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A nonsmooth Stackelberg equilibrium problem via mixed
variational inequalities
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ABSTRACT. In this paper, we introduce and study a class of nonsmooth Stackelberg equilibrium problems
with differential revenue functions and nonsmooth cost functions. First, we describe the best response set of the
follower and the best strategy set of the leader for the considered nonsmooth Stackelberg equilibrium problem
via mixed variational inequalities. Then, by using the resolvent operator method and the Banach fixed point
theorem, we show the existence and uniqueness of its solution.

1. INTRODUCTION

It is well known that Stackelberg equilibrium problems play an important role in the
study of economics, finance, risk management, design of mechanical structures, migration
problems, transportation, internet advertising, resources allocation, minimax mathemat-
ical programming and decision science (see, for example, [2, 7, 8, 16, 10, 12, 18, 19, 20]
and the references therein). Thus, it has caught much attention of a large number of re-
searchers in mathematics, economics and other disciplines. At earlier years, Murphy et
al. [14] studied an oligopolistic market equilibrium problem with differential cost func-
tions. After that, Agiza and Elsadany [1] considered a nonlinear duopoly game with
heterogeneous players and linear cost functions while Tomasz [5] discussed a hetero-
geneous duopoly game with differential cost functions. Recently, by employing varia-
tional inequality methods and fixed point arguments, Nagy [15] studied the existence
and location of solutions for a class of Stackelberg equilibrium problems with two play-
ers. Based on this, in 2018, Lu et al. [13] introduced and studied a class of Stackelberg
quasi-equilibrium problems with two players in finite dimensional spaces. They showed
the existence and location of solutions for the Stackelberg quasi-equilibrium problem by
employing the quasi-variational inequality techniques and the fixed point arguments.

It should be noticed that the cost functions of the problems considered in most above
mentioned references are assumed to be smooth. However, for the consideration of reality
in practice, the cost functions of some problems may not be smooth in general. Therefore,
based on this fact, it is necessary and important to study Stackelberg equilibrium prob-
lems involving nonsmooth cost functions, which are called nonsmooth Stackelberg equi-
librium problems as a generalization of the classic Stackelberg equilibrium problems. In
the present paper, we consider the following nonsmooth Stackelberg equilibrium problem
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(NSEP):

min
x∈Rn

f(x, y) + ϕ(x)

s.t. y ∈ argmin
y∈Rm

{g(x, y) + ψ(y)},

where f(x, y) and g(x, y): Rn × Rm → R are two differentiable functions, while ϕ(x) :
Rn → R and ψ(y): Rm → R are two convex and lower semi-continuous functions which
are not necessary differentiable in general.

Following the paper [15] by Nagy, for any given x ∈ Rn, we define the best response
set of the follower in (NSEP) as follows

RNSE(x) = {y∗ ∈ Rm : [g(x, y) + ψ(y)]− [g(x, y∗) + ψ(y∗)] ≥ 0, ∀y ∈ Rm}.

Assume that RNSE(x) ̸= ∅. Let r(x) be a selector of RNSE(x), that is, r(x) ∈ RNSE(x) for
all x ∈ Rn. Then, the best strategy set of the leader in (NSEP) can be defined by

SNSE = {x∗ ∈ Rn : [f(x, r(x)) + ϕ(x)]− [f(x∗, r(x∗)) + ϕ(x∗)] ≥ 0, ∀x ∈ Rn}.

In order to study the location of the points in the best response set of the follower, we
define a slightly larger set than the best response set of the follower in (NSEP) by means
of mixed variational inequality [11]. More precisely, with the C1 class functions f(x, y)
and g(x, y), and the convex functions ϕ(x) and ψ(y), we define the Stackelberg mixed
variational response set of the follower as follows

RSMV (x) =

{
y∗ ∈ Rm :

〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
+ ψ(y)− ψ(y∗) ≥ 0,∀y ∈ Rm

}
, x ∈ Rn,

where ⟨·, ·⟩ is the standard inner product in Rn. Assume that RSMV (x) ̸= ∅ and r(x) is a
selector of RSMV (x). If r(x) is a C1 class function, then the Stackelberg mixed variational
leader set can be defined by

SSMV =

{
x∗ ∈ Rn :

〈
∂f(x, r(x))

∂x

∣∣∣∣
x=x∗

, x− x∗
〉
+ ϕ(x)− ϕ(x∗) ≥ 0, ∀x ∈ Rn

}
.

We would like to remark that (NSEP) was studied by Nagy [15] via variational inequali-
ties and projections in the special case whenm = n = N , ϕ(x) = IK1

(x) and ψ(y) = IK2
(y)

with K1,K2 being two nonempty closed convex subsets of RN , and IK1
, IK2

being indica-
tor functions ofK1,K2, respectively. In recent years, various theoretical results, numerical
algorithms and applications to practical problems have been studied extensively by many
authors for the classical Stackelberg equilibrium problems in the literature (see, for exam-
ple, [4, 6, 9, 17] and the references therein). As mentioned above, the (NSEP) is a general-
ization of the Stackelberg equilibrium problem, in which the nonsmooth cost functions are
involved. The main purpose of this paper is to study some new existence theorems con-
cerning with solutions of (NSEP) by employing the mixed variational inequality method
and the Banach fixed point theorem.

The rest of this paper is organized as follows. In Section 2, with some known facts
on the resolvent operator technique for maximal operators, we present some properties
for the Stackelberg mixed variational response set and the Stackelberg mixed variational
leader set. Then, some suitable conditions are given in Section 3 to ensure the nonemp-
tyness of the Stackelberg mixed variational response set and the Stackelberg mixed varia-
tional leader set.
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2. PRELIMINARIES

In this section, we present some basic properties concerning with the Stackelberg mixed
variational response set and the Stackelberg mixed variational leader set for the non-
smooth Stackelberg equilibrium problem (NSEP).

Proposition 2.1. Let g be a function of class C1 and ψ be a proper convex lower semi-continuous
functional. Then, we have the following conclusions:

(a) RNSE(x) ⊆ RSMV (x) for every x ∈ Rn;
(b) if g(x, ·) is convex for some x ∈ Rn, then RNSE(x) = RSMV (x).

Proof. (a) For any y∗ ∈ RNSE(x), by the definition, one has

[g(x, y) + ψ(y)]− [g(x, y∗) + ψ(y∗)] ≥ 0, ∀y ∈ Rm.

This means that y∗ is a global minimum point for the function g(x, ·) + ψ(·). Since g is a
function of class C1 and ψ is a proper convex lower semi-continous functional, it follows
that 0 ∈ ∂g(x,y)

∂y

∣∣∣
y=y∗

+∂ψ(y∗), where ∂ψ denotes the subdifferential of ψ. By the definition

of the subdifferential, we have〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
+ ψ(y)− ψ(y∗) ≥ 0, ∀y ∈ Rm,(2.1)

which implies that y∗ ∈ RSMV (x) and thus RNSE(x) ⊆ RSMV (x).
(b) It is sufficient to show that RNSE(x) ⊇ RSMV (x). For any y∗ ∈ RSMV (x), we know

that (2.1) holds. Since g(x, ·) is convex and of class C1, it follows that

g(x, y)− g(x, y∗) ≥

〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
, ∀y ∈ Rm.(2.2)

Thus, by (2.1) and (2.2), we have

g(x, y)− g(x, y∗) + ψ(y)− ψ(y∗) ≥ 0, ∀y ∈ Rm

and thus y∗ ∈ RNSE(x). This completes the proof of Proposition 2.1. □

Remark 2.1. If m = n = N , ϕ(x) = IK1
(x) and ψ(y) = IK2

(y) with K1,K2 being two
nonempty closed convex subsets of RN , then Proposition 2.1 reduces to Proposition 2.1 of
[15].

With similar arguments as the proof for Proposition 2.1, we can show the following
result.

Proposition 2.2. Let f be a function of class C1 and ϕ be a proper convex lower semi-continuous
functional. Assume that x 7→ RSMV (x) is a single-valued function of classC1. Then the following
conclusions hold:

(a) SNSE ⊆ SSMV ;
(b) if f(·, RSMV (·)) is convex, then SNSE = SSMV .

Proof. (a). It follows from Proposition 2.1 (a) that RNSE(x) ⊆ RSMV (x) for all x ∈ Rn.
Since x 7→ RSMV (x) is single-valued, it follows that RNSE(x) = RSMV (x) and thus

r(x) = RNSE(x) = RSMV (x), ∀x ∈ Rn.

Let x∗ ∈ SNSE . Then, by definition, one has

[f(x, r(x)) + ϕ(x)]− [f(x∗, r(x∗)) + ϕ(x∗)] ≥ 0, ∀x ∈ Rn.
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This means that x∗ is a global minimum point for the function f(x, r(x)) + ϕ(x). Since
f and r(x) = RSMV (x) are functions of class C1 and ϕ is a proper convex lower semi-
continous functional, it follows that 0 ∈ ∂f(x,r(x))

∂x

∣∣∣
x=x∗

+ ∂ϕ(x∗), where ∂ϕ denotes the
subdifferential of ϕ. By the definition of the subdifferential, we have〈

∂f(x, r(x))

∂x

∣∣∣∣
x=x∗

, x− x∗
〉
+ ϕ(x)− ϕ(x∗) ≥ 0, ∀x ∈ Rn,(2.3)

which implies that x∗ ∈ SSMV and thus SNSE ⊆ SSMV .
(b). We only need to show that SSMV ⊆ SNSE . For x∗ ∈ SSMV , it follows that (2.3)

holds. Since f(·, RSMV (·)) is convex and of class C1, we know that f(·, r(·)) is convex and
of class C1. Thus,

f(x, r(x))− f(x∗, r(x∗)) ≥

〈
∂f(x, r(x))

∂x

∣∣∣∣
x=x∗,y=r(x∗)

, x− x∗

〉
, ∀x ∈ Rn.(2.4)

Now, it follows from (2.3) and (2.4) that

[f(x, r(x)) + ϕ(x)]− [f(x∗, r(x∗)) + ϕ(x∗)] ≥ 0, ∀x ∈ Rn

and thus x∗ ∈ SNSE . This completes the proof of Proposition 2.2. □

Remark 2.2. If m = n = N , ϕ(x) = IK1
(x) and ψ(y) = IK2

(y) with K1,K2 being two
nonempty closed convex subsets of RN , then Proposition 2.2 reduces to Proposition 2.3 of
[15].

We now recall some know facts on the resolvent operator technique for maximal oper-
ators, which can be found in [3].

Let T be a maximal monotone operator from Rn to 2R
n

, I be an identity operator from
Rn to Rn and ρ > 0 be a constant. Then it is well known that the resolvent operator of T ,
defined by JT (x) := (I + ρT )−1(x), is a single-valued operator. Moreover, the resolvent
operator JT is nonexpansive, i.e.,

∥JT (x)− JT (y)∥ ≤ ∥x− y∥, ∀x, y ∈ Rn.

Let φ : Rn → R ∪ {+∞} be a proper lower semi-continuous convex function. It is well
known that ∂φ is maximal monotone and (I+ρ∂φ)−1 is single-valued and nonexpansive.
Moreover,

x = (I + ρ∂φ)−1(z) ⇐⇒ ⟨x− z, y − x⟩+ ρφ(y)− ρφ(x) ≥ 0, ∀y ∈ Rn.(2.5)

We now turn to the follower’s Stackelberg mixed variational response set RSMV (x).
The element acts as a solution to a parametric mixed variational inequality problem: find
y∗ ∈ Rm such that〈

∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
+ ψ(y)− ψ(y∗) ≥ 0, ∀y ∈ Rm.

For any ρ > 0, we define a parametric operator Ax
ρ : Rm → Rm as follows:

Ax
ρ(y) = (I + ρ∂ψ)−1

[
y − ρ

∂g(x, y)

∂y

]
, ∀y ∈ Rm.

Thus, the fixed point set of the parametric operator Ax
ρ can be defined as follows:

FPSρ
A(x) =

{
y∗ : y∗ = (I + ρ∂ψ)−1

[
y∗ − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y∗

]}
, x ∈ Rn.

Now, with the above notations, we are in a position to present the following result.
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Proposition 2.3. Let g be a function of class C1 and ψ be a proper convex lower semi-continuous
functional. Then the following assertions are equivalent:

(i) y∗ ∈ RSMV (x);
(ii) y∗ ∈ FPSρ

A(x) for any ρ > 0;
(iii) y∗ ∈ FPSρ

A(x) for some ρ > 0.

Proof. (i) ⇒ (ii). If y∗ ∈ RSMV (x), then it is easy to see that〈
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
+ ψ(y)− ψ(y∗) ≥ 0.

For any ρ > 0, letting z = y∗ − ρ ∂g(x,y)
∂y

∣∣∣
y=y∗

, it follows from (2.5) that

⟨y∗ − z, y − y∗⟩+ ρψ(y)− ρψ(y∗) =

〈
ρ
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
+ ρψ(y)− ρψ(y∗) ≥ 0.

This shows that y∗ = (I + ρ∂ψ)−1(z) and thus

y∗ = (I + ρ∂ψ)−1

[
y∗ − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y∗

]
∈ FPSρ

A(x).

(ii) ⇒ (iii) It is obvious.
(iii) ⇒ (i). Suppose that y∗ ∈ FPSρ

A(x) for some ρ > 0. Then

y∗ = (I + ρ∂ψ)−1

[
y∗ − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y∗

]
.

Letting z = y∗ − ρ ∂g(x,y)
∂y

∣∣∣
y=y∗

, we know that y∗ = (I + ρ∂ψ)−1(z). It follows from (2.5)

that

0 ≤ ⟨y∗ − z, y − y∗⟩+ ρψ(y)− ρψ(y∗) =

〈
ρ
∂g(x, y)

∂y

∣∣∣∣
y=y∗

, y − y∗

〉
+ ρψ(y)− ρψ(y∗)

and thus y∗ ∈ RSMV (x). This completes the proof. □

Remark 2.3. If m = n = N , ϕ(x) = IK1
(x) and ψ(y) = IK2

(y) with K1,K2 being two
nonempty closed convex subsets of RN , then Proposition 2.3 reduces to Proposition 2.2 of
[15].

3. THE STACKELBERG MIXED VARIATIONAL RESPONSE/LEADER SET

We begin with the following existence result for the Stackelberg mixed variational re-
sponse set of the follower.

Theorem 3.1. Let g be a function of class C1 and ψ be a proper convex lower semi-continuous
functional. Assume that there exist two positive constants κg and Lg such that, for any x ∈ Rn

and y1, y2 ∈ Rm,〈
∂g(x, y)

∂y

∣∣∣∣
y=y1

− ∂g(x, y)

∂y

∣∣∣∣
y=y2

, y1 − y2

〉
≥ κg∥y1 − y2∥2(3.1)

and ∥∥∥∥∥ ∂g(x, y)∂y

∣∣∣∣
y=y1

− ∂g(x, y)

∂y

∣∣∣∣
y=y2

∥∥∥∥∥ ≤ Lg∥y1 − y2∥.(3.2)
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Then there exists a unique point y∗ ∈ Rm such that RSMV (x) = {y∗}. Moreover, both the
discrete dynamical system {

yk+1 = Ax
ρ(y

k), k ≥ 0,
y0 ∈ Rm(3.3)

and the continuous dynamical system{
dy
dt = Ax

ρ(y(t))− y(t),
y(0) = y0 ∈ Rm(3.4)

converge exponentially to y∗ for some appropriate values of ρ.

Proof. For any y1, y2 ∈ Rm, by the nonexpansiveness of the resolvent operator, it follows
from (3.1) and (3.2) that

∥Ax
ρ(y1)−Ax

ρ(y2)∥2

=

∥∥∥∥∥(I + ρ∂ψ)−1

[
y1 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y1

]
− (I + ρ∂ψ)−1

[
y2 − ρ

∂g(x, y)

∂y

∣∣∣∣
y=y2

]∥∥∥∥∥
2

≤ ∥y1 − y2∥2 − 2ρκg∥y1 − y2∥2 + ρ2L2
g∥y1 − y2∥2

= (1− 2ρκg + ρ2L2
g)∥y1 − y2∥2.

This shows that
∥Ax

ρ(y1)−Ax
ρ(y2)∥ ≤ h∥y1 − y2∥, ∀y1, y2 ∈ Rm

with 0 < h =
√
1− 2ρκg + ρ2L2

g . Fixing 0 < ρ <
2κg

L2
g

, we know that 0 < h < 1. Thus, by
the Banach fixed point theorem, the operator Ax

ρ admits a unique fixed point y∗ ∈ Rm.
Now we prove that the discrete dynamical system (3.3) converges exponentially to y∗.

In fact, since y∗ ∈ Rm is a fixed point of Ax
ρ , one has y∗ = Ax

ρ(y
∗). Thus, it follows from

(3.3) that

∥yk − y∗∥ = ∥Ax
ρ(y

k−1)−Ax
ρ(y

∗)∥ ≤ h∥yk−1 − y∗∥ ≤ · · · ≤ hk∥y0 − y∗∥,

which shows that yk converges exponentially to y∗ as k → ∞ due to 0 < h < 1.
Next we prove that the continuous dynamical system (3.4) converges exponentially to

y∗. In fact, the classical ODE shows that the system (3.4) has a solution in [0, T ). Suppose
that T <∞. We consider the following Lyapunov function

Lx(t) =
1

2
∥y(t)− y∗∥2 =

1

2
∥y(t)−Ax

ρ(y
∗)∥2.

Then, for a.e. t ∈ [0, T ), one has

d

dt
Lx(t) =

〈
y(t)− y∗,

dy

dt

〉
=

〈
y(t)− y∗, Ax

ρ(y(t))− y(t)
〉

= −∥y(t)− y∗∥2 +
〈
y(t)− y∗, Ax

ρ(y(t))−Ax
ρ(y

∗)
〉

≤ −∥y(t)− y∗∥2 + ∥y(t)− y∗∥∥Ax
ρ(y(t))−Ax

ρ(y
∗)∥

≤ (h− 1)∥y(t)− y∗∥2.

This shows that
d

dt
Lx(t) ≤ 2(h− 1)Lx(t), ∀t ∈ [0, T ).



A nonsmooth Stackelberg equilibrium problem via mixed variational inequalities 345

Thus, we have

d

dt

[
Lx(t)e

2(1−h)t
]
=

(
d

dt
Lx(t) + 2(1− h)Lx(t)

)
e2(1−h)t ≤ 0.

This means that the function t 7→ Lx(t)e
2(1−h)t is non-increasing and so Lx(t)e

2(1−h)t ≤
Lx(0) for all t ∈ [0, T ). In particular, the orbit t 7→ y(t) can be extended beyond T , which
contradicts the initial assumption. Thus, T = ∞. It follows that Lx(t) ≤ Lx(0)e

−2(1−h)t

for every t ≥ 0 and so ∥y(t) − y∗∥ ≤ ∥y(0) − y∗∥e−(1−h)t. Therefore, y(t) converges
exponentially to y∗. This completes the proof. □

Remark 3.4. If m = n = N , ϕ(x) = IK1
(x) and ψ(y) = IK2

(y) with K1,K2 being two
nonempty closed convex subsets of RN , then Theorem 3.1 reduces to Theorem 3.2 of [15].

With the existence theorem above, we can further prove the following property for the
Stackelberg mixed variational response set.

Theorem 3.2. Assume that all the assumptions in Theorem 3.1 hold. If∥∥∥∥∂g(x1, y)∂y
− ∂g(x2, y)

∂y

∥∥∥∥ ≤ L′
g∥x1 − x2∥, ∀x1, x2 ∈ Rn, y ∈ Rm,(3.5)

where L′
g > 0 is a constant, then

∥RSMV (x1)−RSMV (x2)∥ ≤ C∥x1 − x2∥, ∀x1, x2 ∈ Rn,

where

C =
ρL′

g

1−
√
1− 2ρκg + ρ2L2

g

.(3.6)

Proof. From Theorem 3.1, we know that RSMV (x) = {y∗}. For any x1, x2 ∈ Rn, let
y∗i = RSMV (xi) with i = 1, 2. Then, by the nonexpansiveness of the resolvent operator, it
follows from (3.1), (3.2) and (3.5) that

∥RSMV (x1)−RSMV (x2)∥ ≤

∥∥∥∥∥(y∗1 − y∗2)− ρ

[
∂g(x1, y)

∂y

∣∣∣∣
y=y∗

1

− ∂g(x2, y)

∂y

∣∣∣∣
y=y∗

2

]∥∥∥∥∥
≤

√
1− 2ρκg + ρ2L2

g∥y∗1 − y∗2∥+ ρL′
g∥x1 − x2∥.

In view of fact that 0 <
√
1− 2ρκg + ρ2L2

g < 1 when 0 < ρ <
2κg

L2
g

, we have

∥y∗1 − y∗2∥ ≤
ρL′

g

1−
√
1− 2ρκg + ρ2L2

g

∥x1 − x2∥

and so ∥RSMV (x1)−RSMV (x2)∥ ≤ C∥x1 − x2∥. This completes the proof. □

When the mapping x 7→ RSMV (x) is single-valued, we denote r(x) = RSMV (x). Next
we focus on the existence result for the Stackelberg mixed variational leader set. To this
end, we need the following assumptions.

Suppose that there exist constants κf > 0 and Lf > 0 such that, for any x1, x2 ∈ Rn,〈
∂f(x, r(x))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

, x1 − x2

〉
≥ κf∥x1 − x2∥2(3.7)
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and ∥∥∥∥∥ ∂f(x, r(x))∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

∥∥∥∥∥ ≤ Lf∥r(x1)− r(x2)∥.(3.8)

For any η > 0, we define an operator Bη : Rn → Rn as follows:

Bη(x) = (I + η∂ϕ)−1

[
x− η

∂f(x, r(x))

∂x

]
, x ∈ Rn.(3.9)

With the above assumptinos, we have the following result on the existence and unique-
ness for the Stackelberg mixed variational leader set.

Theorem 3.3. Assume that all the conditions in Theorem 3.1 hold. If conditions (3.5), (3.7) and
(3.8) are satisfied, then there exists a unique x∗ ∈ Rn such that SSMV = {x∗} and y∗ = r(x∗)
with RSMV (x

∗) = {y∗}.

Proof. By the nonexpansiveness of the resolvent operator (I+η∂ϕ)−1 and the operatorBη

defined by (3.9), for any x1, x2 ∈ Rn, we have

∥Bη(x1)−Bη(x2)∥ ≤

∥∥∥∥∥(x1 − x2)− η

[
∂f(x, r(x))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

]∥∥∥∥∥ .
It follows from (3.7) and (3.8) that∥∥∥∥∥(x1 − x2)− η

[
∂f(x, r(x))

∂x

∣∣∣∣
x=x1

− ∂f(x, r(x))

∂x

∣∣∣∣
x=x2

]∥∥∥∥∥
2

≤ ∥x1 − x2∥2 − 2ηκf∥x1 − x2∥2 + η2L2
f∥r(x1)− r(x2)∥2.

Since r(x) = RSMV (x), from Theorem 3.2, one has

∥Bη(x1)−Bη(x2)∥ ≤ ĥ∥x1 − x2∥, ∀x1, x2 ∈ Rn,

where ĥ =
√
1− 2ηκf + η2L2

fC
2. Choose η ∈ (0,

2κf

L2
fC

2 ), where C is defined by (3.6).

Then it is easy to see that Bη is a contractive mapping and thus the Banach fixed point
theorem yields that there exists a unique x∗ ∈ Rn such that x∗ = Bη(x

∗) which implies
that SSMV = {x∗}. Moreover, by Theorem 3.1, there exists a unique y∗ ∈ Rm such that
y∗ = r(x∗) with RSMV (x

∗) = {y∗}. This completes the proof of Theorem 3.3. □

Remark 3.5. Theorems 3.2 and 3.3 are new results which provide some sufficient condi-
tions for ensuring the Lipschitz continuity of RSMV and the nonemptyness of SSMV . We
would like to mention that the similar results were first given by Theorems 3.3 and 3.4 of
[13].
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