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A new forward-backward penalty scheme and its
convergence for solving monotone inclusion problems

NATTHAPHON ARTSAWANG1 and KASAMSUK UNGCHITTRAKOOL1,2

ABSTRACT. The purposes of this paper are to establish an alternative forward-backward method with penal-
ization terms called new forward-backward penalty method (NFBP) and to investigate the convergence behav-
ior of the new method via numerical experiment. It was proved that the proposed method (NFBP) converges in
norm to a zero point of the monotone inclusion problem involving the sum of a maximally monotone operator
and the normal cone of the set of zeros of another maximally monotone operator. Under the observation of some
appropriate choices for the available properties of the considered functions and scalars, we can generate a suit-
able method that weakly ergodic converges to a solution of the monotone inclusion problem. Further, we also
provide a numerical example to compare the new forward-backward penalty method with the algorithm intro-
duced by Attouch [Attouch, H., Czarnecki, M.-O. and Peypouquet, J., Coupling forward-backward with penalty
schemes and parallel splitting for constrained variational inequalities, SIAM J. Optim., 21 (2011), 1251—1274].

1. INTRODUCTION

Let H be a real Hilbert space with inner product and the corresponding norm be,
respectively, denoted by the notations ⟨·, ·⟩ and ∥ · ∥ =

√
⟨·, ·⟩. Let f : H → R :=

R ∪ {−∞,+∞} be proper convex lower semicontinuous. The following classical convex
optimization problem is as follows:

(1.1) min
x∈C

f(x),

where C is a nonempty closed convex subset of H.
Many problems in the real world, such as optimal control problems, economic model-

ings, computational chemistry and biology, data analysis, etc. can be formulated as the
problem (1.1) (see [8]).

Most well known algorithms to approximate the solution of (1.1) use the metric projec-
tion onto the constrained set C. However, in some situations such as set C is not simple
form, the projection cannot be easily implemented.

For instance, if we take H = Rn and C = {x ∈ Rn : Ax = b} where A is an m×n matrix
with m < n and b ∈ Rm, then it is not hard to verify that projC(x̂) = x̂−AT (AAT )

−1
(Ax̂−

b) where projC : Rn → C is the metric projection. However, the disadvantage of this way
is the complication in computing the term of inverse of matrix. On the other hand, if
g : Rn → R is defined by g(x) = 1

2∥Ax− b∥2 for all x ∈ Rn, then it is not hard to verify
that C = argmin g =

{
x ∈ Rn : 0 = ∇g(x) = AT (Ax− b)

}
, where the calculations are less

complicated than the calculations using the metric projection.
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As a results, Attouch et al. [5] proposed an algorithm concerning the gradient method
and exterior penalization scheme for constrained minimization of convex functions in-
stead of computing the metric projection onto constrained sets directly. However, if the
set C is a simple form then the metric projection has a closed form expression, it may
happen that the computation can be high-price.

It is worth mentioning that the consideration of convex optimization with the con-
strained function has been applied in several problems such as partial differential equa-
tion, signal and image processing, see [4, 5, 6, 9, 16, 19, 20, 30, 32] for more informaton
details. These advantages naturally motivate us to consider the particular structure of
the constrained set C = argmin g, which leads us to consider the following constrained
convex optimization problem:

(1.2) min
x∈argmin g

f(x),

where f : H → R is proper convex lower semicontinuous and g : H → R is (Fréchet) dif-
ferentiable on the space H. Assume that the solution set of the problem (1.2) is nonempty
and some qualifications in [10, Proposition 27.8] hold. Then, problem (1.2) is equivalent
to the following problem: find x ∈ H such that

(1.3) 0 ∈ ∂f(x) +Nargmin g(x).

Problem (Monotone Inclusion Problem (MIP)) Find x ∈ H such that

(1.4) 0 ∈ A(x) +N(zer(B))(x),

where, A : H ⇒ H is a maximally monotone operator and B : H → H is a cocoercive
operator with parameter ω > 0.

We let the set of all zeros of the operator B be denoted by zer(B) := {z ∈ H : 0 = B(z)}.
Note that if A = ∂f and B = ∇g, then the problem (1.3) is a special case of MIP (1.4).
The aim of this work is to employ the forward-backward penalty method to solve (1.4)

from [6] with a new inertial effect. We refer the reader to [1, 2, 3, 7, 11, 12, 13, 14, 15, 17,
18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31] for more intensive research efforts dedicated
to algorithms of inertial type. Inspired by the research works mentioned above, we wish
to develop the algorithm called a new forward-backward penalty algorithm (NFBP) for
solving (1.4) as follows:

(NFBP)


x1 ∈ H;

yn = JλnA(xn − λnβnB(xn))

xn+1 = yn + αn(yn − xn) for all n ≥ 1,

(1.5)

where {λn}∞n=1, {βn}∞n=1 and {αn}∞n=1 are sequences of positive parameters.
The proposed numerical scheme can be reduced to the algorithm investigated in [5]

which is called forward-backward method (FB) when αn = 0, ∀n ≥ 1.

2. NOTATIONS AND PRELIMINALIES

In this section, we recall some elements of convex analysis which are needed in the
sequel. Let A : H ⇒ H be a set-value operator. We denote domain of A by Dom(A) :=
{x ∈ H : Ax ̸= ∅}, the range of A by Ran(A) := {u ∈ H : ∃x ∈ H, u ∈ Ax}, and the graph
of A by gra(A) := {(x, u) ∈ H×H : u ∈ Ax}. The operator A is monotone if ⟨x−y, u−v⟩ ≥ 0
for all (x, u), (y, v) ∈ gra(A) and it is called maximally monotone if there exists no proper
monotone extension of the graph of A. The operator A is said to be ρ-strongly monotone
with modulus ρ > 0 if ⟨x− y, u− v⟩ ≥ ρ∥x− y∥2 for all (x, u), (y, v) ∈ gra(A). Moreover,
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if A is maximally monotone, then zer(A) is a nonempty closed convex set [10]. We refer
to [10] for characterization of its zeros, for a maximally monotone operator A, we have

x ∈ zer(A) ⇔ ⟨y − x, v⟩ ≥ 0 ∀(y, v) ∈ gra(A).

Furthermore, if A is maximally monotone and strongly monotone, then zer(A) is a single-
ton.

The resolvent of A, JA : H ⇒ H is defined by JA := (I + A)−1, where I is the identity
operator from H to H. If A is maximally monotone, the resolvent of A is a single-valued.
Let T : H → H be operator and let ω > 0. The operator T is said to be cocoercive (or inverse
strongly monotone) with parameter ω if ⟨x− y, Tx− Ty⟩ ≥ ω∥Tx− Ty∥2 for all x, y ∈ H.

Let A : H ⇒ H be monotone, the Fitzpatrick function of A, FA : H ×H → R, is defined
by FA(x, u) := sup

(y,v)∈gra(A)

{⟨y, u⟩+⟨x, v⟩−⟨y, v⟩} for all (x, u) ∈ gra(A) and FA is a convex

lower semicontinuous function. Notice that , if A is maximally monotone then proper and
FA(x, u) ≥ ⟨x, u⟩ for all (x, u) ∈ H ×H.

For a function h : H → R we denote its effective domain by Dom(h) = {x ∈ H : h(x) <
+∞} and say that h is proper, if Dom(h) ̸= ∅ and h(x) ̸= −∞ for all x ∈ H. The Fenchel
conjugate of h is h∗ : H → R, which is defined by

h∗(z) = sup
x∈H

{⟨z, x⟩ − h(x)} for all z ∈ H.

The subdifferential of h at x ∈ H, with h(x) ∈ R, is the set

∂h(x) := {v ∈ H : h(y)− h(x) ≥ ⟨v, y − x⟩ ∀y ∈ H}.

Notice that ∂h(x) := ∅, if h(x) ∈ {±∞}. We know that the subdifferential of a proper
convex lower semicontinuous function is a maximally monotone operator and hence

F∂h(x, u) ≤ h(x) + h∗(u) for all (x, u) ∈ H ×H.

For γ > 0 and x ∈ H, we denote the proximal point of parameter γ of a proper convex
lower semicontinuous function f at x by proxγf (x), which is the unique optimal solution
of the optimization problem

min
u∈H

f(u) + 1
2γ ∥u− x∥2.

Note that proxγf = Jγ∂f and it is a single-valued operator.
We will call the convex and differentiable function T : H → R has a Lipschitz contin-

uous gradient with Lipschitz constant LT > 0, if ∥∇T (x) − ∇T (y)∥ ≤ LT ∥x − y∥ for all
x, y ∈ H.

Let C ⊂ H be a nonempty closed convex set. The indicator function is defined as:

δC(x) =

{
0 if x ∈ C
+∞ otherwise.

The support function of C is defined as: σC(x) := supc∈C⟨x, c⟩ for all x ∈ H. The normal cone
C at a point x is

NC(x) :=

{
{x ∈ H : ⟨x, c− x⟩ ≤ 0 for all c ∈ C}, if x ∈ C
∅, otherwise.

We denote the range of NC by Ran(NC). Notice that δ∗C = σC . Moreover, it holds that
x ∈ NC(x) if and only if σC(x) = ⟨x, x⟩. Let {xn}∞n=1 be a sequence generated by (NFBP)
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(1.5) and {zn}∞n=1 be the sequence of weighted averages

(2.6) zn = 1
τn

n∑
k=1

λkxk, where τn =

n∑
k=1

λk.

3. TECHNICAL LEMMAS

In this section, we will carry out the convergence analysis for new gradient penalty
algoritm (NFBP) (1.5) which is settled by the following hypotheses.

Assumption 3.1. (I) The qualification condition zer(B) ∩ int Dom(A) ̸= ∅ holds.
(II) {λn} ∈ l2 \ l1, lim

n→∞
αn = 0 and 0 < lim inf

n→∞
λnβn ≤ lim sup

n→∞
λnβn < ω.

(III) For each p ∈ Ran(Nzer(B)), we have

+∞∑
n=1

λnβn

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

)]
< +∞.

We present some situations that satisfy the Assumption 3.1 as the following remark.

Remark 3.1. (i) Since A and Nzer(B) are maximal monotone and Assumption 3.1 (I),
we obtain that A + Nzer(B) is maximal monotone operator (see [10, Example 20.26
and Corollary 25.5]).

(ii) There are some examples satisfying Assumption 3.1 (II) e.g. sequences λn ∼ 1
n , βn ∼

n and αn ∼ 1
n for all n ∈ N.

(iii) Assumption 3.1 (III) has already been used in [11] in order to show the convergence
of the proposed algorithm (see [11, Assumption (Hfitz)]). They also pointed out

that for each p ∈ Ran(Nzer(B)) and any n ∈ N one has supx∗∈zer(B) FB

(
p
βn

, x∗
)
−

σzer(B)

(
p
βn

)
≥ 0. Some examples of the operator B satisfying Assumption 3.1 (III)

can be found in [9, Section 5].

Lemma 3.1 ([10], Lemma 2.12 and Corollary 2.15). Let x and y be in Hilbert space H and
α ∈ R. Then

(i) 2⟨x, y⟩ = ∥x∥2 + ∥y∥2 − ∥x− y∥2.
(ii) ∥αx+ (1− α)y∥2 + α(1− α)∥x− y∥2 = α∥x∥2 + (1− α)∥y∥2.

Let us denote an arbitrary sequence verifying (NFBP) (1.5) by {xn}∞n=1 and provide
some estimations.

Lemma 3.2. Let x∗ ∈ zer(B) ∩Dom(A) and v ∈ A(x∗). Then the following inequality holds
for each n ∈ N and ε ≥ 0

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 + (1 + αn)
(

2ε
1+ε

)
λnβn⟨B(xn), xn − x∗⟩

+ (1 + αn)
(

ε
1+ε − αn

)
∥yn − xn∥2

≤ (1 + αn)λnβn

(
(1 + ε)λnβn − 2ω

1+ε

)
∥B(xn)∥2 + 2(1 + αn)λn⟨v, x∗ − yn⟩.(3.7)

Proof. It is not hard to verify from (1.5) that for each n ∈ N, xn−yn

λn
−βnB(xn) ∈ A(yn). By

the monotonicity of A and v ∈ A(x∗),〈
xn−yn

λn
− βnB(xn)− v, yn − x∗

〉
≥ 0.
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It follows that

⟨xn − yn, x
∗ − yn⟩ ≤ λn⟨βnB(xn) + v, x∗ − yn⟩, for all n ∈ N.

From Lemma 3.1 (i), we obtain that for each n ∈ N

(3.8) ∥xn − yn∥2 + ∥x∗ − yn∥2 − ∥xn − x∗∥2 ≤ 2λn⟨βnB(xn) + v, x∗ − yn⟩,

which mean that

∥yn − x∗∥2 − ∥xn − x∗∥2 + ∥xn − yn∥2 ≤ 2λn⟨v, x∗ − yn⟩+ 2λnβn⟨B(xn), x
∗ − xn⟩

+ 2λnβn⟨B(xn), xn − yn⟩.(3.9)

Note that B is ω-cocoercive and B(x∗) = 0, we have

(3.10) 2λnβn⟨B(xn), x
∗ − xn⟩ ≤ −2ωλnβn∥B(xn)∥2

for all n ∈ N. From (3.10), we observe that

2λnβn⟨B(xn), x
∗ − xn⟩ = 1

1+ε2λnβn⟨B(xn), x
∗ − xn⟩+ ε

1+ε2λnβn⟨B(xn), x
∗ − xn⟩

≤ − 2ω
1+ελnβn∥B(xn)∥2 + 2ε

1+ελnβn⟨B(xn), x
∗ − xn⟩.(3.11)

For each n ∈ N, let us consider

0 ≤ 1
1+ε∥yn − xn + (1 + ε)λnβnB(xn)∥2 = 1

1+ε∥yn − xn∥2 + (1 + ε)λ2
nβ

2
n∥B(xn)∥2

+ 2λnβn⟨B(xn), yn − xn⟩,

which implies that

(3.12) 2λnβn⟨B(xn), xn − yn⟩ ≤ 1
1+ε∥yn − xn∥2 + (1 + ε)λ2

nβ
2
n∥B(xn)∥2.

Joining (3.11) and (3.12) to (3.9) together with some simple calculations, we have that

∥yn − x∗∥2 ≤ 2λn⟨v, x∗ − yn⟩+ 2ε
1+ελnβn⟨B(xn), x

∗ − xn⟩

+ λnβn

(
(1 + ε)λnβn − 2ω

1+ε

)
∥B(xn)∥2 + ∥xn − x∗∥2 − ε

1+ε∥yn − xn∥2.(3.13)

On the other hand, by using Lemma 3.1 (ii), we have the following equation

∥xn+1 − x∗∥2 = ∥yn + αn(yn − xn)− x∗∥2 = ∥(1 + αn)(yn − x∗)− αn(xn − x∗)∥2

= (1 + αn)∥yn − x∗∥2 − αn∥xn − x∗∥2 + αn(1 + αn)∥xn − yn∥2.(3.14)

Multiplying both sides of (3.13) by (1 + αn) and then connecting to (3.14), it yields that

∥xn+1 − x∗∥2 ≤ 2(1 + αn)λn⟨v, x∗ − yn⟩ − (1 + αn)
(

2ε
1+ε

)
λnβn⟨B(xn), xn − x∗⟩

+ (1 + αn)λnβn

(
(1 + ε)λnβn − 2ω

1+ε

)
∥B(xn)∥2 + (1 + αn)∥xn − x∗∥2

− (1 + αn)
(

ε
1+ε

)
∥yn − xn∥2 − αn∥xn − x∗∥2 + αn(1 + αn)∥xn − yn∥2

for all n ∈ N. This completes the proof. □

Lemma 3.3. Let (x∗, w) ∈ gra(A + Nzer(B)), v ∈ A(x∗) and p ∈ Nzer(B)(x
∗) be such that

w = v+ p. Suppose that lim sup
n→∞

λnβn < ω. Then there exist n ∈ N, ε0 > 0 and K > 0 such that

for each n ≥ n,

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 +
(

ε0
4(1+ε0)

)
∥yn − xn∥2

+
(

ε0λnβn

1+ε0

)
⟨B(xn), xn − x∗⟩+

(
ω

1+ε0

)
λnβn∥B(xn)∥2
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≤ (1+K)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2p(1+ε0)

ε0βn
, x∗

)
− σzer(B)

(
2p(1+ε0)

ε0βn

)]
+ 2(1 +K)λn⟨w, x∗ − xn⟩+ 2

(
2(1+ε0)

ε0

)
(1 +K)λ2

n∥v∥2.

Proof. Since lim sup
n→∞

λnβn < ω, there exists N0 ∈ N such that λnβn < ω for all n ≥ N0. So,

we can find ε0 ∈

0,
√

ω

lim sup
n→∞

λnβn
− 1

 and hence, (1+ ε0)λnβn < ω
1+ε0

for all n ≥ N0.

Note that αn → 0 as n → +∞, there exists N1 ∈ N such that αn < ε0
4(1+ε0)

for all n ≥ N1.

Choose n := max{N0, N1}. For each n ∈ N, by applying Lemma 3.1 (i), the following
inequality holds:

2(1 + αn)λn⟨v, x∗ − yn⟩ = 2(1 + αn)λn⟨v, x∗ − xn⟩+ 2(1 + αn)⟨λnv, xn − yn⟩

≤ 2(1 + αn)λn⟨v, x∗ − xn⟩+ 2(1 + αn)⟨
√

2(1+ε0)
ε0

λnv,
√

ε0
2(1+ε0)

(x∗ − xn)⟩(3.15)

≤ 2(1 + αn)λn⟨v, x∗ − xn⟩+ (1 + αn)
(

ε0
2(1+ε0)

)
∥yn − xn∥2

+ (1 + αn)
(

2(1+ε0)
ε0

)
λ2
n∥v∥2.

Combining (3.15) to (3.7), we obtain that for each n ≥ n,

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 + (1 + αn)
(

ε0
2(1+ε0)

− αn

)
∥yn − xn∥2

+ (1 + αn)
(

2ε0
1+ε0

)
λnβn⟨B(xn), xn − x∗⟩+ (1 + αn)

(
ω

1+ε0

)
λnβn∥B(xn)∥2(3.16)

≤ (1 + αn)λnβn

(
(1 + ε0)λnβn − ω

1+ε0

)
∥B(xn)∥2

+ (1 + αn)
(

2(1+ε0)
ε0

)
λ2
n∥v∥2 + 2(1 + αn)λn⟨v, x∗ − xn⟩.

From (3.16), we get that for each n ≥ n,

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 + (1 + αn)
(

ε0
4(1+ε0)

)
∥yn − xn∥2

+ (1 + αn)
(

2ε0
1+ε0

)
λnβn⟨B(xn), xn − x∗⟩+ (1 + αn)

(
ω

1+ε0

)
λnβn∥B(xn)∥2(3.17)

≤ 2(1 + αn)
(

2(1+ε0)
ε0

)
λ2
n∥v∥2 + 2(1 + αn)λn⟨v, x∗ − xn⟩.

Next, for each n ≥ n, we focus on the following terms of (3.17)

2(1 + αn)λn⟨v, x∗ − xn⟩ − (1+αn)ε0λnβn

1+ε0
⟨B(xn), xn − x∗⟩

= 2(1 + αn)λn⟨w − p, x∗ − xn⟩ − (1+αn)ε0λnβn

1+ε0
⟨B(xn), xn − x∗⟩(3.18)

= 2(1 + αn)λn⟨w, x∗ − xn⟩+ 2(1 + αn)λn⟨p, xn⟩

− (1+αn)ε0λnβn

1+ε0
⟨B(xn), xn − x∗⟩ − 2(1 + αn)λn⟨p, x∗⟩

= (1+αn)ε0λnβn

1+ε0

[〈
2(1+ε0)
ε0βn

p, xn

〉
+ ⟨B(xn), x

∗⟩

− ⟨B(xn), xn⟩ −
〈

2(1+ε0)
ε0βn

p, x∗
〉]

+ (1 + αn)2λn⟨w, x∗ − xn⟩

≤ (1+αn)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2(1+ε0)
ε0βn

p, x∗
)
−
〈

2(1+ε0)
ε0βn

p, x∗
〉]

+ 2(1 + αn)λn⟨w, x∗ − xn⟩.
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Since p ∈ Nzer(B)(x
∗), we have 2(1+ε0)

ε0βn
p ∈ Nzer(B)(x

∗) for all n ∈ N. It is equivalent to say

that σzer(B)

(
2(1+ε0)
ε0βn

p
)
=

〈
2(1+ε0)
ε0βn

p, x∗
〉

for all n ∈ N. It follows from (3.18) that

2(1 + αn)λn⟨v, x∗ − xn⟩ ≤ (1+αn)ε0λnβn

1+ε0
⟨B(xn), xn − x∗⟩

+ (1+αn)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2(1+ε0)
ε0βn

p, x∗
)

(3.19)

−σzer(B)

(
2(1+ε0)
ε0βn

p
)]

+ 2(1 + αn)λn⟨w, x∗ − xn⟩.

Combining (3.19) to (3.16), it appears the result that for each n ≥ n,

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 + (1 + αn)
(

ε0
4(1+ε0)

)
∥yn − xn∥2

+ (1+αn)ε0λnβn

1+ε0
⟨B(xn), xn − x∗⟩+ (1 + αn)

(
ω

1+ε0

)
λnβn∥B(xn)∥2

≤ (1+αn)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2(1+ε0)
ε0βn

p, x∗
)
− σzer(B)

(
2(1+ε0)
ε0βn

p
)]

+ 2(1 + αn)λn⟨w, x∗ − xn⟩+ 2
(

2(1+ε0)
ε0

)
(1 + αn)λ

2
n∥v∥2.

Note that the positive sequence {αn}∞n=1 is bounded, there exists K > 0 such that αn ≤ K
for all n ∈ N. Since ⟨B(xn), xn − x∗⟩ is nonnegative for all n ∈ N, we obtain that

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 +
(

ε0
4(1+ε0)

)
∥yn − xn∥2

+
(

ε0λnβn

1+ε0

)
⟨B(xn), xn − x∗⟩+

(
ω

1+ε0

)
λnβn∥B(xn)∥2

≤ (1+K)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2(1+ε0)
ε0βn

p, x∗
)
− σzer(B)

(
2(1+ε0)
ε0βn

p
)]

+ 2(1 +K)λn⟨w, x∗ − xn⟩+ 2
(

2(1+ε0)
ε0

)
(1 +K)λ2

n∥v∥2, ∀n ≥ n.

This completes the proof. □

The next lemma plays an important role in the convergence analysis (see in [6, Lemma
2] or [25, Lemma 3.1]).

Lemma 3.4. Let {γn}∞n=1, {δn}∞n=1 and {εn}∞n=1 be real sequences. Assume that {γn}∞n=1 is

bounded from below, {δn}∞n=1 is non-negative and
+∞∑
n=1

εn < +∞ such that

γn+1 − γn + δn ≤ εn for all n ≥ 1.

Then lim
n→∞

γn exists and
+∞∑
n=1

δn < +∞.

4. CONVERGENCE RESULTS FOR MONOTONE INCLUSION PROBLEM

In this section, some convergence results for (NFBP) (1.5) are demonstrated. Before
going into the main results, it is useful to know the following propositions.

Proposition 4.1 ([10], Opial Lemma). Let H be a real Hilbert space, C ⊆ H be nonempty set,
{xn}∞n=1 be any arbitrary sequence and {zn}∞n=1 defined as (2.6) such that:

(i) For every z ∈ C, lim
n→∞

∥xn − z∥ exists;
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(ii) Every weak cluster point of the sequence {xn}∞n=1 (resp., {zn}∞n=1) lies in C.
Then the sequence {xn}∞n=1 (resp., {zn}∞n=1) converges weakly to a point in C.

Proposition 4.2. Let {xn}∞n=1 be a sequence generated by (NFBP) (1.5). If all assumptions in
Assumption 3.1 hold, then the following hold:

(i) For each x∗ ∈ zer(A+Nzer(B)), lim
n→+∞

∥xn − x∗∥ exists.

(ii) The series
+∞∑
n=1

∥yn − xn∥2,
+∞∑
n=1

λnβn∥B(xn)∥2, and
+∞∑
n=1

λnβn⟨B(xn), xn − x∗⟩ are con-

vergent.
(iii) lim

n→+∞
∥yn − xn∥2 = lim

n→+∞
∥B(xn)∥ = lim

n→+∞
⟨B(xn), xn − x∗⟩ = 0.

Proof. Let x∗ ∈ zer(A+Nzer(B)). Taking w = 0 in Lemma 3.3, we get that

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 +
(

ε0
4(1+ε0)

)
∥yn − xn∥2

+
(

ε0λnβn

1+ε0

)
⟨B(xn), xn − x∗⟩+

(
ω

1+ε0

)
λnβn∥B(xn)∥2

≤ (1+K)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2p(1+ε0)

ε0βn
, x∗

)
− σzer(B)

(
2p(1+ε0)

ε0βn

)]
+ 2

(
2(1+ε0)

ε0

)
(1 +K)λ2

n∥v∥2, ∀n ≥ n.

By Assumption 3.1, the conclusion in (i) and (ii) follows from Lemma 3.4.
(iii) From (ii), we have lim

n→+∞
∥yn − xn∥2 = 0. Since lim inf

n→+∞
λnβn > 0, we obtain that

lim
n→+∞

∥B(xn)∥ = lim
n→+∞

⟨B(xn), xn − x∗⟩ = 0. □

Theorem 4.2. Let {xn}∞n=1 be a sequence generated by (NFBP) (1.5) and {zn}∞n=1 be a sequence
of weighted averages as (2.6). Suppose that all assumptions in Assumption 3.1 hold. Then the
sequence {zn}∞n=1 converges weakly to an element in zer(A+Nzer(B)).

Proof. Let z be a weak cluster point of {zn}∞n=1. Then there exists a subsequence {znk
}∞k=1

of {zn}∞n=1 such that znk
⇀ z as k → +∞. We will show that z ∈ zer(A+Nzer(B)). Since

A + Nzer(B) is a maximal monotone operator, it suffices to show that ⟨w, x∗ − z⟩ ≥ 0 for
all (x∗, w) ∈ gra(A+Nzer(B)).

Let (x∗, w) ∈ gra(A+Nzer(B)), v ∈ A(x∗) and p ∈ Nzer(B)(x
∗) be such that w = v + p.

Recall from Lemma 3.3 that

∥xn+1 − x∗∥2 − ∥xn − x∗∥2 +
(

ε0
4(1+ε0)

)
∥yn − xn∥2

+
(

ε0λnβn

1+ε0

)
⟨B(xn), xn − x∗⟩+

(
ω

1+ε0

)
λnβn∥B(xn)∥2

≤ (1+K)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2(1+ε0)
ε0βn

p, x∗
)
− σzer(B)

(
2(1+ε0)
ε0βn

p
)]

+ 2(1 +K)λn⟨w, x∗ − xn⟩+ 2
(

2(1+ε0)
ε0

)
(1 +K)λ2

n∥v∥2, ∀n ≥ n.

Discarding nonnegative terms ⟨B(xn), xn − x∗⟩, ∥B(xn)∥2 and ∥yn − xn∥2, we deduce to

∥xn+1 − x∗∥2 − ∥xn − x∗∥2

≤ (1+K)ε0λnβn

1+ε0

[
sup

x∗∈zer(B)

FB

(
2(1+ε0)
ε0βn

p, x∗
)
− σzer(B)

(
2(1+ε0)
ε0βn

p
)]
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+ 2(1 +K)λn⟨w, x∗ − xn⟩+ 2
(

2(1+ε0)
ε0

)
(1 +K)λ2

n∥v∥2, ∀n ≥ n.

Summing up for n = n, n+ 1, ..., nk in the above inequality, we have

∥xnk+1 − x∗∥2 − ∥xn − x∗∥2 ≤ 2(1 +K)

〈
w,

nk∑
n=n

λnx
∗ −

nk∑
n=n

λnxn

〉
+ L1

= 2(1 +K)

〈
w,

nk∑
n=1

λnx
∗ −

n−1∑
n=1

λnx
∗ −

nk∑
n=1

λnxn +

n−1∑
n=1

λnxn

〉
+ L1

where

L1 := (1+K)
2

nk∑
n=n

λnβn

[
sup

x∗∈zer(B)

FB

(
2(1+ε0)
ε0βn

p, x∗
)
− σzer(B)

(
2(1+ε0)
ε0βn

p
)]

+ 2
(

2(1+ε0)
ε0

)
(1 +K)

nk∑
n=n

λ2
n∥v∥2.

Discarding the nonnegative term ∥xnk+1 − x∗∥2 and dividing inequality above by 2(1 +
K)τnk

, we obtain

(4.20) − ∥xn−x∗∥2

2(1+K)τnk
≤ ⟨w, x∗ − znk

⟩+ L2

2(1+K)τnk
,

where L2 := L1 + 2(1 + K)

〈
w,−

n−1∑
n=1

λnx
∗ +

n−1∑
n=1

λnxn

〉
. Note that L2 is a finite real

number. Taking k → +∞ (so that lim
k→+∞

τnk
= +∞) on both sides of (4.20), we get that

0 ≤ ⟨w, x∗ − z⟩.
Since (x∗, w) ∈ gra(A+Nzer(B)) is arbitrary, we have z ∈ zer(A+Nzer(B)). By Proposition
4.1 (ii), we can conclude that the sequence {zn}∞n=1 converges weakly to an element in
zer(A+Nzer(B)). □

Next, we will prove the strong convergence of the sequence {xn}∞n=1.

Theorem 4.3. Let {xn}∞n=1 be a sequence generated by (NFBP) (1.5) and the operator A be a
γ-strongly monotone with γ > 0. If all assumptions in Assumption 3.1 hold, then the sequence
{xn}∞n=1 converges in norm to the unique x∗ ∈ zer(A+Nzer(B)).

Proof. Let x∗ be the unique element in zer(A+Nzer(B)). Then there exists v ∈ A(x∗) and
p ∈ Nzer(B)(x

∗) such that 0 = v + p. Since xn−yn

λn
− βnB(xn) ∈ A(yn) and v ∈ A(x∗), the

strong monotonicity of A implies

λnγ∥yn − x∗∥2 ≤ ⟨xn − yn − λn(βnB(xn) + v), yn − x∗⟩
for all n ∈ N. It follows that

(4.21) λnγ∥yn − x∗∥2 + ⟨xn − yn, x
∗ − yn⟩ ≤ λn⟨βnB(xn) + v, x∗ − yn⟩

for all n ∈ N. By applying Lemma 3.1 (i), we have

2λnγ∥yn − x∗∥2 + ∥yn − x∗∥2 − ∥xn − x∗∥2 ≤ 2λn⟨βnB(xn) + v, x∗ − yn⟩ − ∥xn − yn∥2
(4.22)

for all n ∈ N. Focusing on the right hand side of (4.22), we see that

2λn⟨βnB(xn) + v, x∗ − yn⟩ − ∥xn − yn∥2

= 2λn⟨βnB(xn) + v, x∗ − xn⟩+ 2λn⟨βnB(xn) + v, xn − yn⟩ − ∥xn − yn∥2(4.23)
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≤ 2λn⟨βnB(xn) + v, x∗ − xn⟩+ λ2
n∥βnB(xn) + v∥2

≤ 2λn⟨βnB(xn) + v, x∗ − xn⟩+ 2λ2
nβ

2
n∥B(xn)∥2 + 2λ2

n∥v∥2, ∀n ∈ N.

Next, we consider the first term on right hand side of (4.23),

2λn⟨βnB(xn) + v, x∗ − xn⟩(4.24)

= 2λn⟨βnB(xn), x
∗ − xn⟩+ 2λn⟨v, x∗ − xn⟩

= 2λn⟨βnB(xn), x
∗ − xn⟩+ 2λn⟨p, xn⟩ − 2λn⟨p, x∗⟩

= 2λnβn

[〈
p
βn

, xn

〉
+ ⟨B(xn), x

∗⟩ − ⟨B(xn), xn⟩ −
〈

p
βn

, x∗
〉]

≤ 2λnβn

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
−

〈
p
βn

, x∗
〉]

= 2λnβn

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

, x∗
)]

, ∀n ∈ N.

Combining (4.22), (4.23) and (4.24), we have

2λnγ∥yn − x∗∥2 + ∥yn − x∗∥2 − ∥xn − x∗∥2(4.25)

≤ 2λnβn

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

, x∗
)]

+ 2λ2
nβ

2
n∥B(xn)∥2 + 2λ2

n∥v∥2, ∀n ∈ N.

By simple calculation using (4.25), we get the result that

∥yn − x∗∥2 ≤ 2λnβn

2λnγ+1

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

, x∗
)]

(4.26)

+ 1
2λnγ+1∥xn − x∗∥2 + 2λ2

nβ
2
n

2λnγ+1∥B(xn)∥2 + 2λ2
n

2λnγ+1∥v∥
2.

Combining (4.26) to (3.14), we have the following inequality

∥xn+1 − x∗∥2 ≤ (1 + αn)
2λnβn

2λnγ+1

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

, x∗
)]

+ (1 + αn)
[

1
2λnγ+1∥xn − x∗∥2 + 2λ2

nβ
2
n

2λnγ+1∥B(xn)∥2
]

(4.27)

+
(

1+αn

2λnγ+1

)
2λn∥v∥2 − αn

2λnγ+1∥xn − x∗∥2 + αn(1 + αn)∥xn − yn∥2.

It is not hard to verify from (4.27) and it yields that

2λnγ∥xn+1 − x∗∥2 + ∥xn+1 − x∗∥2 − ∥xn − x∗∥2

≤ (1 + αn)2λnβn

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

, x∗
)]

+ (1 + αn)2λ
2
nβ

2
n∥B(xn)∥2

+ (1 + αn) 2λ
2
n∥v∥2 + αn(1 + αn)(2λnγ + 1)∥xn − yn∥2.

Since nonnegative sequences {λn}∞n=1, {λnβn}∞n=1 and {αn}∞n=1 are bounded, there exists
positive numbers M , c and K such that λn ≤ M, λnβn ≤ c, and αn ≤ K for all n ∈ N.

Hence,

2λnγ∥xn+1 − x∗∥2 + ∥xn+1 − x∗∥2 − ∥xn − x∗∥2
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≤ (1 +K)2λnβn

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

, x∗
)]

+ (1 +K)2cλnβn∥B(xn)∥2 + (1 +K) 2λ2
n∥v∥2 +K(1 +K)(2Mγ + 1)∥xn − yn∥2,(4.28)

and then

2γ

+∞∑
n=1

λn∥xn+1 − x∗∥2 ≤ ∥x1 − x∗∥2 + (1 +K)

[
2c

+∞∑
n=1

λnβn∥B(xn)∥2 + 2

+∞∑
n=1

λ2
n∥v∥2

]

+ (1 +K)2

+∞∑
n=1

λnβn

[
sup

x∗∈zer(B)

FB

(
p
βn

, x∗
)
− σzer(B)

(
p
βn

, x∗
)]

+K(1 +K)(2Mγ + 1)

+∞∑
n=1

∥xn − yn∥2.

By all assumptions in Assumption 3.1 and Proposition 4.2, we have

2γ

+∞∑
n=1

λn∥xn+1 − x∗∥2 < +∞.

From (4.28) and Lemma 3.4, we obtain that lim
n→+∞

∥xn − x∗∥ exists.

Since
+∞∑
n=1

λn = +∞, we have lim
n→+∞

∥xn − x∗∥ = 0. This completes the proof. □

5. APPLICATIONS TO CONSTRAINED CONVEX MINIMIZATION PROBLEM

In this section, we will apply the results obtained in the previous section to solve con-
strained convex optimization problems. The constrained convex minimization problem:

(5.29) min
x∈argmin g

f(x),

where f : H → R is proper convex lower semicontinuous and g : H → R is (Fréchet)
differentiable function on the space H and the gradient ∇g is Lipschitz continuous oper-
ator with constants Lg . We will assume that the set argmin g is nonempty. Throughout
the paper we also assume that the solution set S := argmin{f(x) : x ∈ argmin g} of
the problem (5.29) is a nonempty set. Furthermore, without loss of generality, we may
assume that min g = 0. Notice that f is proper convex lower semicontinuous, we have
that the subdifferential ∂f is maximally monotone. Moreover, since the function g is con-
vex differentiable, by using the Theorem of Baillon-Haddad (see [10, Corollary 18.16]),
∇g is 1

Lg
-cocoercive and argmin g = zer(∇g) can be used to solve the constrained convex

monimization problem (5.29) reduces to solve the monotone inclusion

0 ∈ ∂f(x) +Nargmin g(x).

By using this and algorithm (NFBP) (1.5), we will consider the following algorithm.

Algorithm 5.4. Let {λn}∞n=1, {βn}∞n=1 and {αn}∞n=1 be sequences of positive real numbers.
Algorithm for solving (5.29) as follows:

x1 ∈ H;

yn = proxλnf (xn − λnβn∇g(xn))

xn+1 = yn + αn(yn − xn) for all n ≥ 1.

In order to obtain the convergence of the sequence generated by Algorithm (5.4), we
have to assume the following assumption.
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Assumption 5.5. (a) The qualification condition argmin g ∩ int Dom(f) ̸= ∅ holds.
(b) {λn} ∈ l2 \ l1, lim

n→∞
αn = 0 and 0 < lim inf

n→∞
λnβn ≤ lim sup

n→∞
λnβn < 1

Lg
.

(c) For each p ∈ Ran(Nargmin g), we have

+∞∑
n=1

λnβn

[
g∗

(
p
βn

)
− σargmin g

(
p
βn

)]
< +∞.

Note that F∇g

(
x∗, p

βn

)
≤ g(x∗) + g∗

(
p
βn

)
= g∗

(
p
βn

)
for all x∗ ∈ argmin g, we have

sup
x∗∈argmin g

F∇g

(
x∗, p

βn

)
≤ g∗

(
p
βn

)
. Hence, conditions (a)-(c) in Assumption 5.5 imply

hypotheses (I)-(III) in Assumption 3.1.

Corollary 5.1. Let {xn}∞n=1 be a sequence generated by Algorithm 5.4 and {zn}∞n=1 be a se-
quence of weighted averages as (2.6). Suppose that all assumptions in Assumption 5.5 hold.
Then the sequence {zn}∞n=1 converges weakly to an element in S.

If we assume that the function f is strongly convex, then its subdifferential ∂f is strongly
monotone.

Corollary 5.2. Let {xn}∞n=1 be a sequence generated by Algorithm 5.4 and the function f be a
γ-strongly convex with γ > 0. If all assumptions in Assumption 5.5 hold, then the sequence
{xn}∞n=1 converges strongly to the unique S.

6. NUMERICAL EXPERIMENTS

In this section, we present an example of numerical set for testing the purposed al-
gorithm. Some comparisons of our algorithm (NFBP) (1.5) with the algorithm (FB) intro-
duced by Attouch [5] are also reported. All the experiments are implemented in MATLAB
R2015b running on a MacBook air 13-inch, Early 2017 with a 1.8 GHz Intel Core i5 proces-
sor and 8 GB 1600 MHz DDR3 memory.

We consider the problem with equality constraints:

minimize ∥x∥1
subject to Ax = b,(6.30)

where A ∈ Rl×k, b ∈ Rl. In addition, we assume that k > l. The problem (6.30) can be
written in the form of the problem (5.29) as :

minimize f(x) := ∥x∥1
subject to x ∈ argmin g,

where g(z) := 1
2∥Az − b∥2, for all z ∈ Rk.

In this setting, we have ∇g(z) = AT (Ax − b) and notice that ∇g is ∥A∥2-Lipschitz
continuous. We also get that
proxλnf (x) =

(
max

(
0, 1− λn

|x1|

)
x1,max

(
0, 1− λn

|x2|

)
x2, ...,max

(
0, 1− λn

|xk|

)
xk

)
.

We begin with the problem by random vectors x1 ∈ Rk, b ∈ Rl and matrix A ∈ Rl×k.
Next, we compare the performance of our algorithm (NFBP) (1.5) with the algorithm (FB).
The used of parameters in two algorithms are chosen as follows:

βn = n
(∥A∥2)+1 , λn = 1

n , ∀n ≥ 1. We obtain the CPU times (seconds) and the number of
iterations by using the stopping criteria : ∥xn − xn−1∥ ≤ 10−6.
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Algorithm CPU times (s) Iterations
(FB) (αn = 0) 180.44 38352
(NFBP) (αn = 1/

√
n+ 1) 140.36 35649

(NFBP) (αn = 1/(n+ 1)) 155.79 35589
(NFBP) (αn = 1/(n+ 1)2) 136.01 33841
(NFBP) (αn = 1/(n+ 1)4) 150.45 37164
(NFBP) (αn = 1/(n+ 1)10) 154.40 38344

TABLE 1. Comparison of number of iterations and CPU computation time between
(NFBP) (1.5) and (FB) with difference of parameter sequences {αn}∞n=1.

We compare the performance of our algorithm (NFBP) (1.5) and (FB) algorithm for
case k = 4000, l = 1000 with difference of parameter sequences {αn}∞n=1. The results
are reported in table 1. We observe that (FB) spends more CPU computation time than
our algorithm (NFBP) (1.5). We can see that when αn = 1

(n+1)2 , it leads to the lowest
CPU computation time and number of iterations for (NFBP) (1.5) of 136.01 seconds and
33841 times, respectively. We also observe that our algorithm (NFBP) (1.5) requires less
iterations than (FB) for all choice of parameter sequences {αn}∞n=1.

(l, k)
(NFBP) (1.5) (FB)

CPU time (s) Iterations CPU time (s) Iterations
(20,1000) 1.99 34160 5.13 83860
(50,1000) 2.32 32986 5.72 77435
(100,1000) 2.92 30352 7.38 79054
(200,1000) 3.94 30546 7.35 56337
(300,1000) 5.17 26191 6.70 33513
(20,2000) 4.14 37505 11.14 98780
(50,2000) 6.14 45289 10.55 78691
(100,2000) 5.00 27642 10.42 58504
(200,2000) 8.33 24207 23.45 67317
(300,2000) 15.71 27088 28.22 48109
(20,5000) 10.17 40463 25.04 96251
(50,5000) 7.09 22812 21.79 68287
(100,5000) 18.70 29416 42.56 66194
(200,5000) 40.66 33008 92.56 77144
(300,5000) 51.59 27193 123.60 58909

TABLE 2. The comparison of two algorithms with different sizes of matrix A.

In table 2, we present a comparison between the numerical results of (NFBP) (1.5) and
(FB) cases for αn = 1√

n+1
,∀n ≥ 1 and different sizes of matrix A. We can see that the

number of iterations of (NFBP) (1.5) are smaller than of (FB) for all different sizes of matrix
A. Furthermore, (NFBP) (1.5) requires less CPU computation time to reach the optimality
tolerance than (FB) for all cases.

0 1 2 3 4 5 6 7 8
Number of iterations (n) ×104

10-6

10-4

10-2

100

102

||x
n
-x

n-
1||

NFBP

FB

FIGURE 1. Illustration of the behavior of ∥xn − xn−1∥ for (NFBP) (1.5)
and (FB) methods when αn = 1√

n+1
and (l, k) = (100, 3000).
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Figure 1 shows the behavior of ∥xn − xn−1∥ for (NFBP) (1.5) and (FB) methods when
αn = 1√

n+1
and (l, k) = (100, 3000). We can observe that by using our algorithm (NFBP)

(1.5) the behavior of the red line (NFBP) (1.5) performs better than the blue line (FB).

7. CONCLUSIONS

In this paper, we purposed a new forward-backward method with penalization term
(NFBP) (1.5) for solving monotone inclusion problems (1.4). We provide the sufficient
conditions to guarantee the convegences of (NFBP) (1.5) for the considered problems. We
also provide a numerical example to compare between our algorithm (NFBP) (1.5) and the
(FB) algorithm. As a result, we observe that our algorithm (NFBP) (1.5) performs better
behavior when comparing with algorithm (FB) for all different cases.
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[21] Boţ, R. I. and Nguyen, D.-K., A forward-backward penalty scheme with inertial effects for mon-
tone inclusions, Applications to convex bilevel programming, http://www. optimization-
online.org/DB HTML/2018/01/6416.html (2018)

[22] Cabot, A. and Frankel, P., Asymptotics for some proximal-like method involving inertia and memory aspects, Set-
valued Var. Anal., 19 (2011), 59–74

[23] Chen, C., Chan, R. H., Ma, S. and Yang, J., Inertial proximal ADMM for linearly constrained separable convex
optimization, SIAM J. Imag. Sci., 8 (2015), 2239–2267

[24] Chen, C., Ma, S. and Yang, J., A general inertial proximal point algorithm for mixed variational inequality problem,
SIAM J. Optim., 25 (2015), 2120–2142
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