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ABSTRACT. Let (X, d) be a metric space, f , fn : X → X , with Ff = Ffn , n ∈ N. For the fixed point equation

(1) x = f(x)

we consider the following iterative algorithm,

(2) x ∈ X, x0 = x, xn+1(x) = fn(xn(x)), n ∈ N.

By definition, the algorithm (2) is convergent if,

xn(x) → x∗(x) ∈ Ff as n→ ∞, ∀ x ∈ X.

In this paper we give some conditions on fn and f which imply the convergence of algorithm (2). In this way
we improve some results given in [ Rus, I. A., An abstract point of view on iterative approximation of fixed points:
impact on the theory of fixed point equations, Fixed Point Theory, 13 (2012), No. 1, 179–192]. In our results, in general
we do not suppose that, Ff ̸= ∅. Some research directions are formulated.

1. INTRODUCTION

In this paper we study the following two problems:

Problem A. Let (X, d) be a metric space, f , g : X → X be such that Ff = Fg . For the fixed
point equation,

(1.1) x = f(x)

we consider the following algorithm

(1.2) x ∈ X, x0 = x, xn+1(x) = g(xn(x)), n ∈ N.

By definition, the algorithm (1.2) is convergent if,

xn(x) → x∗(x) ∈ Ff as n→ ∞, ∀ x ∈ X.

The convergence of the algorithm (1.2), when f is nonexpansive, X is a bounded, convex
and closed subset of a Hilbert, Banach or metric space with a convexity structure (g(x) =
(1− λ)x+ λf(x), g(x) =W (x, f(x), λ), g(x) = G(x, f(x)), . . .) is studied in an impressive
number of papers (see [5], [22], [29], [14], [15], [65], [18], [23], [30], [62], [55], [72], [32], [1],
[57], [31], [42], [25], [46], [60], [24], . . .).

Problem B. Let (X, d) be a metric space, f, fn : X → X , n ∈ N be such that, Ff = Ffn ,
n ∈ N. For the fixed point equation (1.1) we consider the following iterative algorithm,

(1.3) x ∈ X, x0 = x, xn+1(x) = fn(xn(x)), n ∈ N.
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By definition, the algorithm (1.3) is convergent if,

xn(x) → x∗(x) ∈ Ff as n→ ∞, ∀ x ∈ X.

As in the case of Problem A, the convergence of algorithm (1.3), when f is nonexpansive,
X is a bounded, convex and closed subset of a Hilbert, Banach or metric space with a
convexity structure and fn are given in the terms of f and the convexity structure of such
spaces, is studied in a large number of papers ([28], [5], [29], [22], [3], [8], [10], [12], [13],
[16], [17], [23], [30], [37], [39], [40], [41], [43], [66], [64], [26], [36], [20], [1], [34], [67], . . .).

In this paper we give some conditions on f and g, respectively on f and fn which im-
ply the convergence of algorithm (1.2), respectively (1.3). In this way we improve some
results given in [54]. In our results, in general we do not suppose apriori that the solution
of equation (1.1), Ff , is nonempty. Some research directions are formulated.

2. PRELIMINARIES

2.1. Notations. Throughout this paper we use the same notations as in [54].

2.2. Special classes of sequences in a metric space. Let (X, d) be a metric space. A se-
quence (xn)n∈N in X is called asymptotically regular if,

d(xn+1, xn) → 0 as n→ ∞.

Now, let f : X → X be an operator. The sequence (xn)n∈N is called f -asymptotically
regular if,

d(xn, f(xn)) → 0 as n→ ∞.

This two notions are the basic notions in the theory of iterative algorithms (see [12], [5],
[22], [34], . . .).

2.3. Weakly Picard operators in metric spaces (see [49], [51], [50], [56]). Let (X, d) be a
metric space. An operator f : X → X is called a weakly Picard operator (WPO) if the
sequence, (fn(x))n∈N, converges for all x ∈ X , and its limit, x∗(x) ∈ Ff . If f is WPO and,
Ff = {x∗}, then f is called Picard operator (PO).

For a WPO, f : X → X , we define the limit operator, f∞ : X → X , by f∞(x) =
lim

n→∞
fn(x). We remark that f∞ is a retraction on the fixed point set of f , Ff .

An important class of WPO is so called, ψ-WPO. Let ψ : R+ → R+ be an increasing
function, continuous in 0 with ψ(0) = 0. The WPO f is called ψ-WPO iff,

d(x, f∞(x)) ≤ ψ(d(x, f(x))), ∀ x ∈ X.

We call a such condition, a retraction-displacement condition.

2.4. Some classes of operators on a metric space. Let (X, d) be a metric space and f :
X → X be an operator. Then:

(1) f is an l-contraction if 0 < l < 1 and

d(f(x), f(y)) ≤ ld(x, y), ∀ x, y ∈ X;

(2) f is a contractive operator if,

d(f(x), f(y)) < d(x, y), ∀ x, y ∈ X, x ̸= y;

(3) f is nonexpansive if,

d(f(x), f(y)) ≤ d(x, y), ∀ x, y ∈ X;

(4) f is Caristi-Browder operator (see [11], [58]) if, f is continuous and there exists,
φ : R+ → R+, such that

d(x, f(x)) ≤ φ(x)− φ(f(x)), ∀ x ∈ X;
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(5) f is quasinonexpansive (see [71], [24], [47]) if Ff ̸= ∅ and

d(f(x), x∗) ≤ d(x, x∗), ∀ x ∈ X, ∀ x∗ ∈ Ff ;

(6) f is quasicontractive if Ff ̸= ∅ and

d(f(x), x∗) < d(x, x∗), ∀ x ∈ X \ Ff , x
∗ ∈ Ff ;

(7) f is K-demicontractive (see [40], [30], [23], [41], . . .) if K < 1, Ff ̸= ∅ and

(d(f(x), x∗))2 ≤ (d(x, x∗))2 +K(d(x, f(x)))2, ∀ x ∈ X, ∀ x∗ ∈ Ff ;

(8) f is demicompact (see [45], [35]) if the following implication holds:
(xn)n∈N a bounded sequence inX such that d(xn, f(xn)) → 0 as n→ ∞, implies

that there exists a subsequence (xni)i∈N which is convergent;
(9) the fixed point for f is well posed if Ff = {x∗} and the following implication

holds:
(xn)n∈N in X with d(xn, f(xn)) → 0 as n→ ∞ implies that xn → x∗ as n→ ∞;

(10) the fixed point problem for f is well posed in generalized sense if the following
implication holds:

(xn)n∈N a sequence in X such that d(xn, f(xn)) → 0 as n → ∞, implies that
there exists a subsequence (xni

)i∈N, which is convergent to a fixed point of f .
We remark that:
(a) If f is nonexpansive operator and Ff = ∅ then f is not a quasinonexpansive op-

erator. In our paper, in what follows, we consider the following notion of quasi-
nonexpansivity. An operator f is quasinonexpansive if or Ff = ∅ or if Ff ̸= ∅,
then

d(f(x), x∗) ≤ d(x, x∗), ∀ x ∈ X, x∗ ∈ Ff ,

i.e., f is quasinonexpansive if

d(f(x), x∗) ≤ d(x, x∗), ∀ x ∈ X, x∗ ∈ Ff .

(b) If f is continuous and demicompact then the fixed point problem for f is well
posed in generalized sense.

(c) Let (X, d) be a bounded metric space, f : X → X be continuous and αK-conden-
sing operator, where αK is the Kuratowski measure of noncompactness (see [53],
[58], . . .). Then the fixed point problem for f is well posed in generalized sense.

(d) If f is K-demicontractive with K < 0, then

−K
∞∑

n=0

(d(fn(x), fn+1(x)))2 ≤ (d(x, x∗))2, ∀ x ∈ X, x∗ ∈ Ff .

This condition implies that the sequence (fn(x))n∈N is f asymptotically regular,
i.e., the operator f is asymptotically regular.

3. DISPLACEMENT CONDITIONS

Let (X, d) be a metric space, α : R+ → R+ and β : X → R+. By definition, (α, β) is an
admissible pair if α satisfies the following implication:

(tn)n∈N ∈ R+, α(tn) → 0 ⇒ tn → 0 as n→ ∞.

Now let g : X → X be an operator. By definition g satisfies the (α, β)-displacement
condition if:

(1) (α, β) is an admissible pair;
(2) α(d(x, g(x))) ≤ β(x)− β(g(x)), ∀ x ∈ X .

Here are some examples of operators which satisfy a displacement condition:
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(a) If α(t) = t, ∀ t ∈ R+ and g is continuous then g is a Caristi-Browder operator (see
[11], [58]);

(b) (F.E. Browder [13]) Let (B, ∥·∥) be a real Banach space, X be a nonempty, closed,
convex subset ofB and g : X → X be an operator. The following condition appear
in [13] on g:

φ(∥g(x)∥) + ψ(∥x− g(x)∥) ≤ φ(∥x∥), ∀ x ∈ X,

with, φ,ψ : R+ → R+ continuous, strict increasing with, φ(0) = ψ(0) = 0.
A such operator satisfies the (α, β)-displacement condition with, α(t) = ψ(t),

β(x) = φ(∥x∥).
(c) (Măruşter [40], Hicks-Kubicek [30]) Let (H, ⟨·, ·⟩) be a Hilbert space, X be a non-

empty subset of H and g : X → X be a K-demicontractive operator with K < 0.
Then g satisfies the (α, β)-displacement condition, with α(t) = −Kt2 and β(x) =
∥x− x∗∥2.

(d) In the notion of demicontractivity we suppose that the fixed point set of the oper-
ator is nonempty. We can give a type of demicontractivity without this condition
in the following way.

Let (M,d) be a metric space, X ⊂ M be a nonempty subset, g : X → X be an
operator and p ∈M \X .

By definition, the operator g is K-demicontractive with respect to the point p, if
K < 1, and

(d(g(x), p))2 ≤ (d(x, p))2 +K(d(x, g(x)))2, ∀ x ∈ X.

It is clear that if K < 0, then g satisfies (α, β)-displacement condition with, α(t) =
−Kt2 and β(x) = (d(x, p))2.

For a such trick see, for example, [38], [62].
We have the following results in terms of displacement conditions.

Theorem 3.1. Let (X, d) be a metric space and g : X → X be an operator which satisfies the
(α, β)-displacement condition. Then the operator g is asymptotically regular.

Proof. Let x ∈ X . The (α, β)-displacement condition implies that:

α(d(x, g(x))) ≤ β(x)− β(g(x)),

α(d(g(x), g2(x))) ≤ β(g(x))− β(g2(x)),

...

α(d(gn(x), gn+1(x))) ≤ β(gn(x))− β(gn+1(x)), ∀ n ∈ N.

These imply that,
∞∑

n=0

α(d(gn(x), gn+1(x))) ≤ β(x), ∀ x ∈ X,

from which it follows that, g is asymptotically regular. □

Now, let we have two operators, f, g : X → X with, Ff = Fg . By definition g satisfies
(α, β, f)-displacement condition if the pair (α, β) is admissible and

α(d(x, f(x))) ≤ β(x)− β(g(x)), ∀ x ∈ X.

For a such class of operators we have:

Theorem 3.2. If g satisfies the (α, β, f)-displacement condition, then the sequence, (gn(x))n∈N
is f -asymptotically regular.
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Proof. From the (α, β, f)-displacement condition we have that:

α(d(x, f(x))) ≤ β(x)− β(g(x)), ∀ x ∈ X,

α(d(g(x), f(g(x)))) ≤ β(g(x))− β(g2(x)), ∀ x ∈ X,

...

α(d(gn(x), f(gn(x)))) ≤ β(gn(x))− β(gn+1(x)), ∀ x ∈ X, ∀ n ∈ N.

These imply that,
∞∑

n=0

α(d(gn(x), f(gn(x)))) ≤ β(x), ∀ x ∈ X.

This condition implies that the sequence (gn(x))n∈N is f -asymptotically regular for all
x ∈ X . □

In the next section we shall use these two results to study the Problem A.

4. THE CONVERGENCE OF THE ALGORITHM IN PROBLEM A

Let (X, d) be a metric space and f, g : X → X be two operators with Ff = Fg . For the
fixed point equation

(4.1) x = f(x)

we consider the following iterative algorithm:

(4.2) x ∈ X, x0 = x, xn+1(x) = g(xn(x)), n ∈ N.
The problem is in which conditions on f and g the algorithm (4.2) is convergent, i.e., in
which conditions on f and g, the operator g is WPO ?

For a better understanding of the Problem A we start with some examples.

Example 4.1. Let (B, ∥·∥) be a Banach space, X ⊂ B be a nonempty, bounded, closed and
convex subset of B and f : X → X be a nonexpansive operator. For λ ∈]0, 1[ let fλ be the
Krasnoselski operator, corresponding to f , defined by

fλ(x) = (1− λ)x+ λf(x).

By a Ishikawa Theorem (see [18]) the operator fλ is asymptotically regular. But,

fλ(x)− x = λ(f(x)− x), ∀ x ∈ X.

This implies that the sequence (fnλ (x))n∈N is f -asymptotically regular.

Example 4.2. Let (B, ∥·∥) be a Banach space, f : B → B be an operator and λ ∈ R∗ :=
R \ {0}.

We consider the operator fλ := (1 − λ)1B + λf . Then we remark that, Ff = Ffλ and
fλ is asymptotically regular if and only if the sequence, (fnλ (x))n∈N, is f -asymptotically
regular.

Example 4.3. Let B be a Banach space and f : B → B be an l-Lipschitz operator. In this
case, the operator fλ (see Example 4.2), for λ = 1

1+l is nonexpansive.

For the Problem A we have:

Theorem 4.1. We suppose that:
(i) g satisfies the (α, β)-displacement condition;
(ii) there exists c > 0 such that,

d(x, g(x)) ≥ cd(x, f(x)), ∀ x ∈ X;
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(iii) the fixed point problem for f is well posed in generalized sense;
(iv) g is quasinonexpansive.

Then g is WPO and g∞(X) = Ff .

Proof. Let x ∈ X . From Theorem 3.1, the condition (i) implies that g is asymptotically
regular. Condition (ii) implies that the sequence, (gn(x))n∈N is f -asymptotically regular.
From (iii), there exists a subsequence (gni(x))i∈N such that

gni(x) → x∗(x) ∈ Ff as n→ ∞.

So, Ff ̸= ∅. In this case the condition (iv) is effectivelly and implies that the sequence
(d(gn(x), x∗))n∈N is decreasing. So,

d(gn(x), x∗) → d ≥ 0 as n→ ∞.

But, d(gni(x), x∗(x)) → 0 as ni → ∞, i.e.,

gn(x) → x∗(x) ∈ Ff as n→ ∞.

□

Theorem 4.2. We suppose that:
(i) g satisfies the (α, β, f)-displacement condition;
(ii) the fixed point problem for f is well posed in generalized sense;
(iii) g is quasinonexpansive.

Then g is WPO.

Proof. Let x ∈ X . From Theorem 3.2, condition (i) implies that, (gn(x))n∈N is f -asympto-
tically regular. Now the proof is similar with that of Theorem 4.1. □

In what follows, we give some applications of the above results to the iterative algo-
rithm with admissible perturbation (see [54]).

Following [54] we introduce a new class of operators which generalizes the Krasnosel-
ski operators. Let X be a nonempty set, G : X × X → X be an operator. We suppose
that:
(A1) G(x, x) = x, ∀ x ∈ X ;
(A2) x, y ∈ X , G(x, y) = x imply, y = x.

Let f : X → X be an operator. We consider the operator g = fG : X → X , defined by

fG(x) := G(x, f(x)).

We remark that, Ff = FfG .
We call the operator fG the admissible perturbation of f corresponding to G. For some

examples of admissible perturbation in the case in which X is a subset of linear space,
Hilbert space, Banach space, metric space with convexity structure, see [54]. Problem A
in this case is the following:

In which conditions on f : (X, d) → (X, d) and G : X × X → X , the admissible
perturbation, fG of f is WPO ?

For some results on this problem in the case of Hilbert and Banach spaces, see: [6], [10],
[72], [7], [69], [64], [68], [19], [57], [70], . . .

We give a result in a metric space.

Theorem 4.3. We suppose that:
(i) there exists an admissible pair (α, β) such that:

α(d(x,G(x, y))) ≤ β(x)− β(G(x, y)), ∀ x, y ∈ X;
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(ii) there exists c > 0 such that:

d(x,G(x, y)) ≥ cd(x, y), ∀ x, y ∈ X;

(iii) the fixed point problem for f is well posed in generalized sense;
(iv) the operator fG is quasinonexpansive.

Then, the operator fG is WPO.

Proof. If, in conditions (i) and (ii) we take y = f(x), then we remark that the operator fG
satisfies the conditions in Theorem 4.1. □

5. CONVERGENCE OF ALGORITHM IN PROBLEM B

We start with some remarks on the sequences in metric spaces. Let (X, d) be a metric
space and (xn)n∈N be a sequence in X . We have:

Lemma 5.1. If there exists an admissible pair, (α, β), such that,

α(d(xn, xn+1)) ≤ β(xn)− β(xn+1), ∀ n ∈ N,
then the sequence, (xn)n∈N, is asymptotically regular.

Lemma 5.2. Let, f : X → X , be an operator. If there exists an admissible pair, (α, β), such that,

α(d(xn, f(xn))) ≤ β(xn)− β(xn+1), ∀ n ∈ N,
then the sequence, (xn)n∈N, is f -asymptotically regular.

Now let (X, d) be a metric space and, f, fn : X → X be operators with, Ff = Ffn . We
consider for the fixed point equation corresponding to f , the algorithm (1.3), i.e.,

(5.1) x ∈ X, x0 = x, xn+1(x) = fn(xn(x)), n ∈ N.
For this algorithm we have:

Theorem 5.1. We suppose that:
(i) there exists an admissible pair such that,

α(d(xn(x), xn+1(x))) ≤ β(xn(x))− β(xn+1(x)), ∀ n ∈ N, ∀ x ∈ X;

(ii) d(xn(x), xn+1(x)) ≥ cd(xn(x), f(xn(x))), with some c > 0, for all n ∈ N and x ∈ X ;
(iii) the fixed point problem for f is well posed in generalized sense;
(iv) the operators fn are quasinonexpansive.

Then the sequence, (xn(x))n∈N converges to a fixed point of f , x∗(x).

Proof. From (i), the sequence, xn(x), is asymptotically regular. The condition (ii) implies
that, (xn(x))n∈N is f -asymptotically regular. Condition, (iii) implies that there exists a
subsequence, (xni

(x))i∈N of (xn(x))n∈N which converges to a fixed point of f , x∗(x). In
this case, the condition (iv) is effective and we have that the sequence

d(xn(x), x
∗(x)) → d ≥ 0 as n→ ∞.

But, xni
(x) → x∗(x) as n→ ∞. So, the sequence (xn(x))n∈N converges to x∗(x). □

From the above proof it is clear that we have the following result with direct conditions
on f and fn.

Theorem 5.2. We suppose that:
(i) fn satisfies (α, β)-displacement condition, ∀ n ∈ N;
(ii) d(x, fn(x)) ≥ cd(x, f(x)), with some c > 0, ∀ x ∈ X ;
(iii) the fixed point problem for f is well posed in generalized sense;
(iv) fn is quasinonexpansive, ∀ n ∈ N.
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Then, the algorithm (5.1) is convergent.

Proof. From (i) we have that

α(d(x, fn(x))) ≤ β(x)− β(fn(x)), ∀ n ∈ N, ∀ x ∈ X.

In this relation, instead of x we put, xn(x), and we have

α(d(xn(x), xn+1(x))) ≤ β(xn(x))− β(xn+1(x)), ∀ n ∈ N, ∀ x ∈ X.

From Lemma 5.1, the sequence (xn(x))n∈N is asymptotically regular. From (ii), the se-
quence (xn(x))n∈N is f -asymptotically regular. Now, see the proof of Theorem 5.1. □

In a similar way we have,

Theorem 5.3. We suppose that:
(i) there exists an admissible pair (α, β) such that,

α(d(xn(x), f(xn(x)))) ≤ β(xn(x))− β(xn+1(x)), ∀ n ∈ N, ∀ x ∈ X;

(ii) the fixed point problem for f is well posed in generalized sense;
(iii) fn is quasinonexpansive, ∀ n ∈ N.

Then, the sequence, (xn(x))n∈N, converges to a fixed point of f .

Theorem 5.4. We suppose that:
(i) fn satisfies (α, β, f)-displacement condition, ∀ n ∈ N;
(ii) the fixed point problem for f is well posed in generalized sense;
(iii) fn is quasinonexpansive, ∀ n ∈ N.

Then, the algorithm (5.1) is convergent.

6. PROBLEMS

From the above considerations the following questions rise:
6.1. To construct a theory for K-demicontractive operators with K < 0, in a metric

space. For the K-demicontractive operators in Hilbert and Banach spaces see:
[40], [30], [4], [5], [17], [23], [41], [69], [6], . . .

6.2. To give new metric conditions which imply asymptotic regularity of an operator,
and in general, not convergence of successive approximations. A similar problem
in the case of sequences.

Let (X, d) be a metric space, g : X → X be an operator and (xn)n∈N be a se-
quence inX . The (α, β)-displacement condition for g (see Theorem 3.1) and (α, β)-
displacement condition for (xn)n∈N (see Lemma 5.1), imply asymptotic regularity.

The problem is to give other conditions with these properties.
References for asymptotic regularity: [48], [14], [15], [5], [18], [56], [58], [33],

[31], [42], [25], [46], [50], [62]. [59], . . .

6.3. To give, in a metric space, conditions in which asymptotic regularity of an operator
(sequence) implies convergence of successive approximations (sequence).

In 1945, J. Dieudonné (see [48]) has given the following result:
Let f ∈ C([a, b] × Rm,Rm) and the following Cauchy problem corresponding

to f :
y′(x) = f(x, y(x)), y(a) = y0.

We consider the successive approximations for this problem,

yn+1(x) = y0 +

∫ x

a

f(s, y(s))ds, n ∈ N.
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If the Cauchy problem has a unique solution, then there exists, h ∈]0, b − a[ such
that the successive approximations sequence converges uniformly to the unique
solution of Cauchy problem on [a, a + h], if and only if the sequence {yn+1 − yn}
converges uniformly to the null function, uniformly on [a, a+ h].

In 1976, B.P. Hillam (see [62]) proves the following result:
A function f ∈ C([0, 1], [0, 1]) is weakly Picard function if and only if f is

asymptotically regular.
The problem is to give similar results in a metric space.
References: [48], [9], [5], [10], [14], [15], . . .

6.4. In which conditions a nonexpansive operator is a graphic contraction ?
One basic problem in the theory of nonexpansive operators is the following:
Let (X, d) be a metric space and f : X → X be a nonexpansive operator. In

which conditions f is WPO ?
For a better understanding of the relation between nonexpansive operator the-

ory and graphic contraction theory we present the following well known results.

• Theorem of equivalent statements. Let X be a nonempty set and f : X → X be
an operator. The following statements are equivalent:
(i) Ffn = Ff ̸= ∅;
(ii) there exists a metric d on X with respect to which f is WPO;
(iii) there exists a complete metric on X with respect to which f is a continuous

graphic contraction;
(iv) Ff ̸= ∅ and there exists a metric d on X with respect to which f is asymptoti-

cally regular.

• Graphic Contraction Principle. Let (X, d) be a complete metric space, f : X → X

be an operator and l ∈]0, 1[. We suppose that:
(i) d(f2(x), f(x)) ≤ ld(x, f(x)), ∀ x ∈ X ;
(ii) f has closed graph.
Then the operator f is WPO.

• Bernstein operators, Bn : C[0, 1] → C[0, 1], are nonexpansive and graphic con-
tractions.

The Bernstein operator, Bn : C[0, 1] → C[0, 1], is defined by

Bn(f)(x) :=

n∑
k=0

f(
k

n
)

(
n
k

)
xk(1− x)n−k, x ∈ [0, 1].

It is well known that, ∥Bn∥ = 1 and

∥B2
n(f)−Bn(f)∥ ≤ (1− 1

2n−1 )∥f −Bn(f)∥.

So, Bn is a graphic contraction and weakly Picard operator.
References: [55], [50], [44], [52], . . .

6.5. To study the stability of algorithms in Problem A and B.
For the notion of stability of an iterative algorithm see: [54], [8], [5], [10], [27], [43],
[42], [2], [63], [62], . . .
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[8] Berinde, V., Măruşter, Şt. and Rus, I. A., An abstract point of view on iterative approximation of fixed points of

nonself operators, J. Nonlinear Convex Anal., 15 (2014), No. 5, 851–865
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