajendran [22], the hybrid genetic algorithm described
by Pop et al. [21] and our ILS heuristic algorithm and the rounded average number of
evaluations necessary to obtain it. The results written in bold represent cases for which
the obtained solution is the best existing from the literature.

TABLE 1. Computational results achived by our proposed ILS compared
to existing approaches.

Instance JRGA TSGA SSGA HGA ILS
size obj #eval obj obj #eval obj #eval obj #eval

2 x 2 x 3 112600 1444 112600 112600 637 112600 2 112600 2
2 x 2 x 4 237750 1924 237750 237750 857 237750 2 237750 2
2 x 2 x 5 180450 2404 180450 180450 1214 180450 319 180450 6
2 x 2 x 6 165650 2884 165650 165650 1354 165650 324 165650 12
2 x 2 x 7 162490 3364 162490 162490 1889 162490 335 162490 16
2 x 3 x 3 59500 2164 59500 59500 1503 59500 317 59500 5
2 x 3 x 4 32150 2884 32150 32150 1859 32150 339 32150 9
2 x 3 x 6 69970 4324 67380 65945 2577 65945 356 65945 5
2 x 3 x 8 263000 5764 258730 258730 5235 258730 546 258730 341
2 x 4 x 8 80400 7684 84600 77400 5246 78550 1039 77400 28
2 x 5 x 6 94565 7204 80865 75065 3574 80865 430 75065 3
3 x 2 x 4 47140 2884 47140 47140 1429 47140 321 47140 6
3 x 2 x 5 178950 3604 178950 175350 2061 178950 320 175350 25
3 x 3 x 4 57100 4324 61000 57100 3060 57100 354 57100 12
3 x 3 x 5 152800 5404 156900 152800 4555 152800 335 152800 3
3 x 3 x 6 132890 6484 132890 132890 2981 132890 3 132890 3

3 x 3 x 7 (a) 104115 7564 106745 99095 7095 103815 1330 99095 78
3 x 3 x 7 (b) 287360 7564 295060 281100 7011 281100 380 281100 15

3 x 4 x 6 77250 8644 81700 76900 7105 77250 373 76900 22
4 x 3 x 5 118450 7204 118450 118450 4227 118450 394 118450 19

Analyzing the computational results reported in Table 1, we can observe that our ILS
approach achieved for all the instances the optimal solution, obtained by using CPLEX
12.7 to solve exactly the mathematical model. Our algorithm has a better computational
performance compared to JRGA [10] and TSGA [22] and compared to the SSGA [22], it
delivers the same solution in all the 20 considered instances, but the number of solution
evaluations is significantly lower compared to the number of solutions enumerated to ob-
tain the corresponding solutions by the SSGA approach. In comparison with the HGA
[21], our ILS heuristic algorithm achieved better solution in 5 out of 20 instances and the
same solutions for the remaining instances. Regarding the number of solution evalua-
tions, our approach uses considerable less in 17 out of 20 instances and equal in the case
of the other 3 instances. We would like to emphasize the fact that each achieved solution
was obtained in under 1ms time.

Due to the small sizes of the benchmark instances considered in the literature, in Table
2 we present the computational results achieved by our proposed heuristic ILS algorithm
in the case of the new randomly generated instances of larger sizes. The first column
contains the size of the instances and the next four columns contain the following results
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achieved by our ILS heuristic algorithm: the best solution, the average solution, the aver-
age computational time in seconds and the average numbers of evaluations necessary to
obtain it.

TABLE 2. Computational results achieved by our proposed ILS in the
case of the new randomly generated instances of larger sizes

Instance ILS
size Best sol. Avg. sol. Avg. time Avg. eval.

10 x 15 x 20 232036 232036 93.95 65558.52
10 x 16 x 25 299089 299089 288.82 167533.81
10 x 20 x 30 302575 302575 58.82 19853.43
10 x 20 x 40 411915 411915 1.08 252.75
10 x 25 x 50 511980 511990 4593.41 851928.64
10 x 25 x 60 558094 558094 332.94 53312.22
10 x 30 x 60 508558 508558 5.33 807.78
10 x 30 x 70 585378 585378 21.70 3274.26
10 x 30 x 90 767341 767341 7415.09 934253.60
10 x 30 x 100 799825 804548 7314.74 792530.24

The achieved computational results presented in Table 2 were obtained by performing
10 independent runs for each randomly generated instance. Analyzing the computational
results reported in Table 2, we can observe that in 8 out 10 instances the obtained best
solutions coincide with the achieved average solutions, proving the robustness of our
proposed ILS heuristic algorithm.

5. CONCLUSIONS

This paper proposes an efficient multi-start Iterated Local Search (ILS) procedure for
solving the two-stage fixed-charge transportation problem which models an important
transportation systems design from manufacturers to customers through distribution cen-
ters. Our heuristic approach constructs an initial solution, uses a local search procedure to
increase the exploration, a perturbation mechanism and a neighborhood operator in order
to diversify the search. Computational results on two sets of instances show that our iter-
ated local search algorithm is robust and compares favorably to existing approaches. The
novel solution approach provides optimal solutions in run-times of under one millisec-
ond for the 20 benchmark instances available in the literature and high-quality solutions
for the new proposed larger instances.

In the future, we plan to use our code as the basis for a parallel implementation and to
test our ILS heuristic algorithm on larger instances.
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