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The Opial condition in variable exponent sequence spaces
ℓp(·) with applications
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ABSTRACT. In this work, we show an analogue to the Opial property for the coordinate-wise convergence
in the variable exponent sequence space ℓp(·). This property allows us to prove a fixed point theorem for the
mappings which are nonexpansive in the modular sense.

1. INTRODUCTION

Orlicz [16] is credited as the first one to introduce the concept of a modular in a vector
space in 1931. Of course, the main dominant concept at that time was the norm defined
in a vector space. In his 1931 paper, Orlicz considered the space

X =
{
(xn) ∈ RN;

∞∑
n=0

|α xn|n < ∞ for some α > 0
}
,

which was later extended to

X =
{
(xn) ∈ RN;

∞∑
n=0

|α xn|p(n) < ∞ for some α > 0
}
,

where p(n) ≥ 1, for any n ∈ N. We use the notation ℓp(·) for the vector space X . The
geometry and the topological properties of X are well understood and well investigated,
see for example [7, 14, 19, 20]. Inspired by the work of Orlicz, Nakano [12, 13] introduced
the concept of a modular and modular vector spaces. Moreover, The space ℓp(·) is consid-
ered as the precursor of variable exponent spaces [3] (in short VES). In recent years, these
spaces are in vogue and saw a major development. Koväčik and Rákosnı́k [8] are among
the first to investigate the vector topological properties of VES. It is worth mentioning
that the rapid development of the theory of VES is closely related to electrorheological
fluids introduced by Rajagopal and Ružička [17, 18]. These fluids are an example of smart
materials with major applications in aerospace, mechanical and civil structures.

In this work, we establish a property analogue to the Opial condition for the coordinate-
wise convergence in the space ℓp(·). This investigation allowed us to prove a fixed point
theorem for nonexpansive mappings in the modular sense.

Since our work deals with metric fixed point theory and modular vector spaces, we
recommend the books [4, 6] as a reference to interested readers.
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2. NOTATIONS AND DEFINITIONS

Let us start first by the following definition.

Definition 2.1. [16] The space ℓp(·) is defined by:

ℓp(·) =
{
(xn) ∈ RN;

∞∑
n=0

1

p(n)
|α xn|p(n) < ∞ for some α > 0

}
,

where p(n) ≥ 1, for any n ∈ N.

The formal definition of a modular was given by Nakano [12, 13, 14]. The following
proposition captures the general approach introduced by Nakano.

Proposition 2.1. [7, 12, 19] Define the function ρ : ℓp(·) → [0,∞] by

ϱ(x) = ϱ((xn)) =

∞∑
n=0

1

p(n)
|xn|p(n).

Then ϱ satisfies the following properties:

(1) ϱ(x) = 0 if and only if x = 0,
(2) ϱ(−x) = ϱ(x),
(3) ϱ(αx+ βy) ≤ αϱ(x) + βϱ(y), for any α, β ∈ [0, 1] such that α+ β = 1,

for any x, y ∈ X . The function ϱ is called a convex modular.

In the following definition, we introduce a kind of modular topology which mimics the
classical metric topology.

Definition 2.2. [5]

(a) The sequence {xn} ⊂ ℓp(·) is said to be ϱ-convergent to x ∈ ℓp(·) if and only if ϱ(xn −
x) → 0. Note that the ϱ-limit is unique if it exists.

(b) A sequence {xn} ⊂ ℓp(·) is called ϱ-Cauchy if ϱ(xn − xm) → 0 as n,m → ∞.
(c) A nonempty subset C ⊂ ℓp(·) is called ϱ-bounded if

δϱ(C) = sup{ϱ(x− y);x, y ∈ C} < ∞.

(d) ϱ is said to satisfy the ∆2-condition if there exists K ≥ 0 such that ϱ(2x) ≤ K ϱ(x), for
any x ∈ ℓp(·).

In ℓp(·), it is easy to see that ϱ satisfies the ∆2-condition if and only if p+ = sup
n∈N

p(n) <

∞. For the importance of the ∆2-condition and its variants, the reader may consult [6, 9,
11]. To a modular ϱ, we associate of what is known as the Luxemburg norm defined by

∥x∥ϱ = inf

{
λ > 0; ϱ

(
1

λ
x

)
≤ 1

}
.

Recall that (ℓp(·), ∥.∥ϱ) is a Banach space. Moreover the ϱ-convergence and the norm con-
vergence are equivalent if and only if ϱ satisfies the ∆2-condition. In this case, if a se-
quence is ϱ-Cauchy, then it is ϱ-convergent.

For the geometric and topological properties of (ℓp(·), ∥.∥ϱ), we recommend the work
of Sundaresan [19].
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3. OPIAL PROPERTY IN ℓp(·)

While investigating an extension of a fixed point theorem obtained by Browder and
Petryshyn [1] in a Hilbert space, Opial came up with a property that bears his name [15].
This property has had a tremendous impact on the fixed point property of nonexpansive
mappings.

Let {xn} be a sequence in ℓp(·). Set xn = (xn
m)m∈N. We will say that {xn} coordinate-

wise converges to x = (xm)m∈N ∈ ℓp(·) if and only lim
n→∞

xn
m = xm, for any m ∈ N.

Throughout this work, we will write τ -convergence for the coordinate-wise convergence.

Definition 3.3. [2, 15] We will say that ℓp(·) satisfies the τ -Opial property if for any
ϱ-uniformly bounded sequence {xn} in ℓp(·) which τ -converges to x ∈ ℓp(·), we have

lim sup
n→∞

ϱ(xn − x) < lim sup
n→∞

ϱ(xn − y),

for any y ∈ ℓp(·) such that y ̸= x.

Throughout, we will need the following notations:

ϱm(x) =
∑
n≤m

1

p(n)
|xn|p(n), and ϱcm(x) =

∑
n>m

1

p(n)
|xn|p(n),

for any m ∈ N and any x = (xn) ∈ ℓp(·).

The following result is crucial in the proof of the main result of this work.

Lemma 3.1. Assume p+ = sup
n∈N

p(n) < ∞. Let K > 1 and ε > 0 be such that ε K < 1. Then,

for any x, y ∈ ℓp(·), we have

|ϱ(x+ y)− ϱ(x)| ≤ ε|ϱ(K x)−K ϱ(x)|+ ϱ(Cε y),

where Cε =
1

ε(K − 1)
.

Proof. Set α = 1−K ε and β = (K − 1) ε. Then we have α+ β + ε = 1 and

x+ y = α x+ ε K x+ β Cε y.

Since ϱ is convex, we conclude that

ϱ(x+ y) ≤ α ϱ(x) + ε ϱ(K x) + β ϱ(Cε y),

which implies

ϱ(x+ y)− ϱ(x) ≤ ε
(
ϱ(K x)−K ϱ(x)

)
+ (K − 1) ε ϱ(Cε y)

≤ ε
(
ϱ(K x)−K ϱ(x)

)
+ ϱ(Cε y).

If we set

a =
1

1 +K ε
, b =

ε

1 +K ε
, and c =

ε (K − 1)

1 +K ε
,

then a+ b+ c = 1. It is easy to check that

x = a (x+ y) + b K x+ c (−Cε y),

which implies by convexity of ϱ

ϱ(x) ≤ a ϱ(x+ y) + b ϱ(K x) + c ϱ(−Cε y).

Hence
(1 +K ε)ϱ(x) ≤ ϱ(x+ y) + ε ϱ(K x) + ε (K − 1) ϱ(−Cε y),
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which implies

ϱ(x)− ϱ(x+ y) ≤ ε
(
ϱ(K x)−K ϱ(x)

)
+ ε (K − 1) ϱ(Cε y)

≤ ε
(
ϱ(K x)−K ϱ(x)

)
+ ϱ(Cε y).

Hence

|ϱ(x)− ϱ(x+ y)| ≤ ε
(
ϱ(K x)−K ϱ(x)

)
+ ϱ(Cε y).

Since ϱ(K x)−K ϱ(x) ≥ 0, the conclusion of Lemma 3.1 holds. □

Now we are ready to state the main result of this work.

Theorem 3.1. Assume p+ = sup
n∈N

p(n) < ∞. Let {xn} be ϱ-uniformly bounded in ℓp(·) which

τ -converges to 0. We have
lim

n→∞
ϱ(xn + x)− ϱ(xn) = ϱ(x),

for any x ∈ ℓp(·).

Proof. Fix m ∈ N and x ∈ ℓp(·). We have

ϱ(xn + x)− ϱ(xn)− ϱ(x) = ϱm(xn + x)− ϱm(xn)− ϱm(x)
+ ϱcm(xn + x)− ϱcm(xn)− ϱcm(x),

for any n ∈ N. Since {xn} τ -converges to 0, we have

lim
n→∞

ϱm(xn + x)− ϱm(xn)− ϱm(x) = 0.

Therefore, we focus on the term ϱcm(xn + x)− ϱcm(xn)− ϱcm(x). Since {xn} is ϱ-uniformly
bounded, then M = sup

n∈N
ϱ(xn) < ∞. Fix K > 1. Then sup

n∈N
ϱ(K xn) ≤ Kp+M < ∞. Let

ε > 0 such that ε K < 1. The Lemma 3.1 implies

|ϱcm(xn + x)− ϱcm(xn)− ϱcm(x)| ≤ ε |ϱcm(K xn)−K ϱcm(xn)|+ ϱcm(Cε x) + ϱcm(x)
≤ ε (Kp+ +K)M + (C

p+
ε + 1) ϱcm(x),

for any n ∈ N, which implies

lim sup
n→∞

|ϱcm(xn + x)− ϱcm(xn)− ϱcm(x)| ≤ ε (Kp+ +K)M + (Cp+
ε + 1) ϱcm(x).

Since lim
n→∞

ϱm(xn + x)− ϱm(xn)− ϱm(x) = 0, we conclude

lim sup
n→∞

|ϱ(xn + x)− ϱ(xn)− ϱ(x)| ≤ ε (Kp+ +K)M + (Cp+
ε + 1) ϱcm(x).

Using the ∆2-condition satisfied by ℓp(·), we have lim
m→∞

ϱcm(x) = 0, which implies

lim sup
n→∞

|ϱ(xn + x)− ϱ(xn)− ϱ(x)| ≤ ε (Kp+ +K)M.

Since ε may be chosen arbitrarily close to 0, we conclude that

lim
n→∞

|ϱ(xn + x)− ϱ(xn)− ϱ(x)| = 0,

which implies lim
n→∞

ϱ(xn + x)− ϱ(xn) = ϱ(x). □
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Example 3.1. In this example, we show that if p+ = ∞, then the conclusion of Theorem

3.1 may fail. Indeed, consider the case when p(n) = n. Set x =

(
1

m1−1/m

)
m∈N

. Then

x ∈ ℓp(·). Moreover, consider the sequence {xn} defined by xn =
(
δnm m1/m

)
m∈N

where

δnm is the Kronecker function, i.e., δnm = 0 if n ̸= m and δnn = 1. Then, {xn} τ -converges
to 0. Moreover, we have

ϱ(xn + x)− ϱ(xn) =
∑
m̸=n

1

mm−1
+

(
1

n1−1/n
+ n1/n

)n

− n

=
∑
m̸=n

1

mm−1
+ n

(
1

n
+ 1

)n

− n

= ϱ(x) + n

[(
1 +

1

n

)n

− 1

]
− 1

nn−1
,

which implies
lim
n→∞

ϱ(xn + x)− ϱ(xn) ̸= ϱ(x),

since lim
n→+∞

n
[(
1 + 1

n

)n − 1
]
− 1

nn−1 = +∞.

The following result is a direct consequence of Theorem 3.1.

Theorem 3.2. Assume p+ = sup
n∈N

p(n) < ∞. Let {xn} be ϱ-uniformly bounded in ℓp(·) which

τ -converges to x ∈ ℓp(·). We have

lim sup
n→∞

ϱ(xn − y) = lim sup
n→∞

ϱ(xn − x) + ϱ(x− y),

for any y ∈ ℓp(·), which implies

lim sup
n→∞

ϱ(xn − x) < lim sup
n→∞

ϱ(xn − y)

whenever x ̸= y.

The conclusion of Theorem 3.2 is similar to the property discovered by Opial [15] when
the exponent function p(·) is constant and the convergence is for the weak-topology. Al-
most all the proofs given for this fact are based on the use of the duality-function and its
properties. The duality-function is closely related to the norm. Since the norm in ℓp(·) is
not directly related to the modular function, the previous approaches are not suitable. In
the next section, we give an application of the conclusion of Theorem 3.2.

4. APPLICATION

In this section, we prove a fixed point result similar to the one discovered by Opial [15]
and others [2, 10].

Definition 4.4. [6] Let K ⊂ ℓp(·) be a nonempty subset. Let T : K → K be a map.
(1) T is said to be ϱ-contraction if there exists a constant k ∈ [0, 1) such that

ϱ(T (x)− T (y)) ≤ k ϱ(x− y), for any x, y ∈ K.

(2) T is said to be ϱ-nonexpansive whenever

ϱ(T (x)− T (y)) ≤ ϱ(x− y), for any x, y ∈ K.

A fixed point of T is any point x ∈ K such that T (x) = x.
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Before we state the main result of this section, recall that a nonempty subset K of ℓp(·)
is said to be compact for the τ -convergence if any sequence {xn} in K has a subsequence
{xφ(n)} which τ -converges to a point in K.

Theorem 4.3. Assume p+ = sup
n∈N

p(n) < ∞. Let K be a nonempty ϱ-bounded convex subset of

ℓp(·). Assume K is compact for the τ -convergence. Then any ϱ-nonexpansive mapping T : K →
K has a fixed point.

Proof. Let K be a nonempty ϱ-bounded convex subset of ℓp(·) which is compact for the τ -
convergence. Let T : K → K be a ϱ-nonexpansive mapping. If K is reduced to one point,
then we have nothing to prove. We assume, thus that K is not reduced to one point. Fix
ε ∈ (0, 1) and c ∈ K. Define Tε : K → K by

Tε(x) = ε c+ (1− ε) T (x).

Using the convexity of ϱ, we obtain

ϱ(Tε(x)− Tε(y)) = ϱ
(
(1− ε) (T (x)− T (y))

)
≤ (1− ε) ϱ((T (x)− T (y)),

for any x, y ∈ K. In other words, Tε is ϱ-contraction which implies

ϱ(Tn
ε (c)− Tn+h

ε (c)) ≤ (1− ε)n ϱ(c− Th
ε (c)) ≤ (1− ε)n δϱ(K),

for any n, h ∈ N. Hence {Tn
ε (c)} is ϱ-Cauchy. Using the properties of ℓp(·), we conclude

that {Tn
ε (c)} ϱ-converges to some xε. Since ϱ-convergence implies the τ -convergence for

which K is compact, we conclude that xε ∈ K. We claim that xε is a fixed point of Tε.
Indeed, using the inequality

ϱ(Tn+1
ε (c)− Tε(xε)) ≤ (1− ε) ϱ(Tn

ε (c)− xε),

for any n ∈ N, we conclude that {Tn
ε (c)} also ϱ-converges to Tε(xε). The uniqueness of the

ϱ-limit implies Tε(xε) = xε. Let xn ∈ K be the discovered fixed point of T1/n, for n ≥ 1.
Hence

T (xn) =
1

n
c+

(
1− 1

n

)
T (xn) = xn,

which implies

ϱ(xn − T (xn)) = ϱ

(
1

n

(
c− T (xn)

))
≤ 1

n
ϱ(c− T (xn)) ≤

δϱ(K)

n
,

for any n ≥ 1. Since K is compact for the τ -convergence, there exists a subsequence
{xφ(n)} of {xn} which τ -converges to some x ∈ K. We claim that x is a fixed point of T .
Indeed, we have

ϱ(xφ(n) − T (x)) = ϱ

(
1

φ(n)

(
c− T (x)

)
+

(
1− 1

φ(n)

)
(T (xφ(n))− T (x))

)
≤ 1

φ(n)
ϱ(c− T (x)) +

(
1− 1

φ(n)

)
ϱ(xφ(n) − x),

for any n ≥ 1, which implies

lim sup
n→∞

ϱ(xφ(n) − T (x)) ≤ lim sup
n→∞

ϱ(xφ(n) − x).

Using Theorem 3.2, we conclude that T (x) = x as claimed which finishes the proof of
Theorem 4.3. □
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Note that the conclusion of Theorem 4.3 is still valid if we only assume that K is star-
shaped. Recall that K is said to be star-shaped if and only if there exists a point c ∈ K
such that α c+ β x ∈ K, for any x ∈ K and α, β ∈ [0, 1] such that α+ β = 1.
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