A cyclic coordinate-update fixed point algorithm

Bo Peng and Hong-Kun Xu

Abstract

We prove that a cyclic coordinate fixed point algorithm for nonexpansive mappings when the underlying Hilbert space is decomposed into a Cartesian product of finitely many block spaces is weakly convergent to a fixed point of the mapping under investigation. Our result relaxes a condition imposed on the stepsizes of Theorem 3.4 of Chow, et al [Chow, Y. T., Wu, T. and Yin, W., Cyclic coordinate-update algorithms for fixed-point problems: analysis and applcations, SIAM J. Sci. Comput., 39 (2017), No. 4, A1280-A1300].

1. Introduction

Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. Consider the problem of finding a zero of a maximal monotone operator S :

$$
\begin{equation*}
S x=0, \tag{1.1}
\end{equation*}
$$

where $S: H \rightarrow H$ is a maximal monotone operator. Assume S is of the form

$$
\begin{equation*}
S=I-T, \tag{1.2}
\end{equation*}
$$

where $T: H \rightarrow H$ is a nonexpansive mapping (i.e., $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in H$). Consequently, S is Lipschitzian with Lipschitz constant not bigger than two. We use zer (S) and $\operatorname{Fix}(T)$ to denote the set of solutions of Eq. (1.1) and the set of fixed points of T, respectively. It is evident that $\operatorname{zer}(S)=\operatorname{Fix}(T)=\{x \in H: T x=x\}$. We always assume that the solution set $\operatorname{zer}(S)$ (or $\operatorname{Fix}(T)$) is nonempty. Note that in our setting, finding a zero of S is equivalent to finding a fixed point of T. Therefore, the Kransnoselskii-Mann algorithm (KM) [4, 6] is applicable to Eq. (1.1). Recall that KM generates a sequence $\left(x^{k}\right)$ through the iteration scheme:

$$
\begin{equation*}
x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} T x^{k}, \quad k=0,1,2, \cdots, \tag{1.3}
\end{equation*}
$$

where the initial guess $x^{0} \in H$ is chosen arbitrarily, and $\alpha_{k} \in[0,1]$ for all k.
The KM (1.3) has extensively been studied (see [5, 8, 10, 13, 15] and references therein). A basic convergence result of $\mathrm{KM}(1.3)$ is given below.

Theorem 1.1. (cf. [12]) Suppose $\operatorname{Fix}(T) \neq \emptyset$ and the stepsizes $\left(\alpha_{k}\right)$ satisfies the divergence condition:

$$
\begin{equation*}
\sum_{k=0}^{\infty} \alpha_{k}\left(1-\alpha_{k}\right)=\infty . \tag{1.4}
\end{equation*}
$$

Then the sequence $\left(x^{k}\right)$ generated by KM (1.3) converges weakly to a point in $\operatorname{Fix}(T)$.

[^0]Note that a standard choice of the stepsizes $\left(\alpha_{k}\right)$ that satisfies the divergence condition (1.4) is given by

$$
\begin{equation*}
\alpha_{k}=\frac{1}{k^{\tau}}, \quad k \geq 1, \text { with } 0<\tau \leq 1 \tag{1.5}
\end{equation*}
$$

Chow, et al [1] applied KM (1.3) to find a zero of a maximal monotone mapping $S=I-$ T (with T being nonexpansive) in the case where the underlying space H is decomposed into a Cartesian product of finitely many block spaces:

$$
\begin{equation*}
H=H_{1} \times H_{2} \times \cdots \times H_{m} \tag{1.6}
\end{equation*}
$$

where $m \geq 1$ is an integer, and H_{i} is a Hilbert space for each $1 \leq i \leq m$. In this framework, each $x \in H$ is decomposed into $x=\left(x_{1}, \cdots, x_{m}\right)$, where x_{i} denotes the i th coordinate of x (we write $\left.(x)_{i}=x_{i}\right)$; i.e., the projection of x onto the i th block space H_{i}.

Basing on KM (1.3), Chow, et al [1] introduced a cyclic coordinate-update algorithm [1, Algorithm 1, page A1283], and proved [1, Theorem 3.4, page A1288] the weak convergence of their Algorithm 1 under the assumption that the stepsizes $\left(\alpha_{k}\right)$ are chosen as

$$
\begin{equation*}
\alpha_{k}=\frac{1}{\sqrt{k}}, \quad k \geq 1 \tag{1.7}
\end{equation*}
$$

The purpose of this paper is to prove that [1, Algorithm 1] remains to be weakly convergent to a solution of Eq. (1.1) if the stepsizes $\left(\alpha_{k}\right)$ are chosen to satisfy the following two conditions:

$$
(\alpha 1) \sum_{k=1}^{\infty} \alpha_{k}=\infty ; \quad(\alpha 2) \sum_{k=1}^{\infty} \alpha_{k}^{3}<\infty
$$

A particular choice is given by $\alpha_{k}=\frac{1}{k^{\tau}}$ for $k \geq 1$ with $\frac{1}{3}<\tau \leq 1$. This includes the choice (1.7) by letting $\tau=\frac{1}{2}$.

2. Preliminaries

The following two lemmas are useful for proving the convergence of our algorithm in this paper.

Lemma 2.1. [11] Assume $\left(a_{k}\right)$ is a sequence of nonnegative real numbers with the property:

$$
a_{k+1} \leq\left(1+r_{k}\right) a_{k}+b_{k}, \quad k \geq 0
$$

where $\left(r_{k}\right)$ and $\left(b_{k}\right)$ are sequences of nonnegative real numbers such that $\sum_{k=0}^{\infty} r_{k}<\infty$ and $\sum_{k=0}^{\infty} b_{k}<\infty$. Then $\left(a_{k}\right)$ is bounded and $\lim _{k \rightarrow \infty} a_{k}$ exists.

Lemma 2.2. [5, Lemma 2.5] Let K be a nonempty subset of a Hilbert space H. Assume $\left(x^{k}\right)$ is a bounded sequence in H with the properties:
(a) $\lim _{k \rightarrow \infty}\left\|x^{k}-z\right\|$ exists for each $z \in K$;
(b) if x^{\prime} is a weak cluster point of $\left(x^{k}\right)$, then $x^{\prime} \in K$.

Then the full sequence (x^{k}) converges weakly to a point in K.
We need the demiclosedness principle of nonexpansive mappings as follows.
Lemma 2.3. [9, 2] Let C be a closed convex subset of a Hilbert space H and $T: C \rightarrow C$ a nonexpansive mapping. Suppose $\left(v^{k}\right)$ is a sequence in C such that $v^{k} \rightarrow v$ weakly and $v^{k}-T v^{k} \rightarrow$ 0 in norm. Then $v=T v$.
2.1. A cyclic coordinate-update algorithm. Let H be a real Hilbert space with the decomposition (1.6). Let us consider the equation (1.1), assuming (1.2) and zer $(S) \neq \emptyset$.

Following [1], we introduce the coordinate mappings $\left(S_{i}\right)$ associated with S as follows: $S_{i} x:=\left(0, \cdots, 0,(S x)_{i}, 0, \cdots, 0\right), \quad x \in H$. As a result,

$$
S x=\sum_{i=1}^{m} S_{i} x, \quad\left\langle S_{i} x, S_{j} x\right\rangle=0(i \neq j), \quad\|S x\|^{2}=\sum_{i=1}^{m}\left\|S_{i} x\right\|^{2}
$$

for all $x \in H$.
The cyclic coordinate-update algorithm (CCA) introduced in [1, Algorithm 1] is rephrased below:

$$
\left\{\begin{array}{l}
x^{k, 0}=x^{k} \tag{2.8a}\\
x^{k, j}=x^{k, j-1}-\alpha_{k} S_{j}\left(x^{k, j-1}\right), \quad j=1,2, \cdots, m \\
x^{k+1}=x^{k, m}
\end{array}\right.
$$

For $\alpha \in(0,1)$, Chow, et al [1] introduced two operators T^{α} and E^{α} defined respectively by

$$
\begin{align*}
& T^{\alpha}:=I-\alpha S, \tag{2.9}\\
& E^{\alpha}:=\left(I-\alpha S_{m}\right)\left(I-\alpha S_{m-1}\right) \cdots\left(I-\alpha S_{1}\right) . \tag{2.10}
\end{align*}
$$

Note that T^{α} is an α-averaged mapping (cf. [3,14]); indeed, $T^{\alpha}=(1-\alpha) I+\alpha T$. However, each mapping $I-\alpha S_{i}$ fails, in general, to be nonexpansive; nevertheless, it is Lipschitzian with Lipschitz constant $L_{i} \leq 2$ for $1 \leq i \leq m$. Put $L:=\max \left\{L_{i}: 1 \leq i \leq m\right\}$.

The following fact is easily proved (see [1, Eq. (2.7), page A1285]):

$$
\begin{equation*}
\left\|T^{\alpha} x-x^{*}\right\|^{2} \leq\left\|x-x^{*}\right\|^{2}-\alpha(1-\alpha)\|S x\|^{2}, \quad x \in H, x^{*} \in \operatorname{zer}(S) \tag{2.11}
\end{equation*}
$$

The CCA (2.8) can also equivalently be reformulated in the form:

$$
\begin{equation*}
x^{k+1}=E^{\alpha_{k}} x^{k}=\left(I-\alpha_{k} S_{m}\right)\left(I-\alpha_{k} S_{m-1}\right) \cdots\left(I-\alpha_{k} S_{1}\right) x^{k}, \quad k=0,1, \cdots \tag{2.12}
\end{equation*}
$$

The main convergence result of Chow, et al [1] is the following result.
Theorem 2.2. [1, Theorem 3.4] Assume S is of the form (1.2) with T nonexpansive and $\operatorname{zer}(S) \neq$ \emptyset. Assume, in addition, the stepsizes $\left(\alpha_{k}\right)$ satisfy the rule (1.7). Then the sequence $\left(x^{k}\right)$ generated by the CCA (2.8) (or equivalently, (2.12)) converges weakly to a solution of Eq. (1.1).

3. An improvement of [1, Theorem 3.4]

In this section we will improve [1, Theorem 3.4] by showing the weak convergence of the CCA (2.8) under the much more general, relaxed conditions $(\alpha 1)$ and $(\alpha 2)$ satisfied by the stepsizes $\left(\alpha_{k}\right)$. To this end we need the lemma below.

Lemma 3.4. Let $\left(\alpha_{k}\right)$ and $\left(\beta_{k}\right)$ be sequences of nonnegative real numbers. Suppose the following conditions are satisfied:
(i) $\sum_{k=1}^{\infty} \alpha_{k}=\infty$;
(ii) $\sum_{k=1}^{\infty} \alpha_{k} \beta_{k}<\infty$;
(iii) $\left|\beta_{k+1}-\beta_{k}\right| \leq c \alpha_{k}$ for all $k \geq 1$ and some constant $c>0$.

Then $\left(\beta_{k}\right)$ converges to zero.
Proof. Let \mathbb{N} denote the set of positive integers. Given $\varepsilon>0$. We define a subset N_{ε} of \mathbb{N} by

$$
\mathbb{N}_{\varepsilon}:=\left\{k \in \mathbb{N}: \beta_{k}<\frac{\varepsilon}{2}\right\} .
$$

Set $\mathbb{N}_{\varepsilon}^{c}:=\mathbb{N} \backslash \mathbb{N}_{\varepsilon}$.
Since the condition (i) implies that $\liminf _{k \rightarrow \infty} \beta_{k}=0$, the set \mathbb{N}_{ε} is indeed an infinite subset of \mathbb{N}. Also we have

$$
\sum_{k \in \mathbb{N}_{\varepsilon}^{c}} \alpha_{k} \beta_{k} \geq \frac{\varepsilon}{2} \sum_{k \in \mathbb{N}_{\varepsilon}^{c}} \alpha_{k} .
$$

By the condition (ii) we find that $\sum_{k \in \mathbb{N}_{\varepsilon}^{c}} \alpha_{k}<\infty$. Consequently, there exists a sufficiently large integer k_{ε} such that

$$
\sum_{\substack{k \in \mathbb{N} \\ k \geq \varepsilon_{\varepsilon}}} \varepsilon_{k}<\frac{\varepsilon}{2 c} .
$$

We now claim that

$$
\begin{equation*}
\beta_{k}<\varepsilon \quad \text { for all } k>k_{\varepsilon} . \tag{3.13}
\end{equation*}
$$

As a matter of fact, for fixed $k>k_{\varepsilon}$, if $k \in \mathbb{N}_{\varepsilon}$, then (3.13) holds trivially and we are done. If $k \in \mathbb{N}_{\varepsilon}^{c}$, then, since \mathbb{N}_{ε} is infinite, \mathbb{N}_{ε} has integers that are bigger than k. Let $n \in \mathbb{N}_{\varepsilon}$ be the least integer in \mathbb{N}_{ε} such that $k<n$. Note that we have $\beta_{n}<\varepsilon / 2$. It follows that (noticing the minimality property of $n \in \mathbb{N}_{\varepsilon}$)

$$
\begin{gathered}
\beta_{k}=\beta_{n}+\left(\beta_{k}-\beta_{n}\right)<\frac{\varepsilon}{2}+\left(\beta_{k}-\beta_{n}\right)=\frac{\varepsilon}{2}+\sum_{i=k}^{n-1}\left(\beta_{i}-\beta_{i+1}\right) \leq \frac{\varepsilon}{2}+c \sum_{i=k}^{n-1} \alpha_{i} \\
\text { by }(\text { iii }) \leq \frac{\varepsilon}{2}+c \sum_{\substack{i \in \mathbb{N}, i \geq \varepsilon_{\varepsilon}}} \alpha_{i}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{gathered}
$$

Consequently, (3.13) holds again. This finishes the proof.
Now we are in a position to extend [1, Theorem 3.4] to a more general case where the stepsizes $\left(\alpha_{k}\right)$ can be particularly taken to be $k^{-\tau}$ for all $k \geq 1$ with $\tau \in(1 / 3,1]$.
Theorem 3.3. Suppose $\operatorname{zer}(S) \neq \emptyset$ and $I-S$ is nonexpansive. Assume $\left(\alpha_{k}\right)$ satisfies the conditions $(\alpha 1)$ and ($\alpha 2$) in Section 1. Then the sequence $\left(x^{k}\right)$ generated by CCA (2.12) (i.e., (2.8)) converges weakly to a point in $\operatorname{zer}(S)$.

Proof. We will use the weak convergence lemma (i.e., Lemma 2.2) to prove the theorem. Namely, we will prove that the iterates $\left(x^{k}\right)$ fulfil the two following conditions:
(C1) $\lim _{k \rightarrow \infty}\left\|x^{k}-x^{*}\right\|$ exists for every $x^{*} \in \operatorname{zer}(S)$;
(C2) $\omega_{w}\left(x^{k}\right) \subset \operatorname{zer}(S)$.
We follow the notation and some lines of the proof given in [1] with appropriate modifications and improvements. For $\alpha \in(0,1)$, put

$$
R \equiv R_{\alpha}:=\frac{1}{\alpha}\left(T^{\alpha}-E^{\alpha}\right) .
$$

Here T^{α} and E^{α} are defined by (2.9) and (2.10), respectively. Below is an estimate given in [1, Lemma 3.1]:

$$
\begin{equation*}
\|R x\| \leq \frac{\alpha L m}{\sqrt{2}}(1+\alpha L)^{m}\|S x\| \leq \alpha c_{m}\|S x\|, \quad x \in H \tag{3.14}
\end{equation*}
$$

where $c_{m}=\frac{m L}{\sqrt{2}}(1+L)^{m}$. Observing $E^{\alpha}=T^{\alpha}-\alpha R$ and using the inequality

$$
\|u+v\|^{2} \leq\|u\|^{2}+2\langle v, u+v\rangle, \quad u, v \in H
$$

we get, for $x \in H$ and $x^{*} \in \operatorname{zer}(S)$,

$$
\left\|E^{\alpha} x-x^{*}\right\|^{2}=\left\|\left(T^{\alpha} x-x^{*}\right)-\alpha R x\right\|^{2} \leq\left\|T^{\alpha} x-x^{*}\right\|^{2}-2 \alpha\left\langle R x, E^{\alpha} x-x^{*}\right\rangle
$$

$$
\leq\left\|T^{\alpha} x-x^{*}\right\|^{2}+2 \alpha\|R x\|\left\|E^{\alpha} x-x^{*}\right\|
$$

By Young's inequality, we get, for any $\eta>0$,

$$
\left\|E^{\alpha} x-x^{*}\right\|^{2} \leq\left\|T^{\alpha} x-x^{*}\right\|^{2}+\alpha \eta^{-1}\|R x\|^{2}+\alpha \eta\left\|E^{\alpha} x-x^{*}\right\|^{2} .
$$

It turns out that

$$
\begin{equation*}
\left\|E^{\alpha} x-x^{*}\right\|^{2} \leq \frac{1}{1-\alpha \eta}\left\|T^{\alpha} x-x^{*}\right\|^{2}+\frac{\alpha}{\eta(1-\alpha \eta)}\|R x\|^{2} \tag{3.15}
\end{equation*}
$$

Combining (3.14) and (3.15) yields

$$
\begin{equation*}
\left\|E^{\alpha} x-x^{*}\right\|^{2} \leq \frac{1}{1-\alpha \eta}\left\|T^{\alpha} x-x^{*}\right\|^{2}+\frac{\alpha^{3} c_{m}^{2}}{\eta(1-\alpha \eta)}\|S x\|^{2} . \tag{3.16}
\end{equation*}
$$

By (2.11) we furthermore derive that

$$
\begin{equation*}
\left\|E^{\alpha} x-x^{*}\right\|^{2} \leq \frac{1}{1-\alpha \eta}\left(\left\|x-x^{*}\right\|^{2}-\left(\alpha(1-\alpha)-\frac{\alpha^{3} c_{m}^{2}}{\eta}\right)\|S x\|^{2}\right) \tag{3.17}
\end{equation*}
$$

Inserting $x:=x^{k}, \alpha:=\alpha_{k}, \eta:=\eta_{k}$ into (3.17), and recalling $x^{k+1}=E^{\alpha_{k}} x^{k}$, we obtain

$$
\begin{equation*}
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left(1+\xi_{k}\right)\left(\left\|x^{k}-x^{*}\right\|^{2}-\left(\alpha_{k}\left(1-\alpha_{k}\right)-\frac{\alpha_{k}^{3} c_{m}^{2}}{\eta_{k}}\right)\left\|S x^{k}\right\|^{2}\right) \tag{3.18}
\end{equation*}
$$

where $\xi_{k}=\frac{\alpha_{k} \eta_{k}}{1-\alpha_{k} \eta_{k}}$. Take

$$
\eta_{k}:=\frac{2 \alpha_{k}^{2} c_{m}^{2}}{1-\alpha_{k}}, \quad k>1
$$

Then it is easy to find that

$$
\xi_{k}=\frac{2 c_{m}^{2} \alpha_{k}^{3}}{1-\alpha_{k}-2 c_{m}^{2} \alpha_{k}^{3}}
$$

Since $\alpha_{k} \rightarrow 0$, it is not hard to find from ($\alpha 2$) that $\xi_{k}=O\left(\alpha_{k}^{3}\right)$. Consequently, the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \xi_{k}<\infty \tag{3.19}
\end{equation*}
$$

A consequence of (3.18) is that

$$
\begin{equation*}
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left(1+\xi_{k}\right)\left\|x^{k}-x^{*}\right\|^{2} \tag{3.20}
\end{equation*}
$$

By (3.19) and (3.20) and applying Lemma 2.1, we have verified (C1). Returning to (3.18) we immediately get

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k}\left\|S x^{k}\right\|^{2}<\infty \tag{3.21}
\end{equation*}
$$

Since $\left(x^{k}\right)$ is bounded and S is 2-Lipschitzian, we have a constant $\tilde{c}>0$ such that $\left\|x^{k}\right\| \leq c$ and $\left\|S x^{k}\right\| \leq \tilde{c}$ for all k. Set $\beta_{k}=\left\|S x^{k}\right\|^{2}$. It follows that
$\left|\beta_{k+1}-\beta_{k}\right|=\left|\left\|S x^{k+1}\right\|^{2}-\left\|S x^{k}\right\|^{2}\right| \leq\left\|S x^{k+1}-S x^{k}\right\|\left(\left\|S x^{k+1}\right\|+\left\|S x^{k}\right\|\right) \leq 4 \tilde{c}\left\|x^{k+1}-x^{k}\right\|$.
Since $x^{k+1}=E^{\alpha_{k}} x^{k}=x^{k}-\alpha_{k}\left(S x^{k}+R x^{k}\right)$, it follows from (3.14) that
(3.22) $\left|\beta_{k+1}-\beta_{k}\right| \leq 4 \tilde{c} \alpha_{k}\left(\left\|S x^{k}\right\|+\left\|R x^{k}\right\|\right) \leq 4 \tilde{c} \alpha_{k}\left(1+\alpha_{k} c_{m}\right)\left\|S x^{k}\right\| \leq 4 \tilde{c}^{2} \alpha_{k}\left(1+c_{m}\right)=c \alpha_{k}$, where $c=4 \tilde{c}^{2}\left(1+c_{m}\right)$.

Finally, by (3.21) and (3.22) we can apply Lemma 3.4 to get $\beta_{k} \rightarrow 0$. Alternatively, we get $\left\|x^{k}-T x^{k}\right\|=\left\|S x^{k}\right\| \rightarrow 0$. This further enables us to apply Lemma 2.3 to obtain $\omega_{w}\left(x^{k}\right) \subset \operatorname{Fix}(T)=\operatorname{zer}(S)$. That is, (C2) is proven. This completes the proof.

Corollary 3.1. Suppose $\operatorname{zer}(S) \neq \emptyset$ and $I-S$ is nonexpansive. If the stepsizes $\left(\alpha_{k}\right)$ are given by $\alpha_{k}=\frac{1}{k^{\tau}}$ for all $k \geq 1$ and some $\tau \in\left(\frac{1}{3}, 1\right]$, then the sequence $\left(x^{k}\right)$ generated by the CCA (2.12) converges weakly to a point in $\operatorname{zer}(S)$.
Remark 3.1. Corollary 3.1 contains the main convergence result of [1, Theorem 3.4] as a special case (corresponding to the choice $\tau=\frac{1}{2}$).
Remark 3.2. The divergence condition (1.4) guarantees the weak convergence of the KrasnoselskiiMann algorithm (1.3). Our conditions ($\alpha 1$) and ($\alpha 2$) are stronger than the divergence condition (1.4). It is unclear if the CCA (2.8) would converge weakly if the stepsizes $\left(\alpha_{k}\right)$ satisfy the divergence condition (1.4). In particular, we do not know if the CCA (2.8) converges weakly if the stepsizes $\left(\alpha_{k}\right)$ satisfy the two conditions below:

- $\sum_{k=1}^{\infty} \alpha_{k}=\infty$, and
- $\sum_{k=1}^{\infty} \alpha_{k}^{p}<\infty$ for any fixed, arbitrarily big positive integer p.

Note that these conditions with $p=2$ are employed in incremental subgradient methods [7]. Note also that a positive answer to this question implies that the CCA (2.8) generates weakly convergent iterates $\left(x^{k}\right)$, with stepsizes $\alpha_{k}=\frac{1}{k^{\tau}}$ for all $k \geq 1$ and $\tau \in(0,1]$.

References

[1] Chow, Y. T., Wu, T. and Yin, W., Cyclic coordinate-update algorithms for fixed-point problems: analysis and applcations, SIAM J. Sci. Comput., 39 (2017), No. 4, A1280-A1300
[2] Geobel, K. and Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28, Cambridge University Press, 1990
[3] He, H. and $\mathrm{Xu}, \mathrm{H} . \mathrm{K} .$, Perturbation resilience and superiorization methodology of averaged mappings, Inverse Problems, 33 (2017), No. 4, 044007, 11 pp.
[4] Krasnoselskii, M. A., Two remarks on the method of successive approximations, Uspehi Math. Nauk., 10 (1955), 123-127 (in Russian)
[5] Lopez Acedo, G. and Xu, H. K., Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 67 (2007), 2258-2271
[6] Mann, W. R., Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510
[7] Nedic, A. and Bertsekas, D. P., Incremental subgradient methods for nondifferentiable optimization, SIAM J. Option, 12 (2001), No. 1 ,109-138
[8] O'Hara, J. G., Pillay, P. and Xu, H. K., Iterative approaches to convex feasibility problems in Banach spaces, Nonlinear Anal., 64 (2006), 2022-2042
[9] Opial, Z., Weak convergence of the sequence of successive approximations of nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 595-597
[10] Peng, Z., Xu, Y., Yan, M. and Yin, W., Arock: An algorithmic framework for asynchronous parallel coordinate updates, SIAM J. Sci. Comput., 38 (2016), A2851-A2879
[11] Polyak, B. T., Introduction to Optimization, Optimization Software, New York, 1987
[12] Reich, S., Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274-276
[13] Wang, F. and $\mathrm{Xu}, \mathrm{H} . \mathrm{K} .$, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74 (2011), 4105-4111
[14] Xu, H. K., Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl., 150 (2011), No. 2, 360-378
[15] Xu, H. K., A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034

Hangzhou Dianzi University
Department of Mathematics
School of Science
HANGZHOU 310018, CHINA
Email address: 161070021@hdu.edu.cn, xuhk@hdu.edu.cn

[^0]: Received: 08.05.2019. In revised form: 16.08.2019. Accepted: 23.08.2019
 2010 Mathematics Subject Classification. 90C25, 90C52, 65K10, 47J25.
 Key words and phrases. Krasnoselskii-Mann, maximal monotone operator, nonexpansive mapping, cyclic coordinate-update, fixed point algorithm.

 Corresponding author: Hong-Kun Xu; xuhk@hdu.edu.cn

