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Strong convergence of inertial subgradient extragradient
method for solving variational inequality in Banach space

A. R. KHAN1, G. C. UGWUNNADI2, Z. G. MAKUKULA3 and M. ABBAS4,5

ABSTRACT. In this paper, we introduce a modified inertial subgradient extragradient algorithm in a
2-uniformly convex and uniformly smooth real Banach space and prove a strong convergence theorem for ap-
proximating a common solution of fixed point equation with a demigeneralized mapping and a variational
inequality problem of a monotone and Lipschitz mapping. We present an example to validate our new findings.
This work substantially improves and generalizes some well-known results in the literature.

1. INTRODUCTION

Let E be a Banach space and ϕ : E × E → [0,∞) denotes the Lyapunov functional
defined as

ϕ(x, y) = ||x||2 − 2⟨x, Jy⟩+ ||y||2, ∀ x, y ∈ E.

The functional ϕ satisfies the following properties (see Nilsrakoo and Saejung [26]):

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩, ∀ x, y, z ∈ E, and(1.1)

ϕ(z, J−1(αJx+ (1− α)Jy)) ≤ αϕ(z, x) + (1− α)ϕ(z, y),(1.2)

where α ∈ (0, 1) and x, y ∈ E.

Remark 1.1. If E is strictly convex and smooth Banach space, then for x, y ∈ E, ϕ(x, y) =
0 if and only if x = y (See Remark 2.1 in [24]).

Let E be a reflexive, strictly convex and smooth Banach space and C a nonempty closed
and convex subset of E. Following Alber [1], for each x ∈ E, there exists a unique element
u ∈ C (denoted by ΠCx) such that ϕ(u, x) = min

y∈C
ϕ(y, x). The mapping ΠC : E → C,

defined by ΠCx = u is called the generalized projection operator (see [2]). Let T : C → E
be a mapping. Then T is said to be demiclosed at y ∈ C, if a sequence {xn} converges
weakly to x and the sequence {Txn} converges strongly to y, then T (x) = y. In particular,
if y = 0, then T is demiclosed at 0. A point p ∈ C is said to be a fixed point of T if
Tp = p,(see [17, 32]). We denote the set of fixed points of T by F (T ). A point p ∈ C is
called an asymptotic fixed point of T if there exists a sequence {xn} in C which converges
weakly to p and ||xn − Txn|| → 0 as n → ∞. The set of all asymptotic fixed points of T is
denoted by F̂ (T ).

Definition 1.1. A mapping T : C → E is said to be:
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(i) relative nonexapnsive (see [24]) if F (T ) ̸= ∅, F (T ) ̸= F̂ (T ) and

ϕ(p, Tx) ≤ ϕ(p, x), ∀ x ∈ C, p ∈ F (T ),

(ii) quasi-ϕ-strictly psudocontractive (see [34]) if F (T ) ̸= ∅ and there exists a constant
k ∈ [0, 1) such that

ϕ(p, Tx) ≤ ϕ(p, x) + kϕ(x, Tx), ∀ x ∈ C and p ∈ F (T ).(1.3)

Recently, Takahashi et al. [30] introduced a new mapping as follows: Let E be a smooth
Banch space and let J be the duality mapping on E. Let η and s be real numbers with
η ∈ (−∞, 1) and s ∈ [0,∞), respectively. Then a mapping U : C → E with F (U) ̸= ∅ is
called (η, s)−demigeneralized if, for any x ∈ C and q ∈ F (U), we have

2⟨x− q, Jx− JUx⟩ ≥ (1− η)ϕ(x, Ux) + sϕ(Ux, x);(1.4)

in particular, an (η, 0)−demigeneralized mapping satisfies

2⟨x− q, Jx− JUx⟩ ≥ (1− η)ϕ(x, Ux).(1.5)

We notice from (1.1) that

ϕ(p, Tx) = ϕ(p, x) + ϕ(x, Tx) + 2⟨p− x, Jx− JTx⟩.(1.6)

Combining (1.3) and (1.6), we obtain ϕ(p, x) + ϕ(x, Tx) + 2⟨p− x, Jx− JTx⟩ ≤ ϕ(p, x) +
kϕ(x, Tx), which implies 2⟨x−p, Jx−JTx⟩ ≥ (1−k)ϕ(x, Tx) holds ∀k ∈ (−∞, 1). Hence,
T in Definition 1.1(ii) is a (k, 0)−demigeneralized mapping in the sense of Takahashi et al.
[30]. Also by (1.5) and (1.6), every (0, 0)-demigeneralized mapping is relative nonexapn-
sive mapping in the sense of Definition 1.1(i). For more examples, see [30].
An operator A from C into E∗ (the dual of E) is said to be: (i) monotone if for all x, y ∈ C,
we have

⟨x− y,Ax−Ay⟩ ≥ 0,(1.7)

(ii) maximal monotone if A is monotone and the graph of A i.e. G(A) := {(x, y) ∈ E×E∗ :
y ∈ A(x)} is not properly contained in the graph of any other monotone operator. (iii) α-
inverse strongly monotone if there exists a positive real number α such that ⟨x − y,Ax −
Ay⟩ ≥ α||Ax−Ay||2, ∀ x, y ∈ C.
(iv) L-Lipschitz if ||Ax−Ay|| ≤ L||x− y||, holds for all x, y ∈ C and some L > 0.
The variational inequality problem with respect to the operator A is to find an element
u ∈ C such that:

⟨v − u,Au⟩ ≥ 0, ∀v ∈ C.(1.8)

As in [29], we denote the set of solutions of variational inequality problem by V I(C,A).
The problem of solving a variational inequality of the form (1.8) has been intensively
studied by many authors [3, 5, 6, 16, 19, 31]. The ideas and techniques of the variational
inequalities are being applied in a variety of diverse areas of sciences and proving to be
productive and innovative. Iterative methods for solving these problems have been pro-
posed and analyzed by many authors when A is monotone and Lipschitz (see, [11, 12]
and references therein).
In the case of real Hilbert space, Korpelevič [20] introduced extragradient method as fol-
lows: For x0 ∈ H; {

yn = PC(xn − τA(xn)),

xn+1 = PC(xn − τA(yn)),
(1.9)

where A is monotone and Lipschitz. Censor et al. [13] modified the method proposed
by Korpelevič [20] by replacing one of the projections with a projection onto a half-space.
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This subgradient extragradient method has received great attention in Hilbert spaces by
many authors (see [15, 21]). Now, in order to speed up rate of convergence of the iter-
ative algorithm, Polyak [27] studied the heavy ball method, an inertial extrapolation for
minimizing a smooth convex function as follows: For x0, x1 ∈ H;{

wn = xn + θn(xn − xn−1)

xn+1 = wn + λn∇h(xn), n ≥ 1
(1.10)

where θn ∈ [0, 1) and λn is a step-size parameter to be chosen sufficiently small. Here,
the inertial is represented by the term θn(xn − xn−1) which serves as a remarkable tool
for improving the performance of the algorithms and has some nice convergence proper-
ties. As a result of this, the study of inertial-type algorithms has attracted the attention of
several researchers (see for example [4, 8]). Recently, Thong and Hieu [31] combined the
inertial technique with the subgradient extragradient method and proposed an algorithm,
called inertial subgradient extragradient method. Under several appropriate conditions
imposed on parameters, they proved that the iterative scheme converges weakly to a so-
lution of a variational inequality in a Hilbert space.
In 2015, Nakajo [25] introduced the so called CQ method in a 2-uniformly convex and uni-
formly smooth real Banach space. He proved that the CQ algorithm converges strongly
to the nearest common solution of fixed point of relatively nonexpansive mapping and a
variational inequality problem.

Motivated by the work of Censor et al. [13], recently, Chidume and Nnakwe [18] pro-
posed Krasnoselkii-type subgradient extragradient algorithm and proved a weak con-
vergence theorem for obtaining a common element of solutions of variational inequal-
ity problem and common fixed points of a countable family of relatively nonexpansive
mappings in a uniformly smooth and 2-uniformly convex real Banach space. For similar
strong convergence results in Banach spaces, we refer the reader to Ansari and Rehan [7]
and Ceng at al. [9].

Motivated and inspired by the work of Thong and Hiew [31] and Chidume and Nnakwe
[18] , in this paper, we introduce a modified inertial subgradient extragradient algorithm
in a 2-uniformly convex and uniformly smooth real Banach space and prove a strong
convergence theorem for approximating a common solution of fixed point of a (k, 0)-
demigeneralized mapping and solution of variational inequality problem of a monotone
and Lipschitz mapping. We also present some important special cases of our main result.

2. PRELIMINARIES

Let E be a reflexive, strictly convex and smooth Banach space and J the duality map-
ping from E into E∗. Then J−1 (the duality mapping from E∗ into E) is single-valued,
one to one and onto. The following mapping is studied by Alber [1].

V (x, x∗) = ||x||2 − 2⟨x, x∗⟩+ ||x∗||2(2.11)

for all x ∈ E and x∗ ∈ E∗. From the definition of ϕ, we get V (x, x∗) = ϕ(x, J−1(x∗)) for
all x ∈ E and x∗ ∈ E∗. For each x ∈ E, the mapping g defined by g(x∗) = V (x, x∗) for all
x∗ ∈ E∗is a continuous, convex function from E∗ into R.

Lemma 2.1. [1] Let E be a reflexive, strictly convex and smooth Banach space and let V be as in
(2.11). Then

V (x, x∗) + 2⟨J−1 − x, y∗⟩ ≤ V (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.2. (see [23, 24]) Let C be a nonempty closed and convex subset of a smooth Banach
space E. Then u = ΠCx if and only if ⟨u− y, Jx− Ju⟩ ≥ 0,∀y ∈ C and x ∈ E.
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Lemma 2.3. [24] Let E be a uniformly convex and smooth Banach space and {un} and {vn} be
two sequences in E. If lim

n→∞
ϕ(un, vn) = 0 and either {un} or {vn} is bounded, then lim

n→∞
||un −

vn|| = 0.

Lemma 2.4. (Xu, [33]) Let E be a 2-uniformly convex and smooth real Banach space. Then, there
exists a positive constant α such that α||x− y||2 ≤ ϕ(x, y),∀x, y ∈ E.

Lemma 2.5. (Rockafellar, [28]) Let C be nonempty closed and convex subset of a reflexive Banach
space E and A a monotone, hemicontiuous map of C into E∗. Let T : E → 2E

∗
be an operator

defined by:

Tu =

{
Au+NC(u), u ∈ C
∅, u /∈ C,

where NC(u) is the normal cone at u ∈ C and is defined as follows:

NC(u) = {w∗ ∈ E∗ : ⟨u− z, w∗⟩ ≥ 0, ∀z ∈ C}.

Then T is maximal monotone and T−10 = V I(C,A).

Lemma 2.6. (Xu, [33]) Let E be a uniformly convex real Banach space. For arbitrary r > 0, let

Br(0) := {x ∈ E : ||x|| ≤ r}.

Then, for any given sequence {xn}∞n=1 ⊂ Br(0) and for any given sequence {λn}∞n=1 of positive
numbers such that

∑∞
n=1 λn = 1, there exists a continuous strictly increasing convex function

g : [0, 2r] → R,

such that g(0) = 0 and for any positive integers i, j with i < j, the following inequality holds:∥∥∥ ∞∑
n=1

λnxn

∥∥∥2 ≤
∞∑

n=1

λn||xn||2 − λiλjg(||xi − xj ||).(2.12)

Lemma 2.7. (Chidume and Nnakwe, [18]) Let E be a uniformly smooth and 2-uniformly con-
vex real Banach space and C be a nonempty closed and convex subset of E. Let A : E → E∗ be
monotone map and k-Lipschitz, τ be a positive number and suppose that V I(C,A) ̸= ∅. Let J be
the normalized duality map on E and let {xn} be a sequence in E defined by

x0 ∈ E;

yn = ΠCJ
−1(Jxn − τA(xn)),

Tn = {w ∈ E : ⟨w − yn, Jxn − τA(xn)− Jyn⟩ ≤ 0},
xn+1 = ΠTn

J−1(Jxn − τA(yn)).

Then for all u ∈ V I(C,A), we have

ϕ(u, xn+1) ≤ ϕ(u, xn)−
(
1− τk

α

)
(ϕ(yn, xn) + ϕ(xn+1, yn)).(2.13)

where τ < α
k , and α ∈ (0, 1) is the constant in Lemma 2.4.

Lemma 2.8. (Mainge, [22]) Let {an} be a sequence of real numbers such that there exists a sub-
sequence {ni} of {n} such that ani

< ani+1 for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all (suffi-
ciently large) numbers k ∈ N.

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.
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Lemma 2.9. (Chani and Riachi, [10]) Let {an}, {γn}, {δn}, and {tn} be sequences of nonneg-
ative real numbers satisfying the following relation:

an+1 ≤ (1− tn − γn)an + γnan−1 + tnsn + δn,

where
∑∞

n=n0
tn = +∞,

∑∞
n=n0

δn < +∞ for each n ≥ n0 (where n0 is a positive integer) and
{γn} ⊂ [0, 1

2 ], lim supn→∞ sn ≤ 0. Then, the sequence {an} converges to zero.

Lemma 2.10. (Takahashi et al., [30]) Let E be a smooth Banach space and C be a nonempty
closed and convex subset of E. Let η be a real number with η ∈ (−∞, 1) and s be a real number
with s ∈ [0,∞). Let U be an (η, s)−demigeneralized mapping of C into E. Then

(i) F (U) is closed and convex.
(ii) For any α ∈ [0, 1), let T = J−1(αJ +(1−α)JU), where J is the duality mapping on E.

If U is (η, 0)−demigeneralized mapping, then T : C → E is also (η, 0)−demigeneralized
mapping.

3. MAIN RESULTS

Lemma 3.11. Let E be a smooth Banach space and C a nonempty closed and convex subset of E.
Let k ∈ (−∞, 0] and T : C → E be a (k, 0)−demigeneralized mapping with F (T ) ̸= ∅. Let λ be
a real number in (0, 1] and define S = J−1((1− λ)J + λJT ), where J is the duality mapping on
E. Then

(i) F (T ) = F (S),
(ii) S is relatively-nonexpansive mapping of C into E.

Proof. It is easy to show that F (T ) = F (S). For (ii), since T is (k, 0)-demigeneralized,
therefore for any p ∈ F (T ) and x ∈ C, from (1.5), we obtain

⟨x− p, Jx− JSx⟩ = ⟨x− p, Jx− J(J−1((1− λ)Jx+ λJTx))⟩ = λ⟨x− p, Jx− JTx⟩

(3.14) ≥ λ
1− k

2
ϕ(x, Tx) ≥ λϕ(x, Tx).

By (1.2), we obtain

ϕ(x, Sx) = ϕ(x, J−1((1− λ)Jx+ JTx)) ≤ λϕ(x, Tx).

From (3.14) we obtain
2⟨x− p, Jx− JSx⟩ ≥ ϕ(x, Sx),

so it follows from (1.1), that

ϕ(p, x) + ϕ(x, Sx)− ϕ(p, Sx) ≥ ϕ(x, Sx)

which implies that
ϕ(p, Sx) ≤ ϕ(p, x).

Therefore S is a relatively nonexpansive mapping from C into E. We notice that if k ∈
(−∞, 1), then from (3.15), it follows that

2⟨x− p, Jx− JSx⟩ ≥ (1− k)ϕ(x, Sx),

which shows that S is (k, 0)−demigeneralized mapping (as in Lemma 2.10 (ii)).
□

Theorem 3.1. Let E be a uniformly smooth and 2-uniformly convex real Banach space with dual
space E∗. Let C be a nonempty closed and convex subset of E and J be the normalized duality
mapping on E. Let T : C → E be a (k, 0)−demigeneralized mapping and demiclosed at zero with
k ∈ (−∞, 0]. Let A : C → E∗ be a monotone and L−Lipschits mapping with L > 0. Let τ be a
positive real number such that τ ∈

(
0, α

L

)
and α ∈ (0, 1) is the constant in Lemma 2.4. Assume
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F (T ) ∩ V I(C,A) ̸= ∅. For any fixed u ∈ E, let {xn}∞n=1 be the sequence defined iteratively by
arbitrarily chosen x0, x1 ∈ E:

wn = J−1(Jxn + δn(Jxn−1 − Jxn)),

yn = ΠCJ
−1(Jwn − τAwn),

Tn = {x ∈ E : ⟨x− yn, Jwn − τAwn − Jyn⟩ ≤ 0},
zn = ΠTn

J−1(Jwn − τAyn),

vn = J−1((1− λn)Jzn + λnJTzn),

xn+1 = J−1(αnJxn + βnJvn + γnJu), n ≥ 1

(3.15)

where {δn} ⊂ [0, 1
2 ], {αn}, {βn}, {γn} are sequences in (0, 1) such that αn + βn + γn = 1, and

{λn} ⊂ (0, 1) which satisfy the following conditions:
(C1) 0 < a ≤ δn < βn ≤ 1

2 , for all n ≥ 1,
(C2) lim

n→∞
γn = 0 and

∑∞
n=1 γn = +∞,

(C3) 0 < lim inf
n→∞

αn ≤ αn ≤ lim sup
n→∞

αn < 1.

Then {xn} converges strongly to p := ΠF (T )∩V I(C,A)u.

Proof. Let p ∈ F (T ) ∩ V I(C,G). By (3.15) and (2.13), we obtain

ϕ(p, zn) ≤ ϕ(p, wn)−
(
1− τk

α

)
(ϕ(yn, wn) + ϕ(zn, yn)).(3.16)

Also by (3.15) and (1.2), we obtain

ϕ(p, wn) = ϕ(p, J−1(Jxn + δn(Jxn−1 − Jxn)))

≤ (1− δn)ϕ(p, xn) + δnϕ(p, xn−1).(3.17)

Furthermore, as T is a (k, 0)−demigeneralized mapping, so Sn := J−1((1−λn)JI+λnJT )
is relatively-nonexpansive mapping and F (Sn) = F (T ) by Lemma 3.11. Therefore from
(3.15), we obtain

ϕ(p, vn) = ϕ(p, Snzn) ≤ ϕ(p, zn).(3.18)

Hence, by (3.15), (2.11), (3.16), (3.17), (3.18) and Lemma 2.6, we obtain

ϕ(p, xn+1) = ϕ(p, J−1(αnJxn + βnJvn + γnJu)) = V (p, αnJxn + βnJvn + γnJu)

= ||p||2 − 2⟨p, αnJxn + βnJvn + γnJu⟩+ ||αnJxn + βnJvn + γnJu||2

≤ (1− γn − βnδn)ϕ(p, xn) + βnδnϕ(p, xn−1) + γnϕ(p, u)− αnβng(||Jxn − Jvn||)

−
(
1− τk

α

)
(ϕ(yn, wn) + ϕ(zn, yn)) ≤ (1− γn − βnδn)ϕ(p, xn)

(3.19) +βnδnϕ(p, xn−1) + γnϕ(p, u) ≤ max{ϕ(p, xn), ϕ(p, xn−1), ϕ(p, u)}.

By induction, ϕ(p, xn) ≤ max{ϕ(p, x1), ϕ(p, x0), ϕ(p, u)}. Hence, {xn} is bounded. Thus
{vn}, {zn}, {yn}, {Tzn} and {wn} are also bounded. Therefore, by (3.19), we obtain

βnδng(||Jxn − Jvn||) +
(
1− τk

α

)
(ϕ(yn, wn) + ϕ(zn, yn))

≤ (ϕ(p, xn)− ϕ(p, xn−1)) + βnβn(ϕ(p, xn−1)− ϕ(p, xn)) + γnϕ(p, u).(3.20)

The remaining proof will be divided into two cases.
Case 1. Assume that {ϕ(p, xn)}∞n=1 is non-increasing sequence of real numbers. As ϕ(p, xn) ≤
D, for all n ≥ 1, where D := max{ϕ(p, x1), ϕ(p, x0), ϕ(p, u)}, so {ϕ(p, xn)}∞n=1 is bounded;
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thus its limit exists. Therefore lim
n→∞

(ϕ(p, xn)−ϕ(p, xn+1)) = lim
n→∞

(ϕ(p, xn−1)−ϕ(p, xn)) =

0. Since βnδn > 0 and
(
1− τk

α

)
> 0, therefore by (3.20) we obtain

lim
n→∞

ϕ(yn, wn) = lim
n→∞

ϕ(zn, yn) = lim
n→∞

g(||Jxn − Jvn||) = 0.

Thus, it follows by Lemma 2.3 and property of g in Lemma 2.6, respectively, that

(3.21) lim
n→∞

||yn − wn|| = lim
n→∞

||zn − yn|| = 0

and

(3.22) lim
n→∞

||Jxn − Jvn|| = 0.

As J is uniformly norm-to-norm continuous on bounded sets, so (3.21) becomes

(3.23) lim
n→∞

||Jyn − Jwn|| = lim
n→∞

||Jzn − Jyn|| = 0.

Also by (xn+1) in (3.15), it follows by (C2) and (3.22) that

lim
n→∞

||Jxn+1 − Jxn|| = 0.(3.24)

Since J−1 is uniformly norm-to-norm continuous on bounded sets, therefore we get

lim
n→∞

||xn+1 − xn|| = 0.(3.25)

By (3.15) and (3.24), we obtain

lim
n→∞

||Jwn − Jxn|| ≤ lim
n→∞

δn||Jxn−1 − Jxn|| = 0.(3.26)

It now follows by (3.22), (3.23) and (3.26) that

lim
n→∞

||Jzn − Jvn|| = 0.(3.27)

Also, by (3.22) and (3.27), we obtain

lim
n→∞

||Jxn − Jzn|| ≤ lim
n→∞

||Jxn − Jvn||+ lim
n→∞

||Jvn − Jzn|| = 0.

By the uniform continuity of J−1 on bounded sets, we get

lim
n→∞

||xn − zn|| = 0.(3.28)

Also (3.21) and (3.28) imply

lim
n→∞

||xn − yn|| ≤ lim
n→∞

||xn − zn||+ lim
n→∞

||zn − yn|| = 0.(3.29)

Since T is (k, 0)−demigeneralized and p ∈ F (T ), therefore by (vn) in (3.15) and (1.5),
we obtain

⟨zn − p, Jzn − Jvn⟩ = λn⟨zn − p, Jzn − JTzn ≥ λn
1− k

2
ϕ(zn, T zn).

Now k ≤ 0 and λn > 0 for all n ≥ 1 give λ(1− k) > 0 and so we get

ϕ(zn, T zn) ≤
2

λ(1− k)
||zn − p||||Jzn − Jvn||,

using the boundedness of {zn} and (3.27), we obtain lim
n→∞

ϕ(zn, T zn) = 0. Now by Lemma
2.3, we obtain

lim
n→∞

||zn − Tzn|| = 0.(3.30)

Furthermore, since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that
xnj converges weakly to z in E as j → ∞. By (3.28), we get znj converges weakly to z as
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j → ∞. By demiclosedness of T , we obtain from (3.30), that z ∈ F (T ).
Next, we show that z ∈ V I(C,A). Let U : E → 2E

∗
be defined by

Ux =

{
Ax+NC(x), x ∈ C
∅, x /∈ C,

where NCx is the normal cone at x ∈ C as defined in Lemma 2.5. The operator U is
maximal monotone and 0 ∈ Ux if and only x ∈ V I(C,A). It is known that if U is maximal
monotone, then for given (y, v∗) ∈ E × E∗ such that ⟨y − v, y∗ − v∗⟩ ≥ 0, ∀ (v, v∗) ∈
G(U), one has y∗ ∈ Uy. Let (x, q) ∈ G(U). We want to show that ⟨x − z, q⟩ ≥ 0. Now
(x, q) ∈ G(U) implies that q ∈ Ux = Ax + NCx which means q − Ax ∈ NCx. Thus
⟨x − v, q − Ax ≥ 0, ∀ v ∈ C. Since yn = ΠCJ

−1(Jwn − τAwn) and x ∈ C, we obtain by
Lemma 2.2 that

⟨yn − x, Jwn − τAwn − Jyn⟩ ≥ 0, that is,
〈
x− yn,

Jyn − Jwn

τ
+Awn

〉
≥ 0.

As yn ∈ C and q −Ax ∈ NCx, so we get ⟨x− ynj , q −Ax⟩ ≥ 0 which implies that

⟨x− ynj
, q⟩ ≥ ⟨x− ynj

, Ax⟩ ≥ ⟨x− ynj
, Ax−Aynj

⟩+ ⟨x− ynj
, Aynj

−Awnj
⟩

(3.31) −
〈
x− ynj

Jynj − Jwnj

τ

〉
≥ −kM ||wnj

− ynj
|| −M ||Jwnj

− Jwnj
||,

where M = max{||x− ynj ||, 1
τ } (note {ynj} is bounded). As xnj converges weakly to z, so

by (3.29), we get ynj
converges weakly to z as j → ∞. Then by (3.31), (3.21) and (3.23), we

obtain
⟨x− z, q⟩ ≥ 0.

As U is maximal monotone, we have z ∈ U−10 and so z ∈ V I(C,A). Therefore z ∈
F (T ) ∩ V I(C,A).
Finally, we show that xn converges strongly to p := ΠF (T )∩V I(C,A)u. Now lim sup

n→∞
⟨xn −

p, Ju − Jp⟩ = lim
j→∞

⟨xnj
− p, Ju − Jp⟩ = ⟨z − p, Ju − Jp⟩ and by Lemma 2.2, we have

⟨z − p, Ju− Jp⟩ ≤ 0 and hence

(3.32) lim sup
n→∞

⟨xn − p, Ju− Jp⟩ = ⟨z − p, Ju− Jp⟩ ≤ 0.

It follows from (3.24) and (3.32) that

lim sup
n→∞

⟨xn+1 − p, Ju− Jp⟩ ≤ 0.(3.33)

Now, by (3.15), (3.16), (3.17), (3.18) and Lemma 2.1, we obtain

ϕ(p, xn+1) = ϕ(p, J−1(αnJxn + βnJvn + γnJu)) = V (p, αnJxn + βnJvn + γnJu)

≤ V (p, αnJxn + βnJvn + γnJu− γn(Ju− Jp)) + 2γn⟨xn+1 − p, Ju− Jp⟩
≤ αnϕ(p, xn) + βn[(1− δn)ϕ(p, xn) + δnϕ(p, xn−1)] + 2γn⟨xn+1 − p, Ju− Jp⟩

= (1− γn − βnδn)ϕ(p, xn) + βnδnϕ(p, xn−1) + 2γn⟨xn+1 − p, Ju− Jp⟩.
Therefore

ϕ(p, xn+1) ≤ (1− γn − βnδn)ϕ(p, xn) + βnδnϕ(p, xn−1)

+2γn⟨xn+1 − p, Ju− Jp⟩.(3.34)

By Lemma 2.9 and (3.34), we obtain ϕ(p, xn) → 0 as n → ∞ which implies by Lemma 2.3
that ||xn − p|| → 0 as n → ∞. Hence xn → p := ΠF (T )∩V I(C,A)u.

Case 2. Assume that {ϕ(p, xn)}∞n=1 is non-decreasing sequence of real numbers. As in
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Lemma 2.8, set Γn := ϕ(p, xn) and let r : N → N be a mapping for all n ≥ n0 (for some n0

large enough), defined by

r(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Then, r is a non-decreasing sequence such that r(n) → ∞ as n → ∞. Thus

0 ≤ Γr(n) ≤ Γr(n)+1, ∀ n ≥ n0

which means that ϕ(p, xr(n)) ≤ ϕ(p, xr(n)+1), for all n ≥ n0. Since {ϕ(p, xr(n))} is bounded,
therefore lim

n→∞
ϕ(p, xr(n)) exists. Thus following the same line of action as in Case 1, we

can show that the following hold:

lim
n→∞

||yr(n) − wr(n)|| = lim
n→∞

||zr(n) − yr(n)|| = lim
n→∞

||vr(n) − xr(n)|| = 0

and
lim

n→∞
||xr(n+1) − xr(n)|| = lim

n→∞
||xr(n) − yr(r)|| = lim

n→∞
||vr(n) − xr(r)|| = 0.

Also lim
n→∞

||zr(n) − Tzr(n)|| = 0. Since {xr(n)} is bounded, there exists a subsequence of

{xr(n)}, still denoted by {xr(n)} such that xr(n) converges weakly to z as n → ∞. By an
argument similar to that in Case 1, we can show that z ∈ F (T ) ∩ V I(C,A) and

lim
n→∞

⟨xr(n)+1 − p, , Ju− Jp⟩ ≤ 0.(3.35)

Also, by (3.34), and Γr(n) ≤ Γr(n)+1, we get

ϕ(p, xr(n)) ≤ (1− γr(n) − βr(n)δr(n))ϕ(p, xr(n)) + βr(n)δr(n)ϕ(p, xr(n)−1)

+2γr(n)⟨xr(n)+1 − p, Ju− Jp⟩ ≤ (1− γr(n))ϕ(p, xr(n)+1) + 2γr(n)⟨xr(n)+1 − p, Ju− Jp⟩.
Therefore

(3.36) ϕ(p, xr(n)) ≤ ϕ(p, xr(n)+1) ≤ 2⟨xr(n)+1 − p, Ju− Jp⟩.

which implies by (3.35) lim sup
n→∞

ϕ(p, xr(n)) ≤ 0. Thus lim
n→∞

ϕ(p, xr(n)) = 0. Now by (3.36),

we have lim
n→∞

ϕ(p, xr(n)+1) = 0 and therefore lim
n→∞

Γr(n) = lim
n→∞

Γr(n)+1 = 0. For all n ≥ n0,

we have that Γr(n) ≤ Γr(n)+1 if n ̸= r(n) (that is, r(n) < n), because Γk+1 ≤ Γk for
r(n) ≤ k ≤ n. As a consequence, we get for all n ≥ n0

0 ≤ Γn ≤ max{Γr(n),Γr(n)+1} = Γr(n)+1.

So lim
n→∞

Γn = 0 gives that lim
n→∞

ϕ(p, xn) = 0, which implies that lim
n→∞

||p − xn|| = 0. Thus
xn → p := ΠF (T )∩V I(C,A)u. □

Since every relative nonexpansive mapping is (0, 0)-demigeneralized mapping, there-
fore the following result follows from Theorem 3.1.

Corollary 3.1. Let E be a uniformly smooth and 2-uniformly convex real Banach space with dual
space E∗. Let C be a nonempty closed and convex subset of E and J be the normalized duality
mapping on E. Let T : C → E be a relative nonexapnsive mapping and demiclosed at zero. Let
A, τ, {δn}, {αn}, {βn}, γn, u and {xn}∞n=1 be as in Theorem 3.1 with λn = 1,∀n ≥ 1. Then
{xn}∞n=1 converges strongly to a point ΠF (T )∩V I(C,A)u.

It is well known that generalized projection ΠC on a closed convex subset C of a Hilbert
space H coincides with the metric projection PC . A generalized hybrid mapping T : C →
H is (0, 0)-generalized mapping.Hence from Theorem 3.1, we obtain:
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Corollary 3.2. Let H be a real Hilbert space and C a nonempty closed and convex subset of H .
Let T : C → E be (α, β)-generalized hybrid mapping and demiclosed at zero where α, β ∈ R. Let
A : C → H , τ, {δn}, {αn}, {βn}, γn, u, {xn}∞n=1 be as in Theorem 3.1 with λn = 1,∀n ≥ 1
and the duality mapping J := I (the identity mapping of H). Then {xn}∞n=1 converges strongly
to a point ΠF (T )∩V I(C,A)u.

4. NUMERICAL EXAMPLE

Let E = R4 be the four-dimensional Euclidean space with the usual inner product

⟨x, y⟩ = x1y1 + x2y2 + x3y3 + x4y4,

where x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) ∈ R4 and usual norm

||x||2 = x2
1 + x2

2 + x2
3 + x2

4, ∀x = (x1, x2, x3, x4) ∈ R4.

Given a half-space C = {z ∈ R4 : ⟨u, z − w0⟩ ≤ 0} of R4, where u( ̸= 0) and w0 are two
fixed element of R4. Then for any x0 ∈ R4, we have

PCx0 =

{
x0 − ⟨u,x0−w0⟩

||u||2 u, ⟨u, x0 − w0⟩ > 0;
x0, ⟨u, x0 − w0⟩ ≤ 0.

Let Tx = − 2
3x. Then T is (−1/5, 0)-demigeneralized mapping and

Ax = (−2x3 + x2, x4 − x1, 2x1 − 2x4,−x2 +2x3) is monotone and 2
√
2-Lipschitz operator.

Let λn = 2n−1
6n , αn = 3n+1

6n , βn = 2n−1
4n , γn = 1

12n , and δn = 1
4 , ∀n ≥ 1. Now τ ∈ (0, α

L ) =

(0, α
2
√
2
), for α ∈ (0, 1), put α = 1

2 , so that we can take τ = 1
8 . All the conditions of Theorem

3.1 are satisfied. So by its conclusion, we have

wn = 1
4 (3xn − xn−1),

yn = PC(wn − 1
8Awn),

Tn = {x ∈ R4 : ⟨x− yn, wn − 1
8Awn − yn⟩ ≤ 0},

zn = PTn
(wn − 1

8Ayn),

vn = 8n+5
18n zn,

xn+1 = 3n+1
6n xn + 2n−1

4n vn + 1
12n , n ≥ 1.

(Case 1.) Take x0 = [−2,−3,−2, 3]T , x1 = [−1, 2,−1, 2]T and u = [−2, 1, 0.5,−0.7];
(Case 2.) Take x0 = [−1, 2,−1, 2]T , x1 = [−2,−3,−2, 3]T and u = [−2, 1, 0.5,−0.7]T ;
(Case 3.) Take x0 = [−2.5,−0.3,−2, 3]T , x1 = [1, 3, 0.10, 0.5]T and u = [−2.4, 0.3, 0.5,−0.7]T .

FIGURE 1. Errors vs number of iterations.

Remark 4.2.
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(i) Corollary 3.1 improves the main result of Nakajo [25] in the sense that in his al-
gorithm at each iteration three subsets of C, namely Cn, Qn and Cn ∩Qn need to
be computed while in our algorithm (3.15), these subsets have been replaced with
the half space Tn.

(ii) Corollary 3.1 generalizes, Theorem 3.1 of Thong and Hieu [31] from Hilbert space
setting to uniformly smooth and 2-uniformly convex real Banach space.

(iii) Corollary 3.2 improves and extends the results of Korpelevič [20] and Kraikaew
and Saejung [21] in the following aspects:
(a) it improves the result of Korpelevič [20] from weak convergence to strong

convergence and replaces one of the projections in the algorithm (1.9) by a
half-space.

(b) it extends the main theorem in [21] from quasi-nonexpansive mappings to
(α, β)-generalized hybrid mappings.

(iv) wn in our algorithm being a convex combination, substantially speeds up its rate
of convergence and reduces the computational cost. This makes a lot of difference
in comparison with the previously known subgradient extragradient or inertial
subgradient extragradient methods given in [13, 18, 31].

(v) We provided example to illustrate the convergence of our algorithm, with differ-
ent initial values of x0, x1 and u in Cases(1-3). Figure 1 shows that the algorithm
(3.15) converges to 0 quickly with less number of iterations.

Acknowledgement. The author A. R. Khan is grateful to King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia for supporting this research work.
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