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Approximation of solutions of Hammerstein equations
with monotone mappings in real Banach spaces

C. E. CHIDUME, A. ADAMU and L. C. OKEREKE

ABSTRACT. Let E be a uniformly convex and uniformly smooth real Banach space with dual space, E∗.
Let F : E → E∗, K : E∗ → E be maximal monotone mappings. An iterative algorithm is constructed
and the sequence of the algorithm is proved to converge strongly to a solution of the Hammerstein equation
u+KFu = 0. This theorem is a significant improvement of some important recent results which were proved
in Lp spaces, 1 < p ≤ 2 under the assumption that F and K are bounded. This restriction on K and F have been
dispensed with even in the more general setting considered here. Finally, a numerical experiment is presented
to illustrate the convergence of the sequence of the algorithm which is found to be much faster, in terms of the
number of iterations and the computational time than the convergence obtained with existing algorithms.

1. INTRODUCTION

Let E be a real Banach space with a strictly convex dual space, E∗. Consider on E the
Hammerstein equation

(1.1) (I +KF )u = 0,

where, F : E → E∗ is a nonlinear mapping and K : E∗ → E is a linear map, such that
R(F ) ⊂ D(K). If Ω denotes a domain of σ-finite measure dy in RN , and κ : Ω×Ω → R and
f : Ω×R → R are measurable real-valued functions on Ω, one can define a linear integral

operator K by Kv :=

∫
Ω

κ(·, y)v(y)dy and an operator F by the Nemitskyi or superposition

operator given by Fu := f
(
·, u(·)

)
to obtain equation (1.1).

Numerous problems in differential equation, optimal control, automation and network
systems can, as a rule, be modeled as a Hammerstein equation (see, e.g., Pascali and
Sburlan [35]).

Several existence and uniqueness theorems have been proved for equations of Ham-
merstein type (see, e.g., Brezis and Browder [4, 5], Browder and Gupta [7], Chepanovich
[8], De Figueiredo and Gupta [24]).

Let A : D(A) ⊂ E → E be a mapping. A is called accretive if for each u, v ∈ D(A),
there exists j(u − v) ∈ J(u − v) such that ⟨Au − Av, j(u − v)⟩ ≥ 0, where J : E → 2E

∗

is the normalized duality map defined, for each x ∈ E, by J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ =
∥x∥∥x∗∥, ∥x∗∥ = ∥x∥}. The map A is called m-accretive if, it is accretive and, in addition,
the graph of A is not properly contained in the graph of any other accretive mapping.
In Hilbert spaces, accretive mappings are called monotone. The accretive mappings were
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introduced independently in 1967 by Browder [3] and Kato [30]. Interest in such map-
pings stems mainly from their firm connection with evolution equations (see e.g., Berinde
[2], Chidume [9], Gobel and Reich [27] and the references contained in them).

A mapping B : D(B) ⊂ E → E∗ is called monotone if for all x, y ∈ E, ⟨Bx−By, x−y⟩ ≥
0. The map B is called maximal monotone if, in addition, R(J + λB) is E∗, for all λ > 0.
Monotone mappings were studied in Hilbert spaces by Zarantonello [41], Minty [32], and
a host of other authors. Interest in such mappings stems from their usefulness in applica-
tions, (in particular, monotone mappings are useful in convex optimization problems see,
e.g., Chidume and Bello [19]).

In general, equations of Hammerstein type are nonlinear and thus, there is no closed
form solutions of such equations. Consequently, methods for approximating such equa-
tions are of interest. Several attempts have been made to approximate solutions of equa-
tions of Hammerstein type.

An early method was that used by Brezis and Browder [6] in a special case where one
of the operators is angle bounded (see e.g., Pascali and Sburlan, [35]). They proved strong
convergence of a suitable defined Galerking approximation to a solution of (1.1), (see e.g.,
Brezis and Browder [6]).

The first iterative methods for approximating solutions of Hammerstein equations, in
real Banach spaces more general than Hilbert spaces, as far as we know, were obtained by
Chidume and Zegeye [14] (see also Chidume [9], Chapter 13).

Let X be a real Banach space and F,K : X → X be accretive-type mappings. Let
E := X ×X . Then, defined T : E → E by T [u, v] = [Fu − v,Kv + u], for [u, v] ∈ E. We
note that T [u, v] = 0 ⇔ u solves (1.1) and v = Fu. With this, they were able to obtain
strong convergence of an iterative algorithm defined in the cartesian product space E to a
solution of the Hammerstein equation (1.1). Extensions of these early results of Chidume
and Zegeye [14] were obtained by several authors (see, e.g., Chidume and Zegeye [13, 15],
Chidume and Djitte [21, 22], Chidume and Ofoedu [12], Chidume and Shehu [10, 11, 20],
Zegeye and Molanza [42], Shehu [37], Minjibir and Mohammed [33] and the references
contained in them).

In 2013, Djitte and Sene [26] proved strong convergence theorem for the following ex-
plicit iterative algorithm in uniformly smooth real Banach spaces.

Theorem 1.1. Let E be a uniformly smooth real Banach space and K,F : E → E be bounded
and accretive mappings with R(F ) = D(K) = E. Let {un} and {vn} be sequences in E defined
iteratively from arbitrary points u1, v1 ∈ E as follows:

(1.2)

{
un+1 = un − λ2(Fun − vn)− λnθn(un − u1)

)
,

vn+1 = vn − λ2
n(Kvn + un)− λnθn(vn − v1)

)
,

where {λn} and {θn} are real sequences in (0, 1) satisfying some appropriate conditions. Suppose
that u+KFu = 0 has a solution u∗, then the sequence {un} converges to u∗.

In 2016, Chidume and Idu [16], proved strong convergence theorem for the following
explicit iterative algorithm in uniformly convex uniformly smooth real Banach spaces.

Theorem 1.2. Let E be a uniformly convex and uniformly smooth real Banach space and F :
E → E∗, K : E∗ → E be maximal monotone and bounded maps, respectively. For arbitrary
(u, v) ∈ E × E∗, define the sequences {un} and {vn} in E and E∗, respectively, by

(1.3)

{
un+1 = J−1

(
Jun − λn(Fun − vn)− λnθn(Jun − Ju)

)
, n ≥ 1,

vn+1 = J
(
J−1vn − λn(Kvn + un)− λnθn(J

−1vn − J−1v)
)
, n ≥ 1.
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Assume that the equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn}
converge strongly to u∗ and v∗, respectively, where u∗ is a solution of (1.1) with v∗ = Fu∗.

Recently, Uba et al. [40], introduced a new coupled iterative algorithm and proved the
following strong convergence theorem.

Theorem 1.3. Let E = Lp, 1 < p ≤ 2. Let F : E → E∗ and K : E∗ → E be monotone
and bounded maps. For (u0, v0) ∈ E × E∗, define the sequences {un} and {vn} in E and E∗,
respectively by

(1.4)

{
un+1 = J−1(Jun − αn(Fun − vn)− αnθnJun), n ≥ 0,

vn+1 = J(J−1vn − αn(Kvn + un)− αnθnJ
−1vn), n ≥ 0,

where {αn} and θn are acceptably paired sequences in (0, 1). Assume that the equation u+KFu =
0 has a solution. Then, the sequences {un} and {vn} converge strongly to u∗ and v∗, respectively,
where u∗ is the solution of u+KFu = 0 with v∗ = Fu∗.

It is our purpose in this paper to prove a significant improvement of Theorem 1.3. We
extend Theorem 1.3 to uniformly convex and uniformly smooth real Banach spaces and,
at the same time, dispense with the requirement in Theorem 1.3 that the mappings K
and F be bounded. In particular, our Theorem is applicable in Lp spaces, 1 < p < ∞,
thereby providing an iterative algorithm which converges strongly to a solution of the
Hammerstein equation (1.1) in Lp spaces, 1 < p < ∞, and without requiring that F and
K be bounded, as is imposed in Theorem 1.3. Furthermore, our theorem improves and
compliments Theorems 1.2 and 1.1 see Remark 4.5 below.

2. PRELIMINARIES

In this section, we present definitions of some terms, and results that will be needed in
the proof of our main theorem.

Definition 2.1. Let E be a smooth real Banach space. The Lyapounov functional ϕ : E ×
E → R is defined by

(2.5) ϕ(u, v) = ∥u∥2 − 2⟨u, Jv⟩+ ∥v∥2, ∀ u, v ∈ E.

It was introduced by Alber and has been studied by many authors (see, e.g., Alber [1];
Chidume et al. [17, 18]; Kamimura and Takahashi [29]; Nilsrakoo and Saejung [34]; and
the references contained in them). It is easy to see that from the definition of ϕ,

(2.6) (∥u∥ − ∥v∥)2 ≤ ϕ(u, v) ≤ (∥u∥+ ∥v∥)2,∀u, v ∈ E.

Definition 2.2. Let E be a normed linear space, consider the map W : E × E∗ → R
defined by W (u, u∗) = ∥u∥2 − 2⟨u, u∗⟩+ ∥u∗∥, ∀u ∈ E, u∗ ∈ E∗. Observe that W (u, u∗) =
ϕ(u, J−1u∗),∀u ∈ E, u∗ ∈ E∗.

Lemma 2.1 (Alber and Ryazantseva, [1]). Let E be a reflexive strictly convex and smooth
Banach space with E∗ as its dual. Then, for each u ∈ E and u∗, v∗ ∈ E∗, we have

W (u, u∗) + 2⟨J−1u∗ − u, v∗⟩ ≤ W (u, u∗ + v∗).(2.7)

Lemma 2.2 (Alber and Ryazantseva, [1]). Let E be a reflexive strictly convex and smooth
Banach space with dual space E∗. Let V : E × E → R be defined by V (u, v) = 1

2ϕ(v, u). Then,
∀u, v, s ∈ E,

V (u, v)− V (s, u) ≥ ⟨s− v, Ju− Js⟩, i.e., ϕ(v, u)− ϕ(u, s) ≥ 2⟨s− v, Ju− Js⟩,
and also, V (u, v) ≤ ⟨u− v, Ju− Jv⟩.
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Lemma 2.3 (Chidume and Idu, [16]). Let E be a smooth real Banach space with dual space E∗.
Let ϕ : E ×E → R be the Lyapounov functional. Then, ϕ(v, u) = ϕ(u, v)− ⟨u+ v, Ju− Jv⟩+
2(∥u∥2 − ∥v∥2), ∀u, v ∈ E.

Lemma 2.4 (Alber and Ryazantseva, [1]). Let E be a uniformly convex Banach space. Then,
for any r > 0 and any u, v ∈ E such that ∥u∥ ≤ r, ∥v∥ ≤ r, the following inequality holds:
⟨u− v, Ju− Jv⟩ ≥ (2L)−1δE(c

−1
2 ∥u− v∥), where c2 = 2max{1, r}, 1 < L < 1.7. Define

(2.8) D := 4rL sup
{
∥Ju− Jv∥ : ∥x∥ ≤ r, ∥y∥ ≤ r

}
+ 1.

Lemma 2.5 (Alber and Ryazantseva, [1]). Let E be a uniformly convex Banach space. Then,
for any r > 0 and any u, v ∈ E such that ∥u∥ ≤ r, ∥v∥ ≤ r, the following inequality holds:
⟨u− v, Ju− Jv⟩ ≥ (2L)−1δE∗(c−1

2 ∥Ju− Jv∥), where c2 = 2max{1, r}, 1 < L < 1.7.

Lemma 2.6 (Rockafellar, [39]; see also, Pascali and Sburlan, [35]). A monotone mapping
T : E → 2E

∗
is locally bounded at the interior points of its domain.

Lemma 2.7 (Reich, [36]). Let E∗ be a real strictly convex dual space with a Fréchet differentiable
norm, and let A be a maximal monotone operator from E to E∗ such that A−10 ̸= ∅. Let s ∈ E∗

be arbitrary but fixed. For each ρ > 0 there exists a unique uρ ∈ E such that Juρ + ρAuρ ∋ s.
Furthermore, uρ converges strongly to a unique point p ∈ A−10.

Corollary 2.1. From Lemma 2.7, setting ρn := 1
θn

, where θn → 0 as n → ∞, z = j(v) for some

j(v) ∈ J(v), v ∈ E, yn :=
(
j+ 1

θn
A
)−1

z, we obtain: Ayn = θn(j(v)−j(yn)), for some j(yn) ∈
J(yn). Furthermore, yn → y∗ ∈ A−10, where A : E → E∗ is maximal monotone (see, Chidume
and Idu, [16]).

Remark 2.1. Let r > 0 such that ∥v∥ ≤ r, ∥yn∥ ≤ r, for all n ≥ 1. The following estimates
will be needed in the sequel.

(2.9) ∥yn−1 − yn∥ ≤ c2δ
−1
E

(
θn−1 − θn

θn
D

)
,

(2.10) ∥Jyn−1 − Jyn∥ ≤ c2δ
−1
E∗

(
θn−1 − θn

θn
D

)
,

where D is the constant defined in equation (2.8) and δE denotes the modulus of convexity
of a normed space E (see, e.g., Lindenstrauss and Tzafriri [31], Chidume [9]), {yn} and
{θn} are as defined in Corollary 2.1 (see, Chidume and Idu, [16], Remark 1).

Lemma 2.8 (Kamimura and Takahashi, [29]). Let E be a uniformly convex and smooth real
Banach space, and let {un} and {vn} be two sequences of E. If either {un} or {vn} is bounded
and ϕ(un, vn) → 0 then ∥un − vn∥ → 0.

Lemma 2.9 (Xu, [38] ). Let {an} be a sequence of non-negative real numbers satisfying the
following relation:

(2.11) an+1 ≤ (1− σn)an + σnbn + cn, n ≥ 1,

where {σn}, {bn} and {cn} satisfy the conditions:

(i) {σn} ⊂ [0, 1],

∞∑
n=1

σn = ∞; (ii) lim sup
n→∞

bn ≤ 0; (iii) cn ≥ 0,

∞∑
n=1

cn < ∞.

Then, lim
n→∞

an = 0.

Lemma 2.10 (Chidume and Idu, [16]). Let X , Y be real uniformly convex and uniformly
smooth spaces. Then E = X × Y is uniformly convex and uniformly smooth.
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Lemma 2.11 (Chidume and Idu, [16]). Let E be a uniformly convex and uniformly smooth
real Banach Banach space and F : E → E∗,K : E∗ → E be maximal monotone. Define
A : E × E∗ → E∗ × E by A[u, v] = [Fu− v,Kv + u], ∀[u, v] ∈ E × E∗. Then, A is maximal
monotone.

Remark 2.2. The following estimates (see, Uba et al. [40], Remark 2) will be needed in the
sequel.

(2.12) Jyn +
1

θn
(Fyn − y∗n) = 0, ∀n ≥ 1, and

(2.13) J∗y
∗
n +

1

θn
(Ky∗n + yn) = 0, ∀n ≥ 1,

Remark 2.3. Let yn → u∗ and y∗n → v∗. From Lemma 2.7 we have that [yn, y∗n] converges
to a point in A−10. This implies that [u∗, v∗] ∈ A−10. Consequently, A[u∗, v∗] = 0, that is
Fu∗ − v∗ = 0 and Kv∗ + u∗ = 0. Hence, v∗ = Fu∗ and u∗ +KFu∗ = 0.

Definition 2.3. If A : E → 2E
∗

is monotone with 0 ∈ Int D(A), then A is quasi-bounded,
i.e., if for any M > 0 there exists C > 0 such that (y, v) ∈ G(A), ⟨y, v⟩ ≤ M∥y∥ and
∥y∥ ≤ M implies ∥v∥ ≤ C (see I. Cioranescu [23], p. 176).

Lemma 2.12. Let E be a real normed space with dual space E∗. Any monotone map A : D(A) ⊂
E → E∗ with 0 ∈ IntD(A) is quasi-bounded.

3. MAIN RESULT

In Theorem 3.4 below, the sequences {αn} and {θn} are in (0, 1) and are assumed to satisfy
the following conditions:

(i) δ−1
E (αnM0) ≤ θnγ0; αnM1 ≤ θnγ0,

(ii) δ−1
E∗ (αnM

∗
0 ) ≤ θnγ0; αnM

∗
1 ≤ θnγ0,

for all n ≥ 1 and for some constants, M0,M
∗
0 ,M1,M

∗
1 , γ0 > 0.

Theorem 3.4. Let E be a uniformly convex and uniformly smooth real Banach space. Let F :
E → E∗, K : E∗ → E be maximal monotone mappings. For u1 ∈ E, v1 ∈ E∗, define the
sequences {un} and {vn} in E and E∗, respectively by

un+1 = J−1
(
Jun − αn(Fun − vn)− αnθnJun

)
,(3.14)

vn+1 = J
(
J−1vn − αn(Kvn + un)− αnθnJ

−1vn

)
.(3.15)

Assume that the equation u +KFu = 0 has a solution u∗, with v∗ = Fu∗. Then, the sequences
{un} and {vn} are bounded.

Proof. To show that the sequences {un} and {vn} are bounded, set wn = (un, vn), w
∗ =

(u∗, v∗) ∈ W = E×E∗, where u∗ is a solution (1.1) with v∗ = Fu∗. Define Φ : W ×W → R
by Φ(w1, w2) = ϕ(u1, u2) + ϕ(v1, v2), where w1 = (u1, v1) and w2 = (u2, v2). Let W

be endowed with norm ∥(u, v)∥W =
(
∥u∥2E + ∥v∥2E∗

) 1
2

. It suffices to show that {wn} is
bounded. We show this by induction. Let w1 ∈ W . Then there exists r > 0 such that
∥w∗∥W ≤ r

4 and Φ(w∗, w1) ≤ r
4 . Let B :=

{
w = (u, v) ∈ W : Φ(w∗, w) ≤ r

}
. It suffices

to show that Φ(w∗, wn) ≤ r, for all n ≥ 1. Let w ∈ B and θ ∈ (0, 1). Then, Φ(w∗, w) ≤
r i.e., ϕ(u∗, u) + ϕ(v∗, v) ≤ r.Therefore, ϕ(u∗, u) ≤ r and ϕ(v∗, v) ≤ r. Now, using
inequality (2.6), ϕ(u∗, u) ≤ r ⇒ ∥u∥ ≤ ∥u∗∥ +

√
r. Since F is also locally bounded

at u, there exists k1 > 0 such that ⟨u, Fu⟩ ≤ k1∥u∥. Define σ := max{k1, ∥u∗∥ +
√
r}.

Hence, ⟨u, Fu⟩ ≤ σ∥u∥ and ∥u∥ ≤ σ. By Lemma 2.12, F is quasi-bounded. Thus, there
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exists τ1 > 0 such that ∥Fu∥ ≤ τ1, ∀(u, v) ∈ B. Similarly, there exists τ2 > 0 such that
∥Kv∥ ≤ τ2, ∀(u, v) ∈ B. Define:

M1 = sup
{
∥Fu− v + θJu∥

}
+ 1; M2 = sup

{
∥u− u∗∥

}
+ 1;

M∗
1 = sup

{
∥Kv + u+ θJ−1v∥

}
+ 1; M∗

2 = sup
{
∥v − v∗∥

}
+ 1;

Let M := max
{
c2M1, c2M

∗
1 ,M2,M

∗
2

}
, γ0 := min

{
1, r

16M

}
. Then, for n = 1, by construc-

tion Φ(w∗, w1) ≤ r. Assume Φ(w∗, wn) ≤ r, for some n ≥ 1, i.e., ϕ(u∗, un) + ϕ(v∗, vn) ≤
r, for some n ≥ 1. We show that Φ(w∗, wn+1) ≤ r. For contradiction, suppose r <

Φ(w∗, wn+1). Observe that ∥un+1 − un∥ = ∥J−1
(
Jun − αn(Fun − vn) − αnθnJun

)
−

J−1(Jun)∥. Now, using Lemma 2.4 and recurrence relation (3.14), we have

(2L)−1δE(c
−1
2 ∥un+1 − un∥) ≤ ⟨Jun+1 − Jun, un+1 − un⟩

≤ ∥Jun+1 − Jun∥∥un+1 − un∥ ≤ αnM1∥un+1 − un∥.

(3.16) Thus, ∥un+1 − un∥ ≤ c2δ
−1
E (αnM0), for some M0 > 0.

Similarly, using Lemma 2.4 and recurrence relation (3.15), we obtain

(3.17) ∥vn+1 − vn∥ ≤ c2δ
−1
E∗ (αnM

∗
0 ), for some M∗

0 > 0.

Now, using recurrence relation (3.14), Lemma 2.1, and inequality (3.16), we have

ϕ(u∗, un+1) = V (u∗, Jun − αn(Fun − vn)− αnθnJun)

≤ V (u∗, Jun)− 2⟨un+1 − u∗, αn(Fun − vn) + αnθnJun⟩(3.18)

= ϕ(u∗, un)− 2αn⟨un − u∗, Fun − vn + θnJun⟩
− 2αn⟨un+1 − un, Fun − vn + θnJun⟩

≤ ϕ(u∗, un)− 2αn⟨un − u∗, Fun − vn + θnJun⟩
+ 2αn∥un+1 − un∥∥Fun − vn + θnJun∥

≤ ϕ(u∗, un)− 2αn⟨un − u∗, Fun − vn + θnJun⟩+ 2αnc2M1δ
−1
E (αnM0).

Observe that by monotonicity of F and the fact that v∗ = Fu∗, we have ⟨un − u∗, Fun −
vn + θnJun⟩ ≥ ⟨un − u∗, v∗ − vn + θnJun⟩. Thus, substituting this in inequality (3.18), we
have

ϕ(u∗, un+1) ≤ ϕ(u∗, un)− 2αn⟨un − u∗, v∗ − vn + θnJun⟩+ 2αnc2M1δ
−1
E (αnM0)

= ϕ(u∗, un)− 2αn⟨un − u∗, v∗ − vn⟩ − 2αnθn⟨un − u∗, Jun − Jun+1⟩
− 2αnθn⟨un − u∗, Jun+1⟩+ 2αnc2M1δ

−1
E (αnM0)(3.19)

Using Lemma 2.2, we have −2αnθn⟨un − u∗, Jun+1⟩ ≤ αnθn∥u∗∥2 − αnθnϕ(u
∗, un+1).

Substituting this in inequality (3.19), we obtain

ϕ(u∗, un+1) ≤ ϕ(u∗, un)− 2αn⟨un − u∗, v∗ − vn⟩ − 2αnθn⟨un − u∗, Jun − Jun+1⟩
+ αnθn∥u∗∥2 − αnθnϕ(u

∗, un+1) + 2αnc2M1δ
−1
E (αnM0)(3.20)

≤ ϕ(u∗, un)− αnθnϕ(u
∗, un+1) + αnθn∥u∗∥2 + 2αnθn∥un − u∗∥∥Jun − Jun+1∥

+ 2αnc2M1δ
−1
E (αnM0)− 2αn⟨un − u∗, v∗ − vn⟩

≤ ϕ(u∗, un)− αnθnϕ(u
∗, un+1) + αnθn∥u∗∥2 + 2αnθnM2(αnM1)

+ 2αnc2M1δ
−1
E (αnM0)− 2αn⟨un − u∗, v∗ − vn⟩.
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Similarly, using recurrence relation (3.15), Lemma 2.1, inequality (3.17), monotonicity of
K, the fact that Kv∗ = −u∗ and Lemma 2.2, we obtain

ϕ(v∗, vn+1) ≤ ϕ(v∗, vn)− αnθnϕ(v
∗, vn+1) + αnθn∥v∗∥2 + 2αnθnM

∗
2 (αnM

∗
1 )

+ 2αnc2M1δ
−1
E (αnM

∗
0 )− 2αn⟨vn − v∗, un − u∗⟩.(3.21)

Thus, adding inequalities (3.20) and (3.21), we obtain

r < Φ(w∗, wn+1) = ϕ(u∗, un+1) + ϕ(v∗, vn+1)

≤ Φ(w∗, wn)− αnθnΦ(w
∗, wn+1) + αnθn∥w∗∥2W + 2αnθnM2(αnM1)

+ 2αnc2M1δ
−1
E (αnM0) + 2αnθnM

∗
2 (αnM

∗
1 ) + 2αnc2M1δ

−1
E (αnM

∗
0 )

≤ Φ(w∗, wn)− αnθnΦ(w
∗, wn+1) + αnθn∥w∗∥2W + 2αnθ

2
nM2γ0

+ 2αnθnγ0c2M1 + 2αnθ
2
nM

∗
2 γ0 + 2αnθnγ0c2M

∗
1

≤ Φ(w∗, wn)− αnθnΦ(w
∗, wn+1) + αnθn∥w∗∥2W + 2αnθnMγ0

+ 2αnθnMγ0 + 2αnθnMγ0 + 2αnθnMγ0

≤ r − αnθnr +
3

4
αnθnr = r − 1

4
αnθnr < r.

This is a contradiction. Hence, Φ(w∗, wn+1) ≤ r. Thus, Φ(w∗, wn) ≤ r, for all n ≥ 1.
Consequently, we have ϕ(u∗, un) ≤ r and ϕ(v∗, vn) ≤ r, for all n ≥ 1. Therefore, using
inequality (2.6), we deduce that {un} and {vn} are bounded. □

In Theorem 3.5 below, {αn} and {θn} are sequences in (0, 1) satisfying the following
conditions:

(i)
∑∞

n=1 αnθn = ∞, (ii) δ−1
E (αnM0) ≤ θ2nγ0, (iii) δ−1

E∗ (αnM
∗
0 ) ≤ θ2nγ0,

(iv) δ−1
E (ηn) → 0; δ−1

E∗ (ηn) → 0, (v)
δ−1
E (ηn)

αnθn
→ 0;

δ−1
E∗ (ηn)

αnθn
→ 0,

where ηn =
( θn−1−θn

θn
D
)
.

We now prove our main Theorem.

Theorem 3.5. Let E be a uniformly convex and uniformly smooth real Banach space. Let F :
E → E∗, K : E∗ → E be maximal monotone mappings. For u1 ∈ E, v1 ∈ E∗, define the
sequences {un} and {vn} in E and E∗, respectively by

(3.22)
un+1 = J−1

(
Jun − αn(Fun − vn)− αnθnJun

)
,

vn+1 = J
(
J−1vn − αn(Kvn + un)− αnθnJ

−1vn

)
,

where {αn} and {βn} are sequences in (0, 1) satisfying conditions (i)-(v). Assume that the equa-
tion u + KFu = 0 has a solution. Then, the sequences {un} and {vn} converge strongly to u∗

and v∗, respectively, where u∗ is a solution of u+KFu = 0 with v∗ = Fu∗.

Proof. Using Lemmas 2.1 and 2.3, we have

ϕ(yn, un+1) = V (yn, Jun − αn(Fun − vn)− αnθnJun)(3.23)

≤ V (yn, Jun)− 2αn⟨un+1 − yn, Fun − vn + θnJun⟩
= ϕ(un, yn)− 2⟨un + yn, Jun − Jyn⟩+ 2(∥un∥2 − ∥yn∥2)

− 2αn⟨un+1 − yn, Fun − vn + θnJun⟩
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Observe that

ϕ(un, yn) = V (un, Jyn) = V (un, Jyn−1 + Jyn − Jyn−1)

≤ V (un, Jyn−1)− 2⟨yn − un, Jyn−1 − Jyn⟩.

Thus, substituting this in inequality (3.23), and using Lemmas 2.3 and 2.2 we obtain

ϕ(yn, un+1) ≤ V (un, Jyn−1)− 2⟨yn − un, Jyn−1 − Jyn⟩ − 2⟨un + yn, Jun − Jyn⟩
+ 2(∥un∥2 − ∥yn∥2)− 2αn⟨un+1 − yn, Fun − vn + θnJun⟩(3.24)

= ϕ(yn−1, un) + 2⟨yn−1 + un, Jun − Jyn−1⟩+ 2(∥yn−1∥2 − ∥yn∥2)
− 2⟨yn − un, Jyn−1 − Jyn⟩ − 2⟨un + yn, Jun − Jyn⟩
− 2αn⟨un+1 − yn, Fun − vn⟩ − 2αnθn⟨un+1 − un, Jun⟩
− 2αnθn⟨un − yn−1, Jun − Jyn−1⟩ − 2αnθn⟨un − yn−1, Jyn−1⟩
− 2αnθn⟨yn−1 − yn, Jun⟩

≤ ϕ(yn−1, un) + 2⟨yn−1 + un, Jun − Jyn−1⟩+ 2(∥yn−1∥2 − ∥yn∥2)
− 2⟨yn − un, Jyn−1 − Jyn⟩ − 2⟨un + yn, Jun − Jyn⟩
− 2αn⟨un+1 − yn, Fun − vn⟩ − 2αnθn⟨un+1 − un, Jun⟩
− αnθnϕ(yn−1, un)− 2αnθn⟨un − yn−1, Jyn−1⟩ − 2αnθn⟨yn−1 − yn, Jun⟩

= (1− αnθn)ϕ(yn−1, un) + 2(∥yn−1∥2 − ∥yn∥2) + 2⟨yn−1 − yn, Jun − Jyn−1⟩
− 2⟨yn − un, Jyn−1 − Jyn⟩ − 2⟨un + yn, Jyn−1 − Jyn⟩

−2αn⟨un+1 − yn, Fun − vn⟩ − 2αnθn⟨un+1 − un, Jun⟩
−2αnθn⟨un − yn−1, Jyn−1⟩ − 2αnθn⟨yn−1 − yn, Jun⟩

We now estimate the underlined terms. Using equation (2.12) and the fact that F is mono-
tone, we obtain

−2αn⟨un+1 − yn, Fun − vn⟩ − 2αnθn⟨un − yn−1, Jyn−1⟩
= −2αn⟨un+1 − un, Fun − vn⟩ − 2αn⟨un − yn, Fun − vn⟩ − 2αnθn⟨yn − yn−1, Jyn−1⟩

− 2αnθn⟨un − yn, Jyn−1 − Jyn⟩+ 2αn⟨un − yn, Fyn − y∗n⟩
≤ −2αn⟨un+1 − un, Fun − vn⟩ − 2αnθn⟨yn − yn−1, Jyn−1⟩

− 2αnθn⟨un − yn, Jyn−1 − Jyn⟩+ 2αn⟨un − yn, vn − y∗n⟩.

Thus, substituting this in inequality (3.24), and using inequalities (2.9), (2.10) and (3.16),
we obtain

ϕ(yn, un+1) ≤ (1− αnθn)ϕ(yn−1, un) + 2(∥yn−1∥2 − ∥yn∥2) + 2⟨yn−1 − yn, Jun − Jyn−1⟩
− 2⟨yn − un, Jyn−1 − Jyn⟩ − 2⟨un + yn, Jyn−1 − Jyn⟩(3.25)

− 2αnθn⟨un+1 − un, Jun⟩ − 2αnθn⟨yn−1 − yn, Jun⟩
− 2αnθn⟨yn − yn−1, Jyn−1⟩ − 2αnθn⟨un − yn, Jyn−1 − Jyn⟩
− 2αn⟨un+1 − un, Fun − vn⟩+ 2αn⟨un − yn, vn − y∗n⟩

≤ (1− αnθn)ϕ(yn−1, un) + 2N1(∥yn−1 − yn∥+ ∥Jyn−1 − Jyn∥)
+ 2αnθnN2(∥un+1 − un∥+ ∥yn−1 − yn∥+ ∥Jyn−1 − Jyn∥)
+ 2αnN3∥un+1 − un∥+ 2αn⟨un − yn, vn − y∗n⟩
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≤ (1− αnθn)ϕ(yn−1, un) + 2N1

(
c2δ

−1
E (ηn) + c2δ

−1
E∗ (ηn)

)
+ 2αnθnN2

(
c2δ

−1
E

(
αnM0

)
+ c2δ

−1
E (ηn) + c2δ

−1
E∗ (ηn)

)
+ 2αnN3c2δ

−1
E (αnM0) + 2αn⟨un − yn, vn − y∗n⟩

≤ (1−αnθn)ϕ(yn−1, un) +αnθnN̂

(
c2δ

−1
E

(
αnM0

)
+c2δ

−1
E (ηn)+c2δ

−1
E∗ (ηn)

+ θnc2γ0 + c2δ
−1
E

( ηn
αnθn

)
+ c2δ

−1
E∗

( ηn
αnθn

))
+ 2αn⟨un − yn, vn − y∗n⟩,

for some N1, N2, N3 > 0, and N̂ = max{N1, N2, N3}. Similarly, using Lemmas 2.1, 2.3 and
2.2, equation (2.13), we obtain

ϕ(y∗n, vn+1) ≤ (1− αnθn)ϕ(y
∗
n−1, vn) + 2(∥y∗n−1∥2 − ∥y∗n∥2) + 2⟨y∗n−1 − y∗n, J

−1vn − J−1yn−1⟩
+2⟨y∗n + vn, J

−1yn − J−1y∗n−1⟩ − 2⟨y∗n − vn, J
−1y∗n−1 − J−1y∗n⟩

−2αnθn⟨vn+1 − vn, J
−1vn⟩ − 2αnθn⟨y∗n−1 − y∗n, J

−1vn⟩ − 2αnθn⟨y∗n − y∗n−1, J
−1y∗n−1⟩

−2αnθn⟨vn − y∗n, J
−1yn−1 − J−1y∗n⟩ − 2αn⟨vn+1 − vn,Kvn + un⟩+ 2αn⟨vn − y∗n, yn − un⟩.

Thus, using inequalities (2.9), (2.10) and (3.17), we obtain

ϕ(y∗n, vn+1) ≤ (1− αnθn)ϕ(y
∗
n−1, vn) + αnθnN̂

∗
(
c2δ

−1
E∗ (αnM

∗
0 ) + c2δ

−1
E∗ (ηn) + c2δ

−1
E (ηn)

+ θnc2γ0 + c2δ
−1
E∗

( ηn
αnθn

)
+ c2δ

−1
E

( ηn
αnθn

))
+ 2αn⟨vn − y∗n, yn − un⟩,(3.26)

for some N̂∗ > 0. Let pn = (yn, y
∗
n), adding inequalities (3.25) and (3.26) we obtain

Φ(pn, wn+1) ≤ (1− αnθn)Φ(pn−1, wn) + αnθnN

(
c2δ

−1
E

(
αnM0

)
+ 2c2δ

−1
E (ηn) + 2c2δ

−1
E∗ (ηn)

+ 2θnc2γ0 + 2c2δ
−1
E

( ηn
αnθn

)
+ 2c2δ

−1
E∗

( ηn
αnθn

)
+ c2δ

−1
E∗ (αnM

∗
0 )

)
,(3.27)

where N = max{N̂ , N̂∗}. Now, setting an = Φ(pn−1, wn); σn = αnβn; cn ≡ 0 and

bn :=N

(
c2δ

−1
E

(
αnM0

)
+ 2c2δ

−1
E (ηn) + 2c2δ

−1
E∗ (ηn) + 2θnc2γ0 + 2c2δ

−1
E

( ηn
αnθn

)
+ 2c2δ

−1
E∗

( ηn
αnθn

)
+ c2δ

−1
E∗ (αnM

∗
0 )

)
,

inequality (3.27) becomes an+1 ≤ (1 − σn)an + σnbn + cn, n ≥ 1. It follows from Lemma
2.9 that Φ(pn−1, wn) → 0, as n → ∞. By Lemma 2.8, we have ∥wn − pn−1∥W → 0.
Consequently, ∥un−yn−1∥ → 0. Furthermore, using Remark 2.3, since [yn, y∗n] → [u∗, v∗] ∈
A−10, we have that {un} converges to a solution of the Hammerstein equation (1.1) with
v∗ = Fu∗. This completes the proof. □

Remark 3.4. Real sequences that satisfy the hypothesis of above theorem are αn=(n+1)−a

and θn = (n+ 1)−b with 0 < b < a and a+ b < 1.

4. NUMERICAL ILLUSTRATION

In this section, we present a numerical example to compare the convergence of a sequence
generated algorithms (1.3) and (1.2), and our algorithm, algorithm (3.22).
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Example 4.1. In Theorems 1.2, 1.1 and 3.5 set E = R2, E∗ = R2,

Fu = (u1 + u2 + sinu1,−u1 + u2 + sinu2), Kv = (v1 + v2, v1 + v2).

Then, it is easy to see that F and K are monotone and the vector u∗ = (0, 0) is the only
solution of the equation u +KFu = 0. In algorithms (1.3) and (3.22), we take αn = λn =

1

(n+1)
1
4
, θn = 1

(n+1)
1
5
, n = 1, 2, · · · , and in algorithm (1.2), we take αn = 1

(n+1)
1
2
, βn =

1

(n+1)
1
4
, n = 1, 2, · · · , as our parameters. Clearly, these parameters satisfy the hypothesis

of Theorems 1.2, 1.1 and 3.5, respectively. Choosing u1 = (1, 0), v1 = (1, 1), n = 5000 and
using a tolerance of 10−8 we obtain the following iterates. And in the graph below, y-axis
represents the values of ∥un+1−0∥ while the x-axis represents the number of iterations n.

Alg. (1.3) Alg. (1.2) Alg. (3.22)
CPU time 0.43 sec 0.49 sec 0.21 sec
No. iter. ∥uk+1∥ ∥uk+1∥ ∥uk+1∥

1 1.6817 1.4142 1.6817
10 1.2912 0.1825 1.2932
30 0.1811 0.1566 0.0008
52 0.1656 0.1385 8.8×10−9

5000 0.0703 0.0465 -

Remark 4.5. Observe that in this experiment and with the specified tolerance, the se-
quence of our iteration process converges after 52 iterations, whereas, after 5,000 iterations
the sequences of algorithms (1.3) and (1.2), with this given tolerance, are yet to converge.
From the results obtained, Algorithm (3.22) would, perhaps, be preferred to either Algo-
rithm (1.3) or Algorithm (1.2) in any possible application.
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