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Existence of tripled fixed points and solution of functional
integral equations through a measure of noncompactness

HABIB UR REHMAN, POOM KUMAM and SOMPONG DHOMPONGSA

ABSTRACT. In this paper, we propose fixed point results through the notion of a measure of noncompactness
and give a generalization of a Darbo’s fixed point theorem. We also prove some new tripled fixed point results
via a measure of noncompactness for a more general class of functions. Our results generalize and extend some
comparable results in the literature. Further, we apply the obtained fixed point theorems to prove the existence
of solutions for a general system of non-linear functional integral equations. In the end, an example is given to
illustrate the validity of our results.

1. INTRODUCTION

Fixed point theory is a crucial field in mathematics which has numerous applications
in various fields of science and technology. Poincare initiated the study of fixed point
theory after that Brouwer [16] established a fixed point result what has become the well-
known Brouwer’s fixed point theorem for finite dimensional spaces. While in 1922, Ba-
nach [14] brought his celebrated Banach contraction principle for complete metric spaces
which ensures the existence and uniqueness of fixed point. Later on, in 1930, Schauder
[26] extended the Brouwer’s fixed point theorem to infinite dimensional spaces using the
condition of compactness on a set and equivalently on the operator. On the other hand,
the concept of a measure of noncompactness is a very useful tool in nonlinear functional
analysis, especially in metric and topological fixed point theory. Firstly, Kuratowski [24]
in 1930 defines the concept of measure of noncompactness in the following way:

alS) = inf{5 >0:5C U S; with diam(5;) < 4,1 <i<n< oo},
i=1
for a bounded set S in a metric space, where diam(S;) denotes the diameter of the set .S;,
ie. diam(S;) = sup {d(z,y) : =,y € S;}. In 1955, Darbo published a fixed point theorem
[18] using the concept of a measure of noncompactness, which guarantees the existence
of a fixed point for condensing operators. Darbo’s theorem [18] extends both classical
Banach fixed point theorem and Schauder’s fixed point theorem and it has an abundance
of applications on the existence of solutions of differential and integral equations. Up to
now, several papers have been published on the generalization of the Darbo’s fixed point
theorem( for more details see [2, 3, 6, 9, 11, 17, 25]) and on the existence and behavior
of solutions of nonlinear differential and integral equations (for more details see[l, 4, 5,
13, 19, 20, 21]) using the concept of a measure of noncompactness. Recently, Roshan[25]
gave a generalization of Darbo’s fixed point theorem and also presented some results on
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coupled fixed points. In this paper we extend Darbo’s fixed point theorem and using these
result to obtain the existence of tripled fixed points.

Throughout this paper, we will work in a Banach space E with the norm ||.|| and the
zero elements 0. Denote by B(z,r) the closed ball centered at x with radius r. We use the
standard notation AX and X +Y to denote the algebraic operations on sets. Moreover, the
symbol X stands for the closure of a set X, while coX, @X denotes the convex hull and
closed convex hull of X respectively. Finally, we denote Mty for the family of all bounded
nonempty subsets of the space E and by 91y its subfamily consisting of all relatively
compact subsets of E.

2. PRELIMINARIES

Now we recall the axiomatic definition of a measure of noncompactness.

Definition 2.1. [12] A mapping p : Mg — Ry = [0, +00) is said to be a measure of
noncompactness in F if it satisfies the following conditions:
MNCT1. The family kerp = {X € Mg : u(X) = 0} is nonempty and kery C Ng;
MNC2. X CY = u(X) < u(Y);
MNG3. 4(X) = u(X);
MNC4. p(coX) = p(X);
MNC5. p(AX + (1 =N)Y) < Ap(X)+ (1 = A)u(Y), forall A € [0, 1];
MNCe. If X,, is a sequence of closed sets from Mg such that X,,;; C X, forn =1,2,---,
and if lim,_, o u(X,) = 0then Xoo =N, X, # ¢.

It follows from Definition 2.1 that the family Kery described in (MNC1) said to be the
kernel of the measure of noncompactness p. Observe that the intersection set X, from
(MNC6) is a member of the family Kerpu. In fact, since u(Xo) < p(X,,) for any n, we infer
that ;4(Xo) = 0. This yields that X, € Kerp.

Definition 2.2. (Compact operator) [23] An operator T': X — Y is called compact if T'(S)
is relatively compact in a Banach space Y for any bounded subset S in a Banach space X.

Theorem 2.1. (Schauder’s fixed point theorem) [26] Let C' be a nonempty, bounded, closed
and convex subset of a Banach space E. Then each continuous and compact map T : C — C has
one fixed point in C.

Theorem 2.2. (Darbo’s fixed point theorem) [18] Let C' be a nonempty, bounded, closed and
convex subset of a Banach space E and let T : C — C be a continuous mapping such that there
exists a constant k € [0, 1) such that

w(T'S) < ku(S),
for any nonempty subset S of C. Then T has a fixed point in the set C.

Definition 2.3. [15] An element (z,y) in E? is called a coupled fixed point of a mapping
T:E? = EifT(x,y) =xand T(y,z) = y.

Lemma 2.1. [8] Suppose that p1, pa, - - - , iy are measures of noncompactness in Banach spaces
Ey,Ey,--- , E, respectively. Moreover, assume that the function J : [0,00)" — [0,00) is
convex and J(x1, 2, ,x,) = 0if and only if each x; = 0 for all i = 1,2,--- ,n. Then we

define a measure of noncompactness in £y x Eg x --- x E,, as follows

1(S) = J(p1(S1), p2(S2), - -+, i (Sn)),

where S; denotes the natural projection of S into E; fori =1,2,--- ,n.
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From now on, if S is a nonempty subset of E¢ where E is a Banach space, we will write
S; for the image m;(S) fori =1,2,--- ,dwhere n(z1, 2, -+ ,2q) = @, (T1, T2, -+ ,2q) € S.
Roshan [25] gave the following class of function, let @ be the class of all functions ¢ : R x
R, — R, with usual order relation “ <” on Ry x Ry as (t1,t2) < (s1,82) <= t1 < 81
and ty < s9, satisfying the following conditions:

®,. ¢ is continuous and nondecreasing on R x Ry,

Oy, P(t,t) < tforallt >0,
D3, Lp(t,t2) + 30(s1,52) < P(BE, 2y with t;, 5, € Ry fori = 1,2.

Theorem 2.3. [25] Let C' be a nonempty, closed, bounded and convex subset of a Banach space E,
o be an arbitrary measure of noncompactness on E. Let T : C x C — C x C be a continuous
function satisfying

p(T(S)) < ¢(n™(5).17(9)),
for any nonempty subset S of C' x C, where p* is defined by Lemma 2.1 and ¢ € ®. Then T has
fixed point.

Definition 2.4. [21] An element (,y, z) in E? is called a tripled fixed point of a mapping
T:E>—= EifT(r,y,2)=2,T(y,z,2) =yand T(z,y, ) = 2.

Now, as a result of Lemma 2.1 we present the following examples.

Example 2.1. Let p be a measure of noncompactness on a Banach space E, and let the
function J : [0, +00)® — [0, +00) is convex and J(z1,z2,x3) = 0 if and only if z; = 0 for
i=1,2,3. Then

1 (S) = J(u(S1), 1(S2), u(Ss))

defines a measure of noncompactness in £ x E x E.

Example 2.2. Let ;x be a measure of noncompactness on a Banach space E, and consider
amap J(z,y,2) = z +y + z for any (x,y,2) € [0,+00)>. Then we see that J is convex
and J(z,y,z) = 0if and only if z = y = z = 0, hence all the conditions of Lemma 2.1 are
satisfied. Therefore, ;*(S) = 1u(S1) + p(S2) + 1(S3) defines a measure of noncompactness
in the space £ x £ x E.

Example 2.3. Let p be a measure of noncompactness on a Banach space E. If we define
J(x,y,z) = max{z,y, 2} for any (z,y, z) € [0, +00)3, then all the conditions of Lemma 2.1
are satisfied, and p*(S) = max{p(S1), u(S2), u(Ss)} is a measure of noncompactness in
the space £ x E' x E.

3. MAIN RESULTS

In this part of the paper we define another class of functions and using them to develop
some tripled fixed point results. We also consider the usual order relation “ <” on Ry x
Ry x R as follows:

(tl,tg,tg) § (51,82,83) < tl S Sl,tQ § S92 and tg S S3.

Let 7 be the class of all functions ¢ : R; x Ry x Ry — R, satisfying the following
conditions:

T1. ¢ is continuous and nondecreasing on Ry x Ry x Ry,

To. O(t, t,t) <t forall ¢> 0,

73. O(t,8,1) = @d(s,7r,t) = P(r,t,s) and ¢(t, s,1) = ¢(t,r,s) forall t,s,r € Ry,

T4- %¢(t1; ta, t3) + %d)(sla 52, 83) + %Qﬁ(T‘l, T2, TB) < ¢(t1+s§+r1 ’ t2+532+7‘2 ) t3+533+'r3) for
all t;,s; € Ry fori=1,2,3.




196 H. Rehman, P. Kumam , and S. Dhompongsa
For example, the function ¢(¢,s, ) = ci1t + cas + c3r in which ¢1,¢2,¢3 € [0,1) having
e+ ep 43 <1,0(t,s,r) =In(l+ =5t ) and ¢(t, 5,r) = §(t + s + r) are members of 7.

Theorem 3.4. Let C be a nonempty, closed, bounded and convex subset of a Banach space E, 11 be
an arbitrary measure of noncompactnesson E. Let T : C x C x C — C x C x C be a continuous
function satisfying

(3.1) w(T(S)) < o(w™ (), 1n™(9), 1 (),

for any nonempty subset S of C x C x C, where p* is defined by Example 2.1, and ¢ € 7. Then
T has at least one fixed point in C* and the set of all fixed points of T is compact.

Proof. Let Ay = C' x C x C and define a sequence A, := ¢oT(A,_1), n > 1. We first
observe that

W
(3.2) = 1" (T(An))
¢

Next, Ay =0T (Ag) =0T (CxCxC) C CxCxC = Ap,also Ay =0T (A1) C coT(Ap) =
A;.Now if A,, C A,,_1,thenTA, C TA,_;, which implies that

TA, U An+1 = @(TAn) C @(TAnfl) =A,.

Hence we infer that ;1*(A,,) is a nonincreasing sequence of real numbers. Thus there is a
number r > 0 such that *(A,) = r as n — co. We need to show that » = 0. By using (3.2)
we obtain

r= lim pu*(Apy1)

n—oo

< dim ¢ (p*(An), p* (An), 1" (An))
< ¢( lim p*(4y), lim p*(Ap), lim p*(Ay))
= ¢(r,r,r) <,

which is a contradiction, hence we deduce that y*(A,) — 0 as n — oo as claimed. Since
Ant1 C Ay, so by axioms (MNC6) of Definition 2.1 we conclude that A := (), 4, isa
nonempty, closed and convex and invariant under the mapping 7' and belongs to kerp*.
Consequently, Theorem 2.1 implies that 7" has a fixed point in A. Next if F' is the set of
all fixed points of T, then by (3.1) we have

W(T(F)) < ¢(u* (F), 5 (F), n* (F)) < p*(F),
so from above inequality p*(F) = 0 since T(F) = F. This implies that F is relatively
compact. Now taking into account any convergent sequence {z,} C F and z,, — ¥,
we have z* € Ag because Ay is closed. Thus by continuity of T', x,, = Tx,, = T«* and
Tz* = x* which means that 2* € F,i.e. I is a compact set. O

Remark 3.1. If we take, ¢(p*(S), n*(S), p*(S)) = kp*(S) + kop*(S) + ksp*(S), where
k1 + k2 + k3 < 1, in Theorem 3.4, then we get result of Darbo’ s as in [12].

Remark 3.2. If we take, ¢(u*(S), p*(S), 1*(S)) = k1B(p*(S))w* (S) + k2B(u*(S))*(S) +
ksB(p*(S))p*(S), where ki + ko + k3 < 1, in Theorem 3.4, we obtain Geraghty type result
of Aghajani as in [7].

Remark 3.3. If we take, ¢(u*(S), n*(S), n*(S)) = k1p(p*(S)) + ka(u* (S)) + ks(p*(S)),
where k; + k2 + k3 < 1, in Theorem 3.4, we get result of Aghajani as in [7].
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Theorem 3.5. Let C be a nonempty, closed, bounded and convex subset of a Banach space E, p
be an arbitrary measure of noncompactnesson E. Let T; : C x C x C — C fori =1,2,3 bea
continuous function satisfying

(34) i(T(S1 x Sz % 83)) < G(u(S1), u(Sa), 1(S5)),
for all nonempty subsets Si, S2, S3 of C, where ¢ € 7. Then there exists a point (z*, y*, z*) € C?
such that

Ti(z*,y*, =) = %, To(z*, 4", 2%) = y*, Ta(z*, y*, 2*) = 2*.
Proof. Consider an operator G : C x C x C defined by

G(z,y,2) = (T(x,y, 2), Ta(x, y, 2), Ts(z,y, 2)).
By Example 2.2, we have
p*(S) = pu(S1) + p(S2) + p(Ss),

is a measure of noncompactness in the space £ x E x E. Clearly G is continuous on
C x C x C. We only need to show that G has a fixed point. For this we show that G
satisfies all the condition of the Theorem 3.4. Let S C C® we have

w(G(S))
§ ‘Llf‘< (T1(51 X SQ X 53) X TQ(Sl X SQ X Sg) X Tg(sl X SQ X Sg))
= /L(Tl(Sl X SQ X Sg)) —I-ILL(TQ(Sl X SQ X 53)) + /L(Tg(sl X SQ X Sg))
35) < O(1(S1), 1(S2), 1(S5)) + S(k(S1), 1(S2), 1(S3)) + B(u(S1), u(S2), u(S3))
1(S1) + p(S2) + pu(Ss) pu(S1) + p(S2) + pu(Ss) p(S1) + p(S2) + w(Ss)
<3¢ 3 ’ 3 ’ 3
s [(B(S) p(S) pr(S)
- 3¢( 3 7 3 7 3 )
Now from (3.5) and taking pj = % 1*, we obtain
15 (G(S)) < ¢(ni(S), 13 (S), i ().
Hence by Theorem 3.4, G has a fixed point. O

Remark 3.4. It is observed that condition (3.4) is equivalent to the following condition:

(3-6) w(Ti(S)) < &(n(S1), 1(S2), 1(S3))
for a nonempty subset S of C3. This follows from the fact that

Remark 3.5. If we take the following function in Theorem 3.5.
3.7)

O((S1). 1(52). p(55)) = hagp (max (u(S1). u(52). 1(55)) ) + koo max (1), u(52). n(55)) )
+ ko (max (u(S1), 1(S2), 1(S9)) ),
we get result as in [22].

Corollary 3.1. Let C be a nonempty, closed, bounded and convex subset of a Banach space E, 1
be an arbitrary measure of noncompactness on E. Let T : C x C x C — C be a continuous
function satisfying

1(T(S1 x S2 x 83)) < ¢(p(Sh), u(S2), u(Ss)),
for all nonempty subsets S, Sz, Ss of C, where ¢ € 7. Then T has at least a tripled fixed point.
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Proof. Taking T; = T, forall ¢ = 1,2,3 and G(z,y,2) = (T(x, y,2), T(y,x,2), T(z,y, x)) in
Theorem 3.5, we obtain the desired conclusion. O

Corollary 3.2. Let C be a nonempty, closed, bounded and convex subset of a Banach space E, 11 be
an arbitrary measure of noncompactness on E. Moreover assume that T : C x C x C' — C' bea
continuous function such that there exist nonnegative constants ky, ko, ks with ky + ko + ks < 1

[L(T(Sl X SQ X Sg)) S klu(Sl) + kzu(Sg) + k3,u(33),
for all nonempty subsets S1, S, Ss of C, where ¢ € 7. Then T has at least a tripled fixed point.

Proof. Taking T; = T, forall i = 1,2,3 and ¢(¢, s,7) = kit + kos + ksr in Theorem 3.5, we
obtain the desired conclusion. O

Remark 3.6. If we take the following function in Corollary 3.1.
(1(S1) + p(S2) +,u(53)) Tk <M(51) + p(S52) +M(S3)>
3 2¥ 3

p(S1) + p(S2) +M(53))
3 b

H((S1)., p(S2). u(Ss)) = w(

+I€3(p<

we get result as in [21].

Theorem 3.6. Let C be a nonempty, closed, bounded and convex subset of a Banach space E, 11
be an arbitrary measure of noncompactness on E. Let T; : C x C x C — C fori=1,2,3bea
continuous function satisfying
(3.8)

,U(TZ(Sl X SQ X Sg))

< ¢( rnax{u(Sl), ILL(SQ)’ :U‘(S3)}7 max{u(Sl), /1(52), :LL(SB’)}v max{ﬂ(sl)v N(SQ)v u(S?))})a

for all nonempty subsets Sy, Sa, S3 of C, where ¢ € 7. Then there exists (z*,y*,z*) € C? such
that

*

Ti(a*, y*, 2%) = %, To(z*, y*, 2*) = y*, Ta(z*,y*, 2*) = 2*.

Proof. To prove this theorem, we introduce an operator G : C' x C x C' — C defined by
G(x,y,2) = (Ti(2,y,2), Ta(2,y, 2), T5(2,y, 2)).

Also, assume that from Example 2.3, we have

p (S) = max{u(Sy), u(S2), 1(Ss)},

defines a measure of noncompactness in the space E x E x E. To reach the desired con-
clusion we only show that G has a fixed point. Thus our aim to prove all the conditions
of Theorem 3.4. Let S C C?3 we have

w(G(S))
S ,u* (Tl(Sl X Sg X Sg) X TQ(Sl X SQ X 53) X Tg(Sl X SQ X 53))
= max {/L(Tl(sl X SQ X 53)), /,L(TQ(Sl X SQ X Sg)), ,U,(Tg(Sl X Sg X Sg))}

< ¢(max {N(S1)7 H“(SQ)7 M(SS)}v max {N(Sl)7 H’(SQ)? /L(S3)}7 max {M(Sl)v N(SQ)v M(S3)})
= o(1"(9),n"(5), 1 (9)).
Hence by Theorem 3.4, G has a fixed point. O
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Corollary 3.3. Let C be a nonempty, closed, bounded and convex subset of a Banach space E, 1
be an arbitrary measure of noncompactness on E. Let T : C x C x C' — C be a continuous
function satisfying

,[L(T(Sl X SQ X Sg))
< ¢(max{pu(S1), n(S2), n(S3)}, max{p(S1), p(S2), 1(Ss)}, max{p(S1), u(S2), u(Ss)}),
for any nonempty subsets S1, Sz, Ss of C, where ¢ € 1. Then T has at least a tripled fixed point.

4. AN APPLICATION

In the following section we are going to study the application of Theorem 3.5 in the
study of existence of solutions for a system of integral equation defined on the Banach
spaces BC'(Ry), consisting of all continuous real valued and bounded functions on R
and equipped with the norm, ||z| = sup {(t) : ¢ > 0}. The measure of noncompactness
[10, 12, 13] for a non negative fixed t on Mpc(r, ) is defined as follows for any bounded
set
(4.9) w(X) = wo(X) + limsup diam X (¢),

t—o0
where diam X (t) = sup {|z(t) — y(t)| : z,y € X}, and X(t) = {z(t) : € X }. To define
the wo(X), first we need to define the modulus of continuity for any € X and € > 0. The
modulus of the continuity of x on the interval [0, 7] denoted by w (z, €), i.e.

wh(z,€) =sup {|z(t) —x(s)| 1 t,s € [0,T], |t — s| < €},
and let w'(X,e) = sup{w”(z,€) : z € X}, wi (X) = limeow’(X,€), and wo(X) =
limg oo wid (X). Assume that

(i) a function B : Ry — R is continuous and bounded with M; = sup{|B(¢)| : t €

R}
(i) &,m,q: Ry — Ry are continuous functions and £(¢) — oo ast — oo;
(iii) a function ¢ : R, — R is continuous and there exist §, « > 0 such that

(4.10) [P(t1) — (t2)] < O[tr —t2|*,

for any t1,ty € Ry and moreover ¢(0) = 0;

(iv) functionsh: Ry xRXxRXxR — Rand f: Ry xRxR xR xR — R are continuous
and there exist a nondecreasing continuous function 6 : R — R with #(0) = 0 and
¢ € 7 such that

1
(4.11) |h(t, z1, T2, 23) — h(t,y1, Y2, y3)| < §¢(|$1 =yl |z2 — 2!, |w3 — y3|),

and

|f(t,.131,$2,563,l‘4) - f(t’ylvaay3ay4)|
(4.12) 1
< §(¢(|$1 =yl |2 — vl w3 — ys|)) + O(las — yal),
forall z;,y; € Rfori=1,2,3,4 and for any ¢ > 0;
(v) moreover, the functions defined by ¢ — |f(¢,0,0,0,0)| and ¢ — |h(¢,0,0,0)| are
bounded on R4, i.e.

(4.13) My = sup{|f(¢,0,0,0,0)| : t € R} < o0,

(4.14) Ms = sup{|h(¢,0,0,0)] : t € Ry} < o0
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(vi) g : Ry xRy x RxR xR — Ris a continuous function and there exists positive 7

satisfying
(4.15) My + ¢(ro,70,70) + M + M3z + 0(5My) < 7o,

where

a(®) «
s =sup {| [* gft.s.005).vta(0). (0t s
(4.16) 0
:teRyand z,y,z € BC(R+)},

and

4.17)
q(t)
Jim ; g(t,s,2(n(s)),y(n(s)), 2(n(s))) = g(t, s, u(n(s)), v(n(s)), wn(s))) ‘ds =0,

uniformly with respect to z, y, z,u,v,w € BC(R4).

Theorem 4.7. Suppose that (i)-(vi) hold; then the following system of integral equations
(4.18)

t,x(E(t
w(t)=B(t)+h(tyx(E(t)),y(f(t)),Z(f(t)))+f<w( a(®) (c0

t7
y(t) = B(t) + h(t,y((1)), z(£(1)), 2(6(1))) + f (w( a(®) y( (;

2(t) = B(t) + h(t, z(£(t)), y(§(1)), 2(€(1))) + f (1/)( a(®)

has at least one solution in the space BC(Ry) x BC(Ry) x BC(R4).

Proof. Let G : BC(R;) x BC(Ry) x BC(Ry) — BC(R4) be an operator defined by

(4.19)
t,x s t)),z(&(t)),
G(w,y, 2)(t) = B)+h(t,2(€(1), y(E(1)), 2(€(t )))+f< o 0 g<f§(i?ni’§ff,Zmiﬁﬁ,)ﬁ(n( ") )

Moreover, the space BC(R,) x BC(R4) x BC(R4 ) is equipped with the following norm:

(4.20) (2,9, 2)l| Bo®y)x Be®)x BE®s) = 1% lloo + 1Ylloo + [|2]]0o-

We can see that the solution of (4.18) in BC (R4 ) x BC(R4) x BC(Ry) is equivalent to the
tripled fixed point of G. To prove this, we need to satisfy all the conditions of Corollary
3.1. To follow this, first we observe that G(z, y, z) is continuous function for any (z, y, z) €
BC(R4+)x BC(R4)x BC(R.). Moreover, using the triangular inequality and (4.10), (4.11),



Solution of functional integral equation via measure of noncompactness 201

(4.12),(4.13), (4.14), (4.16), (4.19) and (4.20), we obtain
(4.21)

|G ,, z)(t)|
< |B@)| + |h(t,z(&(t)), y(£(t)), 2(£())) — h(t,0,0,0)| + |A(t,0,0,0)| + | f(£,0,0,0,0)|

|1 (nateonaten. oo [ altsato). ). e)as)
f(t,0,0,0,0)‘
< M1+ 30(2€OLEDL HED)) + Ms + 36w IED)L, D))
wo([o( [ otes 20000060, 0060 a5) ~ 00 ) 4 01
<M+mmunmunuuw+m+%
o y/ 9(t,5,20(5)), yn(s)), =n(s)) s

< My + Mz + M3 + ¢([[2]loo, [[Ylloos [[2]]00) + 0(6Ma) < ro.

Thus G is well defined and we obtain G(B,, x B,, x B,,) C B,,. Now we prove that
G : By, x By, x B, = B, is continuous, for this take (z,y,z) € B, x By, x By, and
€ > 0 arbitrary. Moreover, consider (u,v,w) € B,, x B,, x B,, such that for ¢ > 0,
Iz, y, 2) — (u,v,w)ngoxgmxgro < §, then we have

’G(:C, Y, Z)(t) - G(U, v, w)(t)|
< [ (8, 2(E(0), wl€@), 2(6(0) = h(t u(E(D), wle®), i)

—+V<um&nxmaw»4«w»¢

—fQu@o><<»w@@x¢
< B(I2(€() — u(ED)], W (ED) — v(ED)], [2(60)) — wle(®)])

<‘¢</oq(t ts,x(n W(S))vz(n(s)))ds)

)

q(t)
< ol = ull = ol = wl) +0(a] [ (st 0006600006, 20)
ot scula) (), () )| ).

Now from (4.17) there exist T > 0 such that if t > T, then
(4.23)

QG

(4.22)

_ zp(/oq(t) g(t, s, u(n(s)),v(n(s)), w(r](s)))d3>

/0 " (g(t,s,xm(s)),y<n<s>>,z<n<s)>) —g(t,s,um(s)),v(n(s)%w@v(s))))ds

).

N o
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for any z,y, z,u,v,w € BC(R;). Now we notice two cases:
Case 1. If t > T, then from (4.22) and (4.23) we obtain

€ € € € € €

. . <él=, =, -)+-<-+-==¢
(424) |Gy, 2)() = Gluvw)(B)] < 6(5.5.5) +5<5+5 =€
Case 2. Similarly for ¢ € [0, T], we have
(4.25)

’G(I?:% Z)(t> - G(U, v, w)(t)‘

€ € €
<o(353)

+ 9<6
< 5 +6(65(arBe)”),

where g7 = sup{q(t) : t € [0,T]} and
(4.26)

B(€) = sup {’g(tasa‘rayVZ) _g(t,S,U,U,UJ) te [O7T]78 € [05QT]a‘ray7zau7an S [—TO,TO],

€
0.312) = (000l e o) < 5 |-

Since g is continuous on [0, 7] X [0, gr] X [—70,70] X [=70,70] X [—70, 0] we have S(e) — 0
as € — 0, and by continuity of § we get

0(d(grB(e))™) — 0.
Finally from (4.24) and (4.25) we conclude that G is a continuous function from B,, x
B, X By, into By,. Next we assume that X;, X5, X3 are arbitrary nonempty subsets of
B,, and t1,ty € [0,T] with |t; — t2| < e. Without loss of generality let g(t1) < g(t2), and
for any arbitrary (z,y, z) € X1 X X2 x X3
(4.27)
’G(xa Y, Z)(tl) - G(:ZZ, Y, Z)(t2)|

= |B(t1) = B(t2)| + |h(t2, z((t2)), y(&(t2)), 2(&(t2))) — (tz, x(&(t1)), y(&(t1)), 2(€(t))) ]
+[h(t2, 2(6(t1)), y(€(tr)), 2(&(t1))) — Alts, 2(&(t1)), y((t1)), 2(€(t1)))

|1 (1wt atett. sy [ ol st vone), =tn6)s)
q(t2)

(1 ateten e o [ aftas s ptate). 2ae))is) )
q(t2)

|1 (raatetnn st o [ st satato). st ) as)
q(t2)

f (e aten et o [ gltasstalo). st sn)as) )

q(t2)
|1 (st atet. seene( [ ol s o)) 000 s)

q(t2)
(vt pte).zeeno( [ alnstoe). o). n(s))ds)
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+ ’f (tl, 2(&(t1)), y(€(ta)), 2(§(11)), ¥ ( /0q<t2) g(tr,s,2(n(s)), y(n(s)), Z(n(S)))dS))

- 1ttt pte). (e [ " gt 5o (5 en)as) )|

Now we put this substitution
(4.28)

W (B,e) = sup{’B(tl) — B(ts)| : t1,t1 € [0,T), [t — t2| < e},
w (h,€) = sup{|h(t2,x,y,z) - h(tl,x,y,z)‘ tt1,t2 € 10,7, |61 — t2] <€, z,y,2 € [fro,ro]},
W (€)= sup {[¢(t1) — (t)| : ta,t2 € 0,7, |t — ta] < e,
wT(w,wT(§,e)) = sup{|m(t1) —x(t2)| sty b €00,T7, [t —t2] < wT(g,e)},
UTT0 = sup{|g(t,s,x,y,z)’ :t€10,7], s€10,q97], ,y,2 € [—ro,ro]},
K= quup{‘g(t,s,x,y,z)| :t€10,7], s €10,q97],z,y,2 € [fro,ro}},
wTTO’K(f,e) = sup{|f(t2,a:,y,z,d) — f(tl,x,y,z,d)| tt1,t2 € [0,T7, 81 — t2] <,
z,y,2,€ [—To,70], d € [—K,K]},
wTTU(g,e) = sup{’g(tl,s,x,%z) —g(tg,s7w,y,z)‘ tt1,t2 € 0,7, |t —t2] <e,

z,Y,2,C [_T07T0]7 ENS [O,qT]}7
w'(q,e) = Sup{!fJ(tl) —q(t2)] : ta,t1 € [0,T], [t1 —t2] < 6}-

Now from (4.27) and (4.28) we obtain
G,y 2)(0) - Gle,y,2) (k)|

<w'(B,e)+ %cﬁ(lz(ﬁ(tz)) —a(&(t)], ly(E(t2)) — y(€(t)), [2(£(t2)) — 2(&(t1))])
+wy, (hy€) + %d)(lx(f(tz)) —z(§(t0)), [y(€(t2)) — y(&(tr)), [2(&(t2)) — 2(&(t1))])

radwlr.0+0(Ju( | " gtz a9 u0(6). (50}

)

ollo( [ " 0051, (05D, 2(0(5))) )
-u( [ " 005D, w05, 2(0(5))) ) )
< WT(B,) + W (h,0) + 6 (T (2,07 (€,0)), &7 (1,7 (€, ), &7 (2,67 (€, )

/q:j) (g(tl,s,x(n(S)),y(n(s))aZ(”(s))))

ol [ ol 200000060ttt

(4.29)

+wp k(€ +9<5

+o(s

— g(t1,5,2(1(5)), y(1(5)), 2((s))) ) ds

/Oq(tz) (g(t2, s,z(n(s)),y(n(s)), z(n(s)))

< wT(B,E) +sz)(h7€) + QS(WT(x»wT(g»E))a WT(vaT(guﬁ))v wT(szT(&e)))
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+ wa,K(f, €) + 0((5 (qT wzo (g, e))a) + 9(5 (UTT0 oJT(q, e))a).
Since (z,y, z) is an arbitrary element of X; x Xy x X3

wL(G(X1 X X2 X Xg), 6)
@30) < W (B,e) 4wl () + 6w (X1,67 (€, 0)), &7 (Xa, T (6,), & (X, (6, €)))

ol (£, +0( (arel (9.9)") +0(5 (UL & (a,)).

Further by the uniform continuity of f,¢ and h on the compact sets [0,T] x [—rg, o] X
[—’I“Q,’I“o] X [—To,To] X [—K, KL [O,T} X [O,QT} X [—To,To] X [—7‘077“0] X [—7‘0,7“0} and [O,T} X
[—70,70] X [=70,70] X [—70,70] Tespectively. We get wZ;)K(f, €) = 0, wl(g,¢) — 0and
wZ;’K(h, €) — 0 as ¢ — 0. Also due to the uniform continuity of £, ¢ and B on [0,T], we

getw? (&,€) = 0, wT(q,e) — 0and w? (B, €) — 0 as € — 0. Moreover, § is a nondecreasing
continuous function with (0) = 0 and K is finite, hence we have

0(5 (qT wz;(g,e))a> + 9(5 (UEJ wT(q,e))a) — 0, ase — 0.

Now taking the limit in (4.30) as ¢ — 0 we get

(4.31) w (G(X1 x Xy x X3)) < ¢(wf (X1), wi (X2), wi (X3)),
also taking the limit 7" — oo in (4.31) we obtain
(432) WQ(G(Xl X X2 X Xg)) S gb(wO(Xl), wg(Xg), (JJo(Xg)).

In addition, for arbitrary (z, y, 2), (u,v,w) € X7 X X2 x X3 and ¢t € R} such that
(4.33)
‘G(:I;7 Y, Z) (t) - G(ua v, w)(t)’

< |R(t, 2 (€(1)), y(€(1)), 2(£(1))) — A(t, u(€(t)), v(E(t)), w(&()))]

< ¢(diamX, (£(t)), diam X»(€(1)), diamXs(£(t) ))

+o(a

q(t)
/0 (g(t,s,x(n(é’)),y(n(S)%z(n(S)))—g(t,8,U(77(8))7v(n(S)),w(n(S))))dS

)
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Since (z,y, 2), (v, v, w) and t are arbitrary in above expression

(4.34)
dzamG(Xl X X2 X X3)

< ¢(dz’amxl (6(1)), diam X5 (£(1)), diam Xs(£(1)))
#0(8] [ (50000600060, 069) — 905000050, 006D i) | )

Taking ¢ — 0 in (4.34) and also from (4.17) we have
lim sup diam G(X1 x X2 x X3)(t)

t—o0

(4.35)
< d)( lim sup diam X1 (£(t)), lim sup diam X5 (£(¢)), lim sup diam X3 (§(t))) .

t—o0 t—o00 t—o00
Now from equation (4.32) and (4.35) implies that
wo (G(X1 X X X X3)) + limsup diam G(X; x Xa x X3)(t)

t—o0

< ¢<w0(X1), wo(X2), UJO(X3))

(4.36) + ¢ ( lim sup diam X1 (£(t)), lim sup diam X5 (£(t)), lim sup diam X3 ({(t)))

t—o00 t—o0 t—o0

< ¢(w0(X1) + lim sup diam X1 (£(¢)), wo(X2) + lim sup diam X2 (£(t)),
t—o0 t—o0

wo(X3) + lim sup diamX;;(f(t)))

t—o0

Finally, from (4.9) we get

(4.37) 1(G(X1 x Xa x X3)) < ¢(p(X1), i(Xa), u(X3)).
Thus by Corollary 3.1 G has atleast one tripled fixed point in BC(R;) x BC(R4) x
BC(Ry). O
4.1. An example.
Example 4.4.
_ 2¢'9451°410e t 416t 4312 +6e' +12 | 5(e> e’ +e te') 5+1le
w(t) = 2= 6(j2+2)(ej+2)t(;2+1¢ =2+ 60(e5t +eftter+1) (t) + my( )
(6—&-11152)83—‘,-5152 s|sin z(¢)]| sin y(¢)]] sin z(¢)]
+ 180(1+et3)(1+t2) + fO et(1+sin? y(t))(1+sin? z(¢))(1+sin22(t)) ds

t,6 .6 t,4 4, 0,2 t 55t 4Bt 42t Lot 2
y(t) _ 2e"t°45t°4+10e’t  +16t"4-3t"+6e"+12 + (e’"+e " +e " +e') (t) + 541le )I(t)

6(t2+2)(e?+2) (t5+1) 60(e5+etftef+1) 120(1+et?
(4.38)
(6+11t2)et3 +5t2 s|sinz(¢)]] sin y(t)|] sin z(¢)]
Hasotredyre 28 o STy ) sm? 2 (0 e 7@ 45

6 6 4 4 = 5t 3t 2t t t2
z(t) 2et 84515 +10ett +16t4 43246 +12 + 5(e’* e’ +e " te) (t) 4 _btlle )y(t)

6(t2+2)(et+2)(t%+1) 60(edt+ettt+et+1) 120(14et?
+ (6+11t2)et3+5t2 x + ft s|sinz(t)|| siny(¢)]] sin z2(¢)| ds.
180(14€t®) (14¢2) 0 ef(1+sin?y(t))(1+sin® z(t))(1+sin 2(t))

We notice that we have the special case of the integral system (4.18) with the following
choices
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12 f3
(] h(t T, Y,z ) = 3(1+t4) + 10(1+et)x+ (1+ t2)y+ (1+et3)z
o h(t,2,y.2,p) = gy + 12<1+e4t>“” + 31y + W'Z P,
s| sin z|| sin y|| sin z|
L4 g(tVS?z’y’Z) et (1+sin? y))(lerlg 2 z)(1+sin? z) d
o {(t) =n(t) = (t) = 0(t) = q(t) =1,

o ¢(t,s,r) = A

To solve this system of integral equations we need to verify all the assumption of Theorem
47.

(1) since B(t) = ﬁ is continuous on Ry and M; = 1 assumption (i) is satisfied.

(2) we see that n(t),£(¢), ¢(t) = t are continuous and 5( ) — ocoast — oo.
(3) the function ¢(t) = ¢ for a, 6 = 1 the equation (4.10) is satisfied.

(4) we have f(¢,0,0,0,0) = and h(t,0,0,0) =

Mg:zandMg—g

i 7y then we easily see that

2(1+e 3(1+

|h(t, z,y, z) — h(t,u, v, w)|

et e et’
—‘10(1+et) x_“”‘zo 1+et2) |y_”|+‘30(1+et3) |7 = wl
1 1
(4.39) Sﬁ\x—u|+%|y 11|+ \z—w|
<2 [Gle—ul+ Ty — ol + 71z~ u]
< g|gle—ul+gly—v 42 w
1
< §¢(‘LE 7U|,|y 7U|a |Z 7w|)7

and similarly

|f(t’xayvzapl) - f(tvuavawap2)|
2t

’ 12(1+ €*)

‘\z w| + |p1 — pol

1
|$_“‘+‘ﬂ‘|y |+‘36 1+12)

1 1 1
< |y — ey — e — _
@40 S sle—ul+ grly— vl + oelz— wl+ oy pol

IN

3l —ul+ 3y — ol + 21z — ul] +[p1 — p2]
—|=lz—u|l+-=ly—v|l+ -z —w —
9l 4y 1 P1 — P2

AN

1
< 58z —ul, |y — vl |2 = w]) + 8(Ipr = p2]).
Now, we verify the assumption (vi), clearly g is continuous and

s|sinz|| siny|| sin z|

ds

t? ) ) ) t . .
(4.41) 9t 8@y, 2) = glt 5,0, 0,0) = e (1—|—le y))(1 +sin? z) (1 + sin® 2)

S
— |t

implies that

i [ Jo(t 5,250, 01(6)),20())) = 9t (), v(a(5), wlin(s)) s

t—o0 0

(4.42) ,

t
< lim icls: lim (t—)

t—oo Jo et t—oo et
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Finally, for remaining part of assumption (vi), for any (z,y,z) € BC(R4+) x BC(R4) x
BC(R4)

My = sup ‘/ z(n(s)),y(n(s)) )’ - -

fort € Ry. Also for My = §, My = 1, M3 = 1 and M, = § we have
1 1 1 1
ST OTT) 5+, =583 +525 =683 <T.

Consequently, all the assumption of the Theorem 3.1 are satisfied, the system of integral
equation (4.38) has at least one solution in BC'(R) x BC(R4) x BC(Ry).
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