
CARPATHIAN J. MATH.
Volume 35 (2019), No. 3,
Pages 293 - 304

Online version at https://semnul.com/carpathian/

Print Edition: ISSN 1584 - 2851; Online Edition: ISSN 1843 - 4401

DOI: https://doi.org/10.37193/CJM.2019.03.04

Dedicated to Prof. Qamrul Hasan Ansari on the occasion of his 60th anniversary

Approximating fixed points of enriched nonexpansive
mappings by Krasnoselskij iteration in Hilbert spaces

VASILE BERINDE

ABSTRACT. Using the technique of enrichment of contractive type mappings by Krasnoselskij averaging,
presented here for the first time, we introduce and study the class of enriched nonexpansive mappings in Hilbert
spaces. In order to approximate the fixed points of enriched nonexpansive mappings we use the Krasnoselskij
iteration for which we prove strong and weak convergence theorems. Examples to illustrate the richness of the
new class of contractive mappings are also given.

Our results in this paper extend some classical convergence theorems established by Browder and Petryshyn
in [Browder, F. E., Petryshyn, W. V., Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal.
Appl., 20 (1967), 197–228] from the case of nonexpansive mappings to that of enriched nonexpansive mappings,
thus including many other important related results from literature as particular cases.

1. INTRODUCTION

Let K be a nonempty subset of a real normed linear space X . A map T : K → K is
called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥,∀x, y ∈ K.

An element x ∈ K is said to be a fixed point of T is Tx = x. Denote by Fix (T ) the set of
all fixed points of T .

Nonexpansive mappings are a limit case of Picard-Banach contractions, i.e., of map-
pings T : K → K which satisfy, in the case of normed linear spaces, a contraction condi-
tion of the form

∥Tx− Ty∥ ≤ c · ∥x− y∥,∀x, y ∈ K,

where c ∈ [0, 1) is the contraction coefficient.
Banach contraction mapping principle, see for example [11], assures that any contrac-

tion T on a Banach space has a unique fixed point which is the limit of the sequence of
its iterates {Tnx0}, for any x0 ∈ K. A similar assertion for nonexpansive mappings is not
more true.

Indeed, if K is a closed nonempty subset of a Banach space X and T : K → K is
nonexpansive, it is known that T may not have a fixed point or it may have many fixed
points, and third, it may may happen that, even if T has a unique fixed point, the Picard
iteration {xn = Tnx0} may fail to converge to such a fixed point. One of the simplest
examples of such a map is Tx = 1 − x on [0, 1] with the usual norm, which gives, for
x0 = 1 say, x2n = 1 and x2n+1 = 0. Also, rotation about the origin of the unit disk in the
plane is another example of nonexpansive mapping having a unique fixed point while
{xn = Tnx0}(x0 ̸= 0) does not converge.
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These aspects made the study of nonexpansive mappings one the major and most ac-
tive research areas of nonlinear analysis since the mid-1960’s. We mention the early con-
tributions in this respect, due to Mann [59] in 1953 and to Krasnoselskij [55] in 1955,
respectively, who considered instead of Picard iteration (which does not converge, in
general, for nonexpansive mappings) an explicit averaged iteration of the form xn+1 =
f(xn, Txn), n ≥ 0. We state in the following the classical result due to Krasnoselskij [55].

Theorem 1.1. Let X be a uniformly convex Banach space and C a closed subset of X . If T : C →
C is nonexpansive and T (C) is compact, then the mapping defined by T 1

2
x = 1

2x + 1
2Tx has the

property that its sequence of iterates always converges to a point of T . Since T and T 1
2

have the
same fixed points, the limit of a convergent sequence given by xn+1 = 1

2xn + 1
2Txn, n ≥ 0 is

necessarily a fixed point of T .

The following two problems were important in the study of nonexpansive mappings
and were approached, amongst others, by [71], [21]-[24], [41], [49], [40] etc. :

a) what additional conditions on the structure of the ambient space X and / or on the
properties of T must be added to assure that a nonexpansive mapping has at least one
fixed point ?

b) how one can locate and approximate such a fixed point ?
Apart from the theoretical aspects mentioned above, nonexpansive mappings are ex-

tremely important from the point of view of their applications because, see [29]:
”1) Nonexpansive maps are intimately connected with the monotonicity methods de-

veloped since the early 1960 and constitute one of the first classes of nonlinear mappings
for which fixed point theorems were obtained by using the fine geometric properties of
the underlying Banach spaces instead of compactness properties.

2) Nonexpansive mappings appear in applications as the transition operators for initial
value problems of differential inclusions of the form 0 ∈ du+ T (t)u, where the operators
{T (t)} are, in general, set-valued and are accretive or dissipative and minimally continu-
ous.”

A simple search in MathScinet shows the impressive number of 3606 indexed papers
that bear the term ”nonexpansive” in their title and 5826 papers that hold the term ”non-
expansive” anywhere, as by November 30, 2018.

Having in view the significant interest of researchers for the study of nonexpansive
mappings, the main aim of the present paper is to introduce a larger class of mappings of
nonexpansive type, which will be called enriched nonexpansive mappings, and to answer in
the affirmative the two problems a) and b) mentioned above in that context.

It is our personal belief that the concept of enriched nonexpansive mapping introduced
here for the first time as well as the technique of enrichment of contractive mappings
itself, by means of which we obtained the results presented in this paper and in [17]-[19],
will open new and productive research avenues in the field of nonlinear analysis.

2. ENRICHED NONEXPANSIVE MAPPINGS IN HILBERT SPACES

Definition 2.1. Let (X, ∥ · ∥) be a linear normed space. A mapping T : X → X is said to
be an enriched nonexpansive mapping if there exists b ∈ [0,∞) such that

(2.1) ∥b(x− y) + Tx− Ty∥ ≤ (b+ 1)∥x− y∥,∀x, y ∈ X.

To indicate the constant involved in (2.1) we shall also call T as a b-enriched nonexpansive
mapping.

Remark 2.1. It is easy to see that any nonexpansive mapping T is a 0-enriched mapping,
i.e., it satisfies (2.1) with b = 0.
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We note that, according to Theorem 12.1 in [48], in a Hilbert space any enriched nonex-
pansive mapping which is also firmly nonexpansive is nonexpansive.

It is very important to note that, similar to the case of nonexpansive mappings, any
enriched nonexpansive mapping is continuous.

Example 2.1.

Let X =

[
1

2
, 2

]
be endowed with the usual norm and T : X → X be defined by

Tx =
1

x
, for all x ∈

[
1

2
, 2

]
. Then

(i) T is Lipschitz continuous with Lipschitz constant L = 4 and T is not nonexpansive;
(ii) T is a 3/2-enriched nonexpansive mapping.
(iii) Fix (T ) = {1} but T is not quasi-nonexpansive.

Proof. (i) Assume T is nonexpansive. Then

|Tx− Ty| ≤ |x− y|,∀x, y ∈ X,

which, for x = 1 and y = 1/2, leads to the contradiction 1 ≤ 1/2.
(ii) The enriched nonexpansive condition (2.1) reduces in this case to∣∣∣∣b(x− y) +

1

x
− 1

y

∣∣∣∣ ≤ (b+ 1)|x− y| ⇔
∣∣∣∣b− 1

xy

∣∣∣∣ · |x− y| ≤ (b+ 1) · |x− y|.

It easy to check that, for any b ≥ 3/2, we have∣∣∣∣b− 1

xy

∣∣∣∣ ≤ b+ 1,∀x, y ∈
[
1

2
, 2

]
,

which proves that T is a 3/2-enriched nonexpansive mapping.
(iii) Assume T is quasinonexpansive. Then we must have∣∣∣∣ 1x − 1

∣∣∣∣ ≤ |x− 1|,∀x ∈
[
1

2
, 2

]
.

Just take x =
1

2
to reach the contradiction 1 ≤ 1

2
. □

We need some definitions and results for proving our main results.

Definition 2.2. [65] Let H be a Hilbert space and C a subset of H . A mapping T : C → H
is called demicompact if it has the property that whenever {un} is a bounded sequence in
H and {Tun − un} is strongly convergent, then there exists a subsequence {unk

} of {un}
which is strongly convergent.

Definition 2.3. [27] Let H be a Hilbert space and C a closed convex subset of H . A
mapping T : C → C is called asymptotically regular (on C) if, for each x ∈ C,

∥Tn+1x− Tnx∥ → 0 as n → ∞.

The following Lemma, which is adapted after Corollary to Theorem 5 in [27] will be
used in the proof of the main result of this section.

Lemma 2.1. Let H be a Hilbert space and C a closed convex subset of H . If the mapping U : C →
C is nonexpansive and Fix (U) ̸= ∅ then, for any given λ ∈ (0, 1), the mapping Uλ = I+(1−λ)U
maps C into C, has the same fixed points as U and is asymptotically regular.

Now we can state and prove the main result of this section.
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Theorem 2.2. Let C be a bounded closed convex subset of a Hilbert space H and T : C → C be a
b-enriched nonexpansive and demicompact mapping. Then the set Fix (T ) of fixed points of T is a
nonempty convex set and there exists λ ∈ (0, 1) such that, for any given x0 ∈ C, the Krasnoselskij
iteration {xn}∞n=0 given by

(2.2) xn+1 = (1− λ)xn + λTxn, n ≥ 0,

converges strongly to a fixed point of T .

Proof. Since T is enriched nonexpansive, by Definition 2.1 it follows that there exists a
constant b, b ∈ [0,∞), such that

∥b(x− y) + Tx− Ty∥ ≤ (b+ 1)∥x− y∥,∀x, y ∈ C.

By putting b =
1

µ
− 1, it follows that µ ∈ (0, 1] and the previous inequality is equivalent to

(2.3) ∥(1− µ)(x− y) + µTx− µTy∥ ≤ ∥x− y∥,∀x, y ∈ C.

Denote Tµx = (1− µ)x+ µTx. Then inequality (2.3) expresses the fact that

∥Tµx− Tµy∥ ≤ ∥x− y∥,∀x, y ∈ C,

i.e., that the averaged operator Tµ is nonexpansive.
By means of Browder-Goede-Kirk fixed point theorem (e.g., Theorem 4 in [27]), repro-

duced as Theorem 3.1 in [11], it follows that Tµ has at least one fixed point.
Note also that, in view of Lemma 2.1, Fix (T ) = Fix (Tµ) ̸= ∅.
Since H is a Hilbert space, Fix (T ) is also convex, see for example Theorem 6 in [27].

We include here a proof of the fact that Fix (Tµ) is convex, i.e., when x, y ∈ Fix (Tµ) and
λ ∈ [0, 1], we have

uλ = (1− λ)x+ λy ∈ Fix (Tµ).

Indeed, since Tµ is nonexpansive, we have

(2.4) ∥Tµuλ − x∥ = ∥Tµuλ − Tµx∥ ≤ ∥uλ − x∥
and, similarly,

(2.5) ∥Tµuλ − y∥ ≤ ∥uλ − y∥.
Now, by (2.4) and (2.5), we have

∥x− y∥ ≤ ∥x− Tµuλ∥+ ∥Tµuλ − y∥ ≤ ∥uλ − x∥+ ∥uλ − y∥ = ∥λ(x− y)∥
+∥(1− λ)(x− y)∥ = ∥x− y∥ ⇒ ∥x− Tµuλ∥+ ∥Tµuλ − y∥ = ∥x− y∥.

The last equality implies the existence of some nonnegative numbers a, b with a, b ≤ 1,
such that

x− Tµuλ = a(x− uλ)

and
y − Tµuλ = b(y − uλ).

Hence, for all λ ∈ [0, 1],

(2.6) ∥x− y∥ = ∥x− Tµuλ∥+ ∥Tµuλ − y∥ = a · ∥x− uλ∥+ b · ∥y − uλ∥.
Now, just take λ = 1 in (2.6) to get a = 1 and then take λ = 0 in (2.6) to get b = 1.

This shows that Tµuλ = uλ, that is, uλ ∈ Fix (Tµ). So Fix (Tµ) is convex and hence
Fix (T ), is convex, too. Thus, the first part of our theorem is proven.

In order to prove the last part of the theorem, consider the sequence {xn}∞n=0 given by

xn+1 = (1− λ)xn + λTµxn, n ≥ 0.

It is obvious that {xn}∞n=0 lies in C and hence it is bounded.
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Denote Uλ = (1−λ)I+λTµ, where I is the identity map. Then, since Tµ is nonexpansive,
by Lemma 2.1 it follows that Uλ is asymptotically regular, i.e.,

∥xn − Uλxn∥ → 0, as n → ∞.

We also have

(2.7) Uλx− x = λ(Tµx− x) = λµ(Tx− x),

and hence
∥xn − Tµxn∥ → 0, as n → ∞.

Since, by hypothesis, T is demicompact, it follows by (2.7) that Tµ is demicompact, too.
Hence, there exists a subsequence {xnk

} of {xn}∞n=0 which converges strongly in C. De-
note

lim
k→∞

xnk
= q.

Then, by the continuity of Tµ it follows that

Tµxnk
→ Tµq, as k → ∞.

Therefore, {xnk
−Tµxnk

} converges strongly to 0 and simultaneously, {xnk
−Tµxnk

} con-
verges strongly to q − Tµq, which proves that q = Tµq, i.e.,

q ∈ Fix (Tµ) = Fix (T ).

The convergence of the entire sequence {xn}∞n=0 to q now follows from the inequality

∥xn+1 − q∥ ≤ ∥xn − q∥, n ≥ 0,

which is a direct consequence of the nonexpansivity of Uλ (which, in turn, is a conse-
quence of the nonexpansivity of Tµ).

Hence, for any x0 ∈ C, the Krasnoselskij iteration {xn}∞n=0, given by

xn+1 = Uλxn = (1− λ)xn + λTµxn = (1− λ)xn + λ[(1− µ)xn + µTxn]

= (1− λ)xn + λ[(1− µ)xn + µTxn]

= (1− λµ)xn + λµTxn

converges strongly to q ∈ Fix (T ) as n → ∞.
To get exactly the formula (2.2) for the Krasnoselskij iteration {xn}∞n=0 given above, just

simply denote λ := λµ ∈ (0, 1). □

Remark 2.2. Theorem 2.2 is an extension of Lemma 3 of Petryshyn [65] and of its global
variant (Theorem 6) in Browder and Petryshyn [27], by considering instead of nonexpan-
sive mappings the larger class of enriched nonexpansive mappings.

Remark 2.3. The class of demicompact operators contains, among many classes of oper-
ators (see [65]), the compact operators and, in particular, the completely continuous and
strongly continuous operators.

Hence, from Theorem 2.2 (and also from Corollary 2.1) one obtains the pioneering re-
sult of Krasnoselskij from 1955 ([55], [56])

1

2
(xn + Txn) → q ∈ Fix (T ) ( as n → ∞

which was subsequently extended by Schaefer in 1957 ([71]) to the general Krasnoselskij
scheme

(1− λ)xn + λTxn → q ∈ Fix (T ), ( as n → ∞, 0 < λ < 1),

a result established in the general setting of a uniformly Banach space.
The above results for compact operators have been extended to strictly convex Banach

spaces by Edelstein in [41].
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Corollary 2.1. (Theorem 6, [27]) Let C be a bounded closed convex subset of a Hilbert space H
and T : C → C be a nonexpansive and demicompact operator. Then the set Fix (T ) of fixed points
of T is a nonempty convex set and there exists λ ∈ (0, 1) such that, for any given x0 ∈ C, the
Krasnoselskij iteration {xn}∞n=0 given by

xn+1 = (1− λ)xn + λTxn, n ≥ 0,

converges strongly to a fixed point of T .

Proof. Any nonexpansive mapping is a 0-enriched nonexpansive mapping. Hence, Corol-
lary 2.1 follows from Theorem 2.2 for b = 0 , that is, for µ = 1. □

Remind that a mapping T : C → C is called generalized pseudocontractive with constant
r, see [77], [8] and [11], if

(2.8) ∥Tx− Ty∥2 ≤ r∥x− y∥2 + ∥Tx− Ty − r(x− y)∥2, x, y ∈ C.

It easy to prove that, in a Hilbert space, condition (2.8) is equivalent to

(2.9) ⟨Tx− Ty, x− y⟩ ≤ r∥x− y∥2, x, y ∈ C.

Note also that the function T in Example 2.1 is generalized pseudocontractive with
constant r > 0 arbitrary and Lipschitzian with constant L = 4.

Theorem 2.2 is also an extension of the main result in [77], see also [8] and [11].

Corollary 2.2. ([77]) Let C be a nonempty closed convex subset of a Hilbert space H and T :
C → C be a Lipschitzian and generalized pseudocontractive operator (with constants s and r,
respectively, r < 1). Then for any given x0 ∈ C and any fixed number λ, 0 < λ < 2(1−r)

1−2r+s2 , the
Krasnoselskij iteration {xn}∞n=0 given by

(2.10) xn+1 = (1− λ)xn + λTxn, n ≥ 0,

converges strongly to the unique fixed point of T .

Proof. Note that, in a Hilbert space, the b-enriched nonexpansive condition (2.1) is equiv-
alent to

(2.11) 2b · ⟨Tx− Ty, x− y⟩+ 1 · ∥Tx− Ty∥2 ≤ (2b+ 1) · ∥x− y∥2.

Since T is a Lipschitzian and generalized pseudocontractive operator we have

2b · ⟨Tx− Ty, x− y⟩+ 1 · ∥Tx− Ty∥2 ≤ (2rb+ s2)∥x− y∥2

and so, in order to have (2.11) satisfied, it suffices to take b ≥ s2 − 1

2(1− r)
, which is always

possible.
On the other hand, T is demicompact, which is a consequence of the fact that T is Lips-

chitzian, hence continuous, and of the generalized pseudocontractivity property, accord-
ing to Lemma 2 in [65], where are presented some classeses of demicontractive operators.

Now the conclusion of the corollary follows by Theorem 2.2.
It is important to note that the uniqueness of the fixed point is in this case a direct

consequence of the generalized pseudocontractivity property. Indeed, suppose that T
possesses two distinct fixed points, i.e., p, q ∈ Fix (T ) and p ̸= q. Then, by (2.9), we get

⟨x− y, x− y⟩ ≤ r∥x− y∥2 ⇔ ∥x− y∥2 ≤ r∥x− y∥2,

a contradiction, since r < 1. □
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We close this section by reminding that, under the assumptions of Corollary 2.2, if
additionally, one has

r ≤ s,

where r and s are the constant of generalised pseudocontractivity and Lipschitz constant,
respectively, then it is possible to identify the fastest Krasnoselskij iterations amongst
those given by (2.10), see [8], [9] and [11], which is obtained for

λ =
1− r

1− 2r + s2
.

This result has been at the origin of introducing a notion of rate of convergence for com-
paring two fixed point iterations in [10], a concept that turn out to be very useful, see also
[12] and references therein.

3. WEAK CONVERGENCE THEOREMS FOR ENRICHED NONEXPANSIVE MAPPINGS IN
HILBERT SPACES

A key tool in proving the main result in the previous section has been the fact that the
averaged map of a nonexpansive mapping T is asymptotically regular, a property which
has been used in conjunction with the demicompactness of T .

In the absence of the demicompactness property of the operator T , the asymptotic reg-
ularity alone does not imply in general the strong convergence of the Krasnoselskij se-
quence {xn}∞n=0 but the weak convergence can be still assured, as shown by the next the-
orems which extend Theorems 7 and 8 in Browder and Petryshyn [27] from nonexpansive
mappings to enriched nonexpansive mappings.

Theorem 3.3. Let C be a bounded closed convex subset of a Hilbert space H and T : C → C be
an enriched nonexpansive operator with Fix (T ) = {p}. Then, for any given x0 ∈ C and any
fixed number λ, 0 < λ < 1, the Krasnoselskij iteration {xn}∞n=0 given by

(3.12) xn+1 = (1− λ)xn + λTxn, n ≥ 0,

converges weakly to p.

Proof. We use similar arguments to those in the proof of Theorem 2.2 to show that Tµx =
(1 − µ)x + µTx, which map C into C is nonexpansive. Note also that, in view of Lemma
2.1, Fix (Tµ) = Fix (T ) = {p}.

To prove the theorem, it suffices to show that if {xnj
}∞j=0 given by

xnj+1 = (1− λ)xnj
+ λTµxnj

, j ≥ 0,

converges weakly to a certain p0, then p0 is a fixed point of Tµ (and of Uλ = (1−λ)I+λTµ)
and hence of T and therefore p0 = p.

Suppose that {xnj}∞j=0 does not converge weakly to p.
Using the same arguments like in the proof of Theorem 2.2, we obtain that Uλ is non-

expansive and asymptotically regular, that is,

∥xnj
− Tµxnj

∥ → 0, as j → ∞.

On the other hand

∥xnj
− Uλp0∥ ≤ ∥Uλxnj

− Uλp0∥+ ∥xnj
− Uλxnj

∥

≤ ∥xnj − p0∥+ ∥xnj − Uλxnj∥,
which implies that

(3.13) lim sup
(
∥xnj

− Uλp0∥ − ∥xnj
− p0∥

)
≤ 0.
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Similarly to the proof of Theorem 2.2, we have

∥xnj − Uλp0∥2 = ∥(xnj − p0) + (p0 − Uλp0∥2

= ∥xnj
− p0∥2 + ∥p0 − Uλp0∥2 + 2⟨xnj

− p0, p0 − Uλp0⟩,

which, together with the fact that {xnj
} converges weakly to p0, implies

(3.14) lim
j→∞

[
∥xnj

− Uλp0∥2 − ∥xnj
− p0∥2

]
= ∥p0 − Uλp0∥2.

We also have

∥xnj
− Uλp0∥2 − ∥xnj

− p0∥2 =
(
∥xnj

− Uλp0∥ − ∥xnj
− p0∥

)
·

(3.15)
(
∥xnj − Uλp0∥+ ∥xnj − p0∥

)
.

Since C is bounded, the sequence {∥xnj
− Uλp0∥ + ∥xnj

− p0∥} is bounded, too, and
therefore by combining (3.13), (3.14) and (3.15), we get

∥p0 − Uλp0∥ = 0,

that is,

Uλp0 = p0,

which implies

p0 ∈ Fix (Uλ) = Fix (Tµ) = Fix (T ) = {p}.

□

Remark 3.4. 1) Theorem 3.3 is an extension of Theorem 7 in Browder and Petryshyn [27],
see also Theorem 3.3 in [11], by considering enriched nonexpansive mappings instead of
nonexpansive mappings.

2) The assumption Fix (T ) = {p} in Theorem 3.3 may be removed to obtain the follow-
ing more general result.

Theorem 3.4. Let C be a bounded closed convex subset of a Hilbert space H and T : C → C be an
enriched nonexpansive operator. Then, for any given x0 ∈ C and any fixed number λ, 0 < λ < 1,
the Krasnoselskij iteration {xn}∞n=0 given by (3.12) converges weakly to a fixed point of T .

Proof. By the arguments in the proof of Theorem 2.2, we have Fix (T ) = Fix (Tµ) ̸= ∅,
where, as usually, Tµx = (1 − µ)x + µTx. Moreover, by Theorem 2.2, Fix (Tµ) is convex.
Since Tµ is nonexpansive, for any p ∈ Fix (Tµ) and for each n we have

∥xn+1 − p∥ ≤ ∥xn − p∥, n ≥ 0,

which shows that the function

g(p) = lim
n→∞

∥xn − p∥, p ∈ Fix (Tµ),

is well defined and is a lower semicontinuous convex function on Fix (Tµ).
The rest of the proof is similar to that of Theorem 8 in Browder and Petryshyn [27] and

therefore is omitted. □
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4. CONCLUSIONS AND FURTHER STUDY

In this paper we introduced and studied the class of enriched nonexpansive mappings in
the setting of a Hilbert space H . We have shown that any enriched nonexpansive mapping
defined on a bounded, closed and convex subset C of H has fixed points in C and that the
set of all its fixed points is convex. In order to approximate a fixed point of an enriched
nonexpansive mapping, we used the Krasnoselskij iteration for which we have proven
a strong convergence result (Theorem 2.2) as well as two weak convergence theorems
(Theorems 3.3 and 3.4).

We illustrated the richness of the new class of mappings by means of Examples 2.1 and
Corollary 2.2. We conclude that all nonexpansive mappings are included in the class of
enriched nonexpansive mappings, which is also independent of that of quasinonexpan-
sive mappings (and which includes all nonexpansive mappings possessing fixed points).
Moreover, see the proof of Corollary 2.2, all Lipschitz and generalized pseudocontractive
mappings are also included in the class of enriched nonexpansive mappings. Note also that,
similarly to the case of nonexpansive mappings, any enriched nonexpansive mapping is
continuous.

Our results extend some convergence theorems in [27] from nonexpansive mappings to
enriched nonexpansive mappings and thus include many other important related results
from literature as particular cases, see [8], [9], [11], [26], [34], [55], [65], [71] etc.

For some other old and recent related developments related to nonexpansive type
mappings we refer to [1]-[16], [21]-[83] and references therein.

As mentioned in the Introduction, the study of nonexpansive mappings attracted a
large number of researchers who contributed significantly to the development of this
area of research. As a consequence, various single-valued and multi-valued self and
nonself mappings related to nonexpansive mappings were introduced and studied in-
dependently of in connection to nonexpansive mappings (see MathScinet or zbMATH):
quasi-nonexpansive mappings (see [40]), strictly quasi-nonexpansive mappings (see [76]),
firmly nonexpansive mappings (see [28]), asymptotically nonexpansive mappings (see
[46]), asymptotically quasi-nonexpansive mappings, generalized asymptotically nonex-
pansive mappings, generalized nonexpansive mappings (see [47]), α-nonexpansive map-
pings (see [4]), Suzuki nonexpansive mappings ([73]), Suzuki generalized nonexpansive
mappings ([42]), pseudocontractive mappings and strictly k-pseudocontractive mappings
(see [24]), k-demicontractive mappings ([61], [62], [50]), Bregman nonexpansive map-
pings, Bregman strongly nonexpansive mappings (see [69]), Bregman relatively nonex-
pansive mappings, affine nonexpansive mappings, weakly nonexpansive mappings ([15]),
Berinde nonexpansive mappings ([30]-[32]), Prešić nonexpansive mappings ([16]), Prešić-
Kannan nonexpansive mappings ([44]), nearly nonexpansive mappings (see [70]),
G-nonexpansive mappings, iterated nonexpansive mappings (see [38]), I-nonexpansive
mappings, Q-nonexpansive mappings, Φ-nonexpansive mappings, (L)-type mappings
(see [57]), non-spreading mappings (see [53]), hybrid mappings (see [74]), λ-hybrid map-
pings (see [3]) etc.

So, a challenging problem would be to establish the relationships between the class of
enriched nonexpansive mappings, on the one side, and most of the classes of nonexpansive-
type mappings mentioned above, on the other side, excepting of course nonexpansive
mappings and quasi-nonexpansive mappings, whose relations to enriched nonexpansive
mappings have been already established.
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[55] Krasnosel’skiǐ, M. A., Two remarks about the method of successive approximations. (Russian) Uspehi Mat. Nauk

(N.S.), 10 (1955), No. 1(63), 123–127
[56] Krasnoselski, M. A., Two remarks on the method of successive approximations (Romanian), Acad. R. P. Romı̂ne

An. Romı̂no-Soviet. Ser. Mat. Fiz. (3), 10 (1956), No. 2(17), 55–59
[57] Llorens-Fuster, E. and Moreno-Galvez, E., The fixed point theory for some generalized nonexpansive mappings,

Abstr. Appl. Anal., 2011, Art. ID 435686, 15 pp.
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