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Intersection theorems with applications in set-valued
equilibrium problems and minimax theory

MIRCEA BALAJ

ABSTRACT. In this paper, we obtain three intersection theorems that can be considered versions of Theorem
3.1 from the paper [Agarwal, R. P., Balaj, M. and O’Regan, D., Intersection theorems with applications in optimization,
J. Optim. Theory Appl., 179 (2018), 761–777]. As will be seen, there are two major differences between the
hypotheses of the above mentioned theorem and those of our results. Applications of the main results are
considered in the last two sections of the paper.

1. INTRODUCTION

An intersection theorem establishes sufficient conditions such that for a given set-
valued mapping S between two sets X and Y , endowed with an adequate topological
and/or algebraic structure, the intersection

⋂
x∈X S(x) to be nonempty. Intersection the-

orems are powerful tools for proving existence results in mathematics. For example, exis-
tence problems in optimization and nonlinear functional analysis can be solved using an
intersection theorem, and regarding an intersection point as a fixed point, a coincidence
point, an equilibrium point, a saddle point etc.

If X is a subset of a vector space E, a set-valued mapping S from X into E is called
a KKM mapping, if for any finite subset A of X , convA ⊆ S(A) (here, the standard
notation conv A designates the convex hull of A). In 1961, Ky Fan [12] extended the
famous Knaster-Kuratowski-Mazurkiewicz (simply, KKM) principle to arbitrary topolog-
ical vector spaces obtaining a remarkable intersection theorem. Fan’s result, known today
as the Fan-KKM theorem, states that if E is a Hausdorff topological vector space and
S : X ⊆ E ⇒ E is a closed-valued KKM mapping, such that S(x0) is compact for at
least one x0 ∈ X , then

⋂
x∈X S(x) ̸= ∅. The importance of the Fan-KKM theorem is due

to its wide range of applications in nonlinear analysis, optimization and other fields of
mathematics. This fact motivated Sehie Park [23] to introduce the concept of KKM the-
ory, in which, the notion of KKM mapping plays a central role. Subsequently, there have
been introduced concepts more general than that of KKM mapping, by means of which
significant generalizations of some results from nonlinear analysis and optimization were
obtained.

We need to recall below one of these new concepts.

Definition 1.1. (see [7], [1]) Let X be a convex set in a vector space, Y be a nonempty set
and S, T : X ⇒ Y two set-valued mappings. We say that S is a weak KKM mapping
w.r.t. T if for each nonempty finite subset A of X and any x ∈ conv A, T (x) ∩ S(A) ̸= ∅.
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The starting point in our investigations is a recent intersection theorem obtained by
Agarwal et al. in [1]. This theorem reads as follows:

Theorem 1.1. Let X be a nonempty compact and convex set and Z be a nonempty convex set,
each in a topological vector space. Let S, T : X ⇒ Z be nonempty-valued set-valued mappings
that satisfy the following conditions:

(i) S is a weak KKM mapping w.r.t. T ;
(ii) S is closed set-valued mapping with convex values and convex cofibers;

(iii) T has compact convex values;
(iv) for each x ∈ X , the set {y ∈ X : T (y) ∩ S(x) ̸= ∅} is closed.

Then, there exists an x0 ∈ X such that T (x0) ∩
⋂

x∈X S(x) ̸= ∅.

Our aim in this paper is to establish three versions of the above theorem, in which
the domains of the set-valued mappings S and T are distinct convex sets and instead of
condition (i), T is required to be a convex set-valued mapping.

The paper is organized as follows. In Section 2, are recalled some basic definitions
about set-valued mappings. The promised generalizations of Theorem 1.1 are established
in Section 3. Applications of the main results are considered in the last two sections.

2. BASIC CONCEPTS

We recall in this section some notions and results concerning set-valued mappings,
needed in the paper. Given set-valued mapping S : X ⇒ Y , we denote by Gr S its graph,
that is, Gr S = {(x, y) ∈ X×Y : y ∈ S(x)} and by S∗ the set-valued mapping S∗ : Y ⇒ X
defined by S∗(y) = {x ∈ X : y /∈ S(x)}. S∗ is called the dual of S and its values are called
the cofibers of S. The following lemma is a particular case of Proposition 3 in [9].

Lemma 2.1. Let X be a nonempty convex set in a vector space and Y be a nonempty set. A
set-valued mapping S : X ⇒ Y has convex cofibers if and only if S(conv A) ⊆ S(A), for each
nonempty finite subset A of X (that is, S is a KKM mapping w.r.t. itself).

Let X be a convex subset of a vector space and E be a vector space. A set-valued
mapping T : X ⇒ E is said to be convex if

λT (x1) + (1− λ)T (x2) ⊆ T (λx1 + (1− λ)x2),

for all x1, x2 ∈ X and λ ∈ [0, 1]. In other words, T is convex if its graph is a convex set. It
is easy to prove that a convex set-valued mapping is convex-valued.

If X and Y are topological spaces, a set-valued mapping T : X ⇒ Y is said to be: (i)
lower semicontinuous, if for any open subset G of Y the set {x ∈ X : T (x) ∩ G ̸= ∅} is
open; (ii) upper semicontinuous, if for any open subset G of Y the set {x ∈ X : T (x) ⊆ G}
is open; (iii) continuous, if it is both upper and lower semicontinuous; (iv) closed, if its
graph is a closed subset of X ×Y ; (v) compact if T (X) is contained in a compact subset of
Y .

Lemma below collects two known results needed in the next sections.

Lemma 2.2. Let T : X ⇒ Y be a set-valued mapping between two topological spaces.
(i) If Y is Hausdorff and compact, T is closed if and only if it is upper semicontinuous and

closed-valued.
(ii) If T is upper semiconinuous and compact-valued, then T (K) is compact whenever K is a

compact subset of X .

From now on, all topological (vector) spaces are assumed to be Hausdorff. For a subset
A of a topological vector space, the standard notations cl A, int A will designate the
closure, and, respectively, the interior of A.
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3. MAIN RESULTS

As we promised in Section 1, we establish here versions of Theorem 1.1 in which S and
T have different domains and the assumption as S to be a weak KKM mapping w.r.t. T
is dropped. The proof of the first result relies on the following lemma.

Lemma 3.3. (see [2, Lemma 3.1]) Let X be a nonempty and convex set and Y be a nonempty,
compact and convex set, each in a topological vector space. If P : X ⇒ Y is a closed mapping with
nonempty convex values and convex cofibers, then

⋂
x∈X P (x) ̸= ∅.

Theorem 3.2. Let X , Y and Z be three nonempty convex sets, each in a topological vector space
such that Y is compact. Assume that S : X ⇒ Z, T : Y ⇒ Z are two closed set-valued mappings
with nonempty values that satisfy the following conditions:

(ii) for each x ∈ X , there exists y ∈ Y such that T (y) ∩ S(x) ̸= ∅;
(ii) T is convex and compact;

(iii) S has convex values and convex cofibers.
Then, there exists an y0 ∈ X such that T (y0) ∩

⋂
x∈X S(x) ̸= ∅.

Proof. We divide the proof into two steps.
Step 1. We prove first that there exists y0 ∈ Y such that T (y0) ∩ S(x) ̸= ∅ for all x ∈ X .

To this aim, let us consider the set-valued mapping P : X ⇒ Y defined by

P (x) = {y ∈ Y : T (y) ∩ S(x) ̸= ∅}.
We show that the mapping P is closed. Let (x, y) ∈ cl ( Gr P ) and {(xt, yt)} be a net

in Gr P converging to (x, y). Then, for each index t, there exists zt ∈ T (yt) ∩ S(xt). From
(ii), the net {zt} has a subnet {ztα} converging to a point z ∈ Z. Since S and T are closed
set-valued mappings, z ∈ T (y) ∩ S(x). Hence (x, y) ∈ Gr P .

Let x ∈ X , y1, y2 ∈ P (x) and λ ∈ [0, 1]. For each i ∈ {1, 2} there is zi ∈ T (yi) ∩ S(x). As
S(x) is a convex set and T is a convex mapping,

λz1 + (1− λ)z2 ∈ T
(
λy1 + (1− λ)y2

)
∩ S(x),

hence λy1 + (1− λ)y2 ∈ P (x). Thus P is convex-valued.
Consider now an arbitrary y ∈ Y and x1, x2 ∈ P ∗(y). Since S has convex cofibers, from

Lemma 2.1, S(λx1 + (1− λ)x2) ⊆ S(x1) ∪ S(x2) for all λ ∈ [0, 1]. Thus,

T (y) ∩ S(λx1 + (1− λ)x2) ⊆ T (y) ∩ S(x1) ∪ T (y) ∩ S(x2) = ∅,
whence λx1 + (1− λ)x2 ∈ P ∗(y). Consequently, the cofibers of P are convex sets.

From Lemma 3.3, there exists y0 ∈
⋂

x∈X P (x). Then, T (y0) ∩ S(x) ̸= ∅ for all x ∈ X .
Step 2. Define now the set-valued mapping Q : X ⇒ T (y0) by Q(x) = T (y0) ∩ S(x).

By the previous step, Q has nonempty values. As T (y0) and the values of S are convex
sets, so will be the values of Q. One can easily see that Q is a closed mapping. For each
z ∈ T (y0),

Q∗(z) = {x ∈ X : z /∈ T (y0) ∩ S(x)} = {x ∈ X : z /∈ S(x)} = S∗(z).

Consequently, the cofibers of Q are convex. From Lemma 3.3,

∅ ≠
⋂
x∈X

Q(x) = T (y0) ∩
⋂
x∈X

S(x).

□

Remark 3.1. When T (y) = Z for all y ∈ Y , Theorem 3.2 reduces to Corollary 2.2 in [3].

We give below a simple example where Theorem 3.2 is applicable, while Theorem 1.1
is not.
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Example 3.1. Let X = Y = [0, 1] and T, S : [0, 1] ⇒ R be defined as follows

T (x) =
[
1− x,

√
1− x2

]
, S(x) = [0, x].

From Definition 1.1 it follows immediately that if the set-valued mapping S would be
weak KKM w.r.t. T , then T (x) ∩ S(x) ̸= ∅ for all x ∈ [0, 1]. But, for any x ∈ [0, 1

2 [,
T (x) ∩ S(x) = ∅, hence S is not a weak KKM mapping w.r.s. T . Therefore, Theorem 1.1
cannot be applied.

We show that the set-valued mapping T is convex. Let x1, x2 ∈ [0, 1], y1 ∈ T (x1), y2 ∈
T (x2) and λ ∈ [0, 1]. Since the function x →

√
1− x2 is concave, we have

1−
(
λx1 + (1− λ)x2

)
= λ(1− x1) + (1− λ)(1− x2) ≤ λy1 + (1− λ)y2

≤ λ
√
1− x2

1 + (1− λ)
√
1− x2

2 ≤
√

1−
(
λx1 + (1− λ)x2

)2
.

Hence λy1+(1−λ)y2 ∈ T (λx1+(1−λ)x2). Clearly, the other assumptions of Theorem 3.2
are also satisfied. By checking directly, one sees that y0 = 1 is the unique point for which
T (y0) ∩

⋂
x∈X S(x) ̸= ∅.

The following ”dual” version of Lemma 3.3 is Lemma 3.2 in [2].

Lemma 3.4. Let X be a nonempty compact and convex set and Y be a nonempty convex set, each
in a topological vector space. If P : X ⇒ Y is a set-valued mapping with open graph, nonempty
convex values and convex cofibers, then

⋂
x∈X P (x) ̸= ∅.

Based on Lemma 3.4 we establish the following open version of Theorem 3.2.

Theorem 3.3. Let X , Y and Z be three nonempty convex sets, each in a topological vector space,
so that X is compact. Let S : X ⇒ Z, T : Y ⇒ Z be two set-valued mappings with nonempty
values. Assume that:

(i) for each x ∈ X , there exists y ∈ Y such that T (y) ∩ S(x) ̸= ∅;
(ii) T is convex and lower semicontinuous;

(iii) S has open graph, convex values and convex cofibers.
Then, there exists an y0 ∈ X such that T (y0) ∩

⋂
x∈X S(x) ̸= ∅.

Proof. The proof is similar with that of Theorem 3.2, using Lemma 3.4 instead of Lemma
3.3. Consider first the set-valued mapping P : X ⇒ Y defined by

P (x) = {y ∈ Y : T (y) ∩ S(x) ̸= ∅}.
We have already seen that P has nonempty convex values and convex cofibers. Lemma 3.4
will be applicable as soon as we show that P has open graph. Take an arbitrary (x0, y0) ∈
Gr P and choose an z0 ∈ T (y0) ∩ S(x0). As Gr S is open, there exist a neighborhood U

of x0 in X and a neighborhood W of z0 in Z such that U × W ⊆ Gr S. Since T is lower
semicontinuous, there is a neighborhood V of y0 in Y such that T (y)∩W ̸= ∅ for all y ∈ V .

To prove that Gr P is open, it suffices to show that U × V ⊆ Gr P . Let (x, y) ∈ U × V .
If z ∈ T (y) ∩ W , then (x, z) ∈ Gr S, hence z ∈ T (y) ∩ S(x) and thus (x, y) ∈ Gr P .
Consequently, U × V ⊆ Gr P .

Applying Lemma 3.4, we get a point y0 ∈ Y such that T (y0) ∩ S(x) ̸= ∅ for all x ∈ X .
Next, as in the proof of Theorem 3.2, the set-valued mapping Q : X ⇒ T (y0) defined

by Q(x) = T (y0) ∩ S(x) has nonempty convex values and convex cofibers. Since Gr Q =
Gr S ∩

(
X × T (y0)

)
, it follows that the graph of Q is open in X × T (y0). The desired

conclusion follows now by Lemma 3.4 applied to the set-valued mapping Q. □

Since any set-valued mapping with open graph is lower semicontinuous the following
question arises naturally: does Theorem 3.3 remain true if we ask that S to be only lower
semicontinuous? A result in this direction is established in the next theorem.
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Theorem 3.4. Let X and Y be nonempty compact convex subsets of two topological vector spaces
and Z be a nonempty convex set in a locally convex topological vector space E. Assume that
S : X ⇒ Z, T : Y ⇒ Z satisfy the following conditions:

(i) for each x ∈ X , there exists y ∈ Y such that T (y) ∩ S(x) ̸= ∅;
(ii) T is convex, continuous and with nonempty compact values;

(iii) S is lower semicontinuous, with nonempty closed convex values and convex cofibers;
Then, there exists an y0 ∈ Y such that T (y0) ∩

⋂
u∈X S(u) ̸= ∅.

Proof. Let B be a basis of open convex neighborhoods of E. For every B ∈ B, consider the
set-valued mapping SB : X ⇒ Z defined by

SB(u) =
(
S(u) +B) ∩ Z.

From [17, Lemma 1], the graph of SB is open in X × Z and clearly SB is convex-valued.
For z ∈ Z,

S∗
B(z) = {x ∈ X : z /∈ S(x) +B}

= {x ∈ X : ∀b ∈ B, z − b /∈ S(x)} =
⋂

{S∗(z − b) : b ∈ B ∩ (z − Z)}.
Since the cofibers of S are convex, so will the cofibers of SB .

From Theorem 3.3, for each B ∈ B, there are yB ∈ Y and zB ∈ T (yB)∩
⋂

x∈X SB(x). As
T is upper semicontinuous and compact-valued, T (Y ) is a compact subset of Z. Since
Y × T (Y ) is a compact set, we may assume, without loss of generality, that the net
{(yB , zB)}B∈B converges to (y0, z0) ∈ Y × T (Y ). By Lemma 2.2, T is a closed map-
ping. Consequently, z0 ∈ T (y0). Let x ∈ X be arbitrarily fixed. For every B ∈ B, since
zB ∈ SB(x), there exists bB ∈ B such that zB − bB ∈ S(x). Since the net {zB − bB}
converges to z0, and S(x) is a closed set, z0 ∈ S(x). Thus, z0 ∈ T (y0) ∩

⋂
x∈X S(x). □

4. SET-VALUED EQUILIBRIUM PROBLEMS

Let X , Y and Z be nonempty convex subsets of three topological vector spaces such
that Y is compact, E be a topological vector space, C be a closed convex cone with
nonempty interior in E and P : Y ⇒ Z, F : X × Y × Z ⇒ E be set-valued mappings
with nonempty values. As applications of the intersection theorems from the previous
section, we establih further existence criteria of the solutions for the following four types
of set-valued equilibrium problems:

(SVEP-1) Find y0 ∈ Y and z0 ∈ P (y0) such that F (x, y0, z0) ⊆ C for all x ∈ X .

(SVEP-2) Find y0 ∈ Y and z0 ∈ P (y0) such that F (x, y0, z0) ̸⊆ −int C for all x ∈ X .

(SVEP-3) Find y0 ∈ Y and z0 ∈ P (y0) such that F (x, y0, z0) ⊆ int C for all x ∈ X .

(SVEP-4) Find y0 ∈ Y and z0 ∈ P (y0) such that F (x, y0, z0) ̸⊆ −C for all x ∈ X .

There is a rich literature dedicated to the existence of solutions for problems (SVEP-1)
and (SVEP-2) or their various generalizations (see, for instance, [5]- [15]), but the men-
tioned papers deal only with the case when X = Z. To the best of our knowledge, prob-
lems (SVEP-3) and (SVE-4) have not been studied until now.

Since the proofs of the existence theorems for problems (SVEP-1) ÷ (SVEP-4) are sim-
ilar, we prefer to study first the existence of solution for a variational relation problem.
Recall that variational relation problems were introduced by Luc in [21] as general mod-
els for a large class of problems from nonlinear analysis and applied mathematics. Given
three sets X , Y and Z, a relation R between their elements is represented as a nonempty
subset of the product space X×Y ×Z. Adopting Luc’s terminology, we say that R(x, y, z)
holds, if (x, y, z) ∈ R.
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Theorem 4.5. Let X , Y and Z be three nonempty convex sets, each in a topological vector space
such that Y is compact, P : Y ⇒ Z be a closed, compact and convex set-valued mapping with
nonempty values and R be a relation linking elements x ∈ X , y ∈ Y and z ∈ Z. Assume that:

(i) for any x ∈ X , there exists (y, z) ∈ Gr P such that R(x, y, z) holds;
(ii) the set {(x, y, z) ∈ X × Y × Z : R(x, y, z) holds} is closed in X × Y × Z;

(iii) for each x ∈ X , the set {(y, z) ∈ Y × Z : R(x, y, z) holds} is convex;
(iv) for each (y, z) ∈ Y × Z, the set {x ∈ X : R(x, y, z) does not hold} is convex.

Then, there exist y0 ∈ Y and z0 ∈ P (y0), such that R(x, y0, z0) holds for all x ∈ X.

Proof. Consider the set-valued mappings T : Y → Y × Z, S : X → Y × Z defined by

T (y) = {y} × P (y), S(x) = {(y, z) ∈ Y × Z : R(x, y, z) holds}.
Since P is closed, compact and convex, so is T . The set-valued S is closed (by (ii)), has
convex values (from (iii)) and convex cofibers (from (iv)). Moreover, by (i), for any x ∈ X
there exists y ∈ Y such that T (y) ∩ S(x) ̸= ∅. By Theorem 3.2, there exists (y0, z0) ∈
T (y0) ∩

⋂
x∈X S(x). This means that z0 ∈ P (y0) and R(x, y0, z0) holds for all x ∈ X . □

In a similar manner, from Theorem 3.3, one obtains

Theorem 4.6. Let X , Y and Z be convex sets in three topological vector spaces so that X is
compact. The conclusion of Theorem 4.5 remains true if the set-valued mapping P is lower semi-
continuous and convex and the relation R satisfies assumptions (i), (iii) and (iv) of Theorem 4.5
and condition (ii′) below

(ii′) the set {(x, y, z) ∈ X × Y × Z : R(x, y, z) holds} is open in X × Y × Z

Remark 4.1. The conclusion of Theorems 4.5 and 4.6 is the same as that of Theorem 4.3 in
[8], but the assumptions in the mentioned result are different.

Further, we establish existence results for the aforementioned set-valued equilibrium
problems. But before, we need to recall some concepts of cone continuity and cone con-
vexity.

Let C be a closed convex cone in the topological vector space E. According to Defini-
tion 7.1 in [22], a set-valued mapping F : X → 2E is said to be:

(i) lower C-continuous at x0, if for each e ∈ F (x0) and any neighborhood V of e,
there is a neighborhood U of x0 such that F (x) ∩ (V + C) ̸= ∅ for all x ∈ U ;

(ii) upper C-continuous at x0, if for each neighborhood V of F (x0), there is a neigh-
borhood U of x0 such that F (x) ⊆ V + C for all x ∈ U ;

(iii) lower C-continuous (respectively, upper C- continuous), if it is lower C- continu-
ous (respectively, upper C- continuous) at every point x ∈ X .

Let X be a convex set in a vector space, E be a vector space and C be convex cone in E.
A set-valued mapping F : X → 2E is said to be:

(i) C-concave (see [10]) if

F (λx1 + (1− λ)x2) ⊆ λF (x1) + (1− λ)F (x2) + C,

for all x1, x2 ∈ X and every λ ∈ [0, 1];
(ii) C-quasiconvex (see [14]) if for every x1, x2 ∈ X and λ ∈ [0, 1] there is an index

i ∈ {1, 2} such that

F (xi) ⊆ F (λx1 + (1− λ)x2) + C.

Theorem 4.7. Problem (SVEP-1) has at least a solution whenever the convex set Y is compact,
the set-valued mapping P is closed, compact and convex and F satisfies the following conditions:

(i) for each x ∈ X , there exists (y, z) ∈ Gr P such that F (x, y, z) ⊆ C;
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(ii) F is lower (- C)-continuous
(iii) the set valued-mapping F (x, ·, ·) is C-concave;
(iv) for each (y, z) ∈ Y × Z, the set valued mapping F (·, y, z) is C -quasiconvex.

Proof. We intend to apply Theorem 4.5 when the relation R is defined by

R(x, y, z) holds iff F (x, y, z) ⊆ C.

Note that condition (i) is nothing other than the condition similarly noted in Theorem 4.5.
We prove that the set

M := {(x, y, z) ∈ X × Y × Z : F (x, y, z) ⊆ C}
is closed in X × Y × Z. Let (x, y, z) ∈ cl M and {(xt, yt, zt)} be a net in M converging to
(x, y, z). Fix arbitrarily an e ∈ F (x, y, z) and a neighborhood V of the origin of E. Since F
is lower (- C)-continuous there exists an index t0 such that for every t ≥ t0 we have

F (xt, yt, zt) ∩ (e− V − C) ̸= ∅.
As (xt, yt, zt) ∈ M , F (xt, yt, zt) ⊆ C, hence C ∩ (e− V − C) ̸= ∅. It follows that

e ∈ C + V + C = C + V.

Since V has been an arbitrary neighborhood of 0E , e ∈ cl C = C. It follows that F (x, y, z) ⊆
C, hence (x, y, z) ∈ M .

Let x ∈ X , (y1, z1), (y2, z2) ∈ {(y, z) ∈ Y × Z : F (x, y, z) ⊆ C} and λ ∈ [0, 1]. Since
F (x, ·, ·) is a C-concave mapping

F (x, λy1 + (1− λ)y2, λz1 + (1− λ)z2) ⊆ λF (x, y1, z1) + (1− λ)F (x, y2, z2, ) + C ⊆ C.

Thus, condition (iii) in Theorem 4.5 is fulfilled.
Now, we show that for any (y, z) ∈ Y × Z, the set {x ∈ X : F (x, y, z) ⊈ C} is convex.

Assume, by way of contradiction, that for some (y, z) ∈ Y × Z there are x1, x2 ∈ X and
λ ∈]0, 1[ such that F (xi, y, z) ⊈ C (i = 1, 2) and F (λx1 + (1− λ)x2, y, z) ⊆ C. As F (·, y, z)
is a C -quasiconvex mapping, for some index i ∈ {1, 2} the following inclusion holds:

F (xi, y, z) ⊆ F (λx1 + (1− λ)x2, y, z) + C ⊆ C + C = C; a contradiction.

Now, the desired conclusion follows from Theorem 4.5. □

Theorem 4.8. Assume that Y is compact, P is closed, compact and convex and F satisfies the
following conditions:

(i) for each x ∈ X , there exists (y, z) ∈ Gr P such that F (x, y, z) ̸⊆ − int C;
(ii) F is compact-valued and upper (- C)-continuous;

(iii) for each x ∈ X , the set-valued mapping F (x, ·, ·) is (- C)-quasiconvex;
(iv) for each (y, z) ∈ Y × Z, F (·, y, z) is (- C)-concave.

Then, problem (SVEP-2) has solution.

Proof. We show that each of conditions (ii)– (iv) implies the condition similarly noted in
Theorem 4.5, when the relation R is defined by

R(x, y, z) holds iff F (x, y, z) ⊈ − int C.

Let M := {(x, y, z) ∈ X × Y × Z : F (x, y, z) ⊈ − int C} and {(xt, yt, zt)} be a net in
M converging to (x, y, z) ∈ X × Y × Z. Let V be a neighborhood of the origin of E.
Because F is upper (−C)-continuous, there exists an index t0 such that for every t ≥ t0
we have F (xt, yt, zt) ⊆ F (x, y, z)+V −C. As (xt, yt, zt) ∈ M , F (xt, yt, zt) ̸⊆ −int C. Thus,
F (x, y, z) + V − C ̸⊆ −int C. Consequently, for every neighborhood V of the origin of E,
there exist fV ∈ F (x, y, z) and eV ∈ V , such that

(4.1) fV + eV /∈ −int C.
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Since F (x, y, z) is a compact set, without loss of generality, we may assume that the net
{fV } converges to a point f ∈ F (x, y, z). Then, the net {fV + eV } also converges to f .
From (4.1) we get f /∈ −int C, hence (x, y, z) ∈ M . Thus, the set M is closed in X ×Y ×Z.

We now prove that for each x ∈ X the set {(y, z) ∈ Y × Z : F (x, y, z) ⊈ − int C}
is convex. We argue by contradiction. Assume that there exist x ∈ X , (y1, z1), (y2, z2) ∈
Y ×Z and λ ∈]0, 1[ such that F (x, yi, zi) ⊈ − int C (i = 1, 2) and F (x, λy1+(1−λ)y2, λz1+
(1 − λ)z2) ⊆ − int C. As the mapping F (x, ·, ·) is (- C)-quasiconvex, for some index
i ∈ {1, 2} the following inclusion holds:

F (x, yi, zi) ⊆ F (x, λy1+(1−λ)y2, λz1+(1−λ)z2)−C ⊆ − int C−C = − int C; a contradiction.

Let (y, z) ∈ Y × Z and x1, x2 ∈ X such that F (xi, y, z) ⊆ − int C (i = 1, 2). From (iv),
for every λ ∈ [0, 1],

F (λx1 + (1− λ)x2, y, z) ⊆ λF (x1, y, z) + (1− λ)F (x2, y, z)− C ⊆ − int C,

hence for every (y, z) ∈ Y ×Z the set {x ∈ X : F (x, y, z) ⊆ −C} is convex. Thus, Theorem
4.5 can be applied to get the desired conclusion. □

In a similar manner, from Theorem 4.6, can be derived existence criteria for the solu-
tions of problems (SVEP-3) and (SVEP-4).

Theorem 4.9. Problem (SVEP-3) has solution if the convex set X is compact, the set-valued
mapping P is lower semicontinuous and convex and the following conditions hold:

(i) for each x ∈ X , there exists (y, z) ∈ Gr P such that F (x, y, z) ⊆ − int C;
(ii) F is upper C-continuous;

(iii) for each x ∈ X , the set-valued mapping F (x, ·, ·) is C-concave;
(iv) for each (y, z) ∈ Y × Z, F (·, y, z) is C-quasiconvex.

Proof. Consider relation R defined as follows

R(x, y, z) holds iff F (x, y, z) ⊆ C.

Let (x0, y0, z0) ∈ X × Y × Z such that F (x0, y0, z0) ⊆ int C. Then, int C is an open
neighborhood of F (x0, y0, z0). As F is upper C-continuous, there is a neighborhood U of
(x0, y0, z0) in X × Y × Z such that for each (x, y, z) ∈ U ,

F (x, y, z) ⊆ int C + C = int C,

hence the set {(x, y, z) ∈ X × Y × Z : F (x, y, z) ⊆ int C} is open in X × Y × Z. Con-
sequently, condition (ii′) in Theorem 4.6 is fulfilled. Following the same lines as in the
proof of Theorem 4.7 one can easily check that al the other assumptions of Theorem 4.6
are satisfied. Applying this theorem we obtain the desired conclusion. □

Theorem 4.10. Problem (SVEP-4) has solution if X is compact, P is lower semicontinuous and
convex and F satisfies the following conditions:

(i) for each x ∈ X , there exists (y, z) ∈ Gr P such that F (x, y, z) ̸⊆ −C;
(ii) F is lower C-continuous;

(iii) for each x ∈ X , the set-valued mapping F (x, ·, ·) is (- C)-quasiconvex;
(iii) for each (y, z) ∈ X × Y , F (·, y, z) is (- C)-concave.

Proof. Following the same arguments as in the previous proofs one can easily show that
each of assumptions (i)÷ (iv) implies the condition similarly noted in Theorem 4.6, when
relation R is defined by

R(x, y, z) holds iff F (x, y, z) ̸⊆ −C.

For instance, from the first part of the proof of Theorem 4.7 one sees that under assump-
tion (i) the set {(x, y, z) ∈ X × Y × Z : F (x, y, z) ⊆ −C} is closed in X × Y × Z, and thus
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the set {(x, y, z) ∈ X × Y ×Z : F (x, y, z) ⊈ −C} is open. Theorem 4.6 leads to the needed
conclusion. □

5. MINIMAX THEOREMS

Let X , Y , Z be convex sets in three topological vector spaces, T : Y ⇒ Z be a convex
set-valued mapping with nonempty values and f be a real function defined on X×Z. We
are interested to find sufficient conditions such that

(5.2) inf
x∈X

sup
z∈T (Y )

f(x, z) = sup
z∈T (Y )

inf
x∈X

f(x, z).

Since the inequality supz∈T (Y ) infx∈X f(x, z) ≤ infx∈X supz∈T (Y ) f(x, z) holds for any
function f : X × Z → R, equality (5.2) is equivalent with

inf
x∈X

sup
z∈T (Y )

f(x, z) ≤ sup
z∈T (Y )

inf
x∈X

f(x, z).

In the proofs of the next theorems, we may assume that inf
x∈X

sup
z∈T (Y )

f(x, z) > −∞, because

the above inequality is trivial in contrary case.

Theorem 5.11. Assume that the convex set Y is compact, the set-valued mapping T is closed and
compact and the function f satisfies the following conditions:

(i) is upper semicontinuous on X × Z;
(ii) for each x ∈ X , f(x, ·) is quasiconcave;

(iii) for each z ∈ Z, f(·, z) is quasiconvex.
Then, infx∈X maxz∈T (Y ) f(x, z) = maxz∈T (Y ) infx∈X f(x, z).

Proof. First, let us justify why we can replace, in the conclusion of the theorem, supz∈T (Y )

with maxz∈T (Y ). From Lemma 2.2, it follows readily that the set T (Y ) is compact. Since
f is upper semicontinuous on X × Z, for each x ∈ X , f(x, ·) is also an upper semicon-
tinuous function of z on Z and therefore its maximum maxz∈T (y) f(x, z) on the compact
set T (Y ) exists. Then, by Lemma 2.41 in [4], the function z −→ infx∈X f(x, z) is upper
semicontinuous and therefore its maximum maxz∈T (Y ) infx∈X f(x, z) on the compact set
T (Y ) exists.

Set

(5.3) m := inf
x∈X

max
z∈T (Y )

f(x, z),

and define the set-valued mapping S : X ⇒ Z by

S(x) = {z ∈ Z : f(x, z) ≥ m}.
The mapping S is closed ( by (i)), has convex values (by (ii)) and convex cofibers (by (iii)).
Moreover, from (5.3), it follows that for each x ∈ X there is y ∈ Y such that S(x)∩T (y) ̸= ∅.

By Theorem 3.2, there exists y0 ∈ Y such that T (y0)∩
⋂

x∈X S(x) ̸= ∅. Thus, f(x, z0) ≥ m
for some z0 ∈ T (y0) and for all x ∈ X . Consequently,

max
z∈T (X)

inf
x∈X

f(x, z) ≥ inf
x∈X

f(x, z0) ≥ m.

Thus the proof is complete. □

When Y ≡ Z and T is the identity mapping on Z, Theorem 5.11 reduces to the follow-
ing

Corollary 5.1. Let X be a nonempty convex set and Z a nonempty compact convex set, each in a
topological vector space. If f : X × Z → R satisfies condition (i) ÷ (iii) from Theorem 5.11, then
infx∈X maxz∈Z f(x, z) = maxz∈Z infx∈X f(x, z).
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Remark 5.2. The above corollary can be regarded as a version of the well-known Sion’s
minimax theorem ([24]). The unique difference consists in the fact that in Sion’s result f
is assumed lower semicontinuous in the first variable and upper semicontinuous in the
second one, while in Corollary 5.1, f is upper semicontinuous on X × Z.

Theorem 5.12. Assume that X is compact, T is lower semicontinuous and f is lower semicontin-
uous on X × Z and satisfies conditions (ii) and (iii) of Theorem 5.11. Then, the minimax equality
(5.2) holds.

Proof. For λ < infx∈X supz∈T (Y ) f(x, z) arbitrarily fixed, consider the set-valued mapping
S : X ⇒ Z defined by

S(x) = {z ∈ Z : f(x, z) ≥ λ}.
It follows readily by hypotheses that S has open graph, convex values and open fibers.
Moreover, taking into account the choice of λ, for each x ∈ X there exists y ∈ Y such that
S(x) ∩ T (y) ̸= ∅.

By Theorem 3.3, there exists y0 ∈ Y such that T (y0)∩
⋂

x∈X S(x) ̸= ∅. Thus, f(x, z0) ≥ λ
for some z0 ∈ T (y0) and for all x ∈ X . Consequently,

sup
z∈T (Y )

inf
x∈X

f(x, z) ≥ inf
x∈X

f(x, z0) ≥ λ.

As λ was an arbitrary real number less than infy∈Y supz∈T (y) f(y, z), we infer that
supz∈T (Y ) infx∈X f(x, z) ≥ infx∈X supz∈T (Y ) f(x, z). □

Recall that a real function h defined on a convex set X is said to be strictly quasiconcave
if

min(h(x1), h(x2)) < h(λx1 + (1− λ)x2),

for each x1, x2 ∈ X , x1 ̸= x2, and λ ∈]0, 1[.

Theorem 5.13. The minimax equality (5.2) holds when X and Y are compact convex sets, Z is
a nonempty convex set in a locally convex topological vector space, T is continuous and compact-
valued and f satisfies the following conditions:

(i) for each x ∈ X , f(x, ·) is upper semicontinuous and either concave or strict quasiconcave;
(ii) for each z ∈ Z, f(·, z) is lower semicontinuous and quasiconvex.

Proof. As in the previous proof, for an arbitrary

(5.4) λ < inf
x∈X

max
z∈T (Y )

f(x, z)

we consider the set-valued mapping S : X ⇒ Z defined by S(x) = {z ∈ Z : f(x, z) ≥ λ}.
The conclusion follows from Theorem 3.4 as soon as we prove that S is lower semi-

continuous. Suppose to the contrary that S is not lower semicontinuous. This means that
there exist a point x0 ∈ X and a set G ⊆ Z, open relative to Z, such that S(x0) ∩ G ̸= ∅
and for any open neighborhood V of x0 there exists xV ∈ V satisfying

(5.5) S(xV ) ∩G = ∅.

Fix a point z0 ∈ S(x0) ∩ G. Hence z0 ∈ G and f(x0, z0) ≥ λ. From (5.4), there exists a
point z1 ∈ T (Y ) such that f(x0, z1) > λ. As G is an open neighborhood of z0, we can find
α ∈]0, 1[ such that zα = αz0 + (1− α) z1 ∈ G. If f(x0, ·) is concave, we have

f(x0, zα) ≥ αf(x0, z0) + (1− α)f(x0, z1) > λ.

Otherwise, assume that f is strictly quasiconcave in the first variable. Then we have

f(x0, zα) > min{f(x0, z0), f(x0, z1)} > λ.
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Therefore, in both cases

(5.6) f(x0, zα) > λ.

From (5.5), we infer that for each open neighborhood V of x0, zα /∈ S(xV ), hence f(xV , zα)
< λ. As the function f(·, zλ) is lower semicontinuous, it follows that f(x0, zα) ≤ λ, which
contradicts (5.6). Thus S is lower semicontinuous. □
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