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ABSTRACT. In this paper, we consider convex constrained optimization problems with composite objective
functions over the set of a minimizer of another function. The main aim is to test numerically a new algorithm,
namely a stochastic block coordinate proximal-gradient algorithm with penalization, by comparing both the
number of iterations and CPU times between this introduced algorithm and the other well-known types of
block coordinate descent algorithm for finding solutions of the randomly generated optimization problems with
a ℓ1-regularization term.
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1. INTRODUCTION

Consider the following constrained optimization problem:

minimize F (x) := f(x) + h(x)

subject to x ∈ argmin g(x),(1.1)

where f, g : Rn → R are convex smooth functions and h : Rn → R is convex lower semi-
continuous(possibly non-smooth) coordinatewise separable function. That is, h(x) =∑n

i=1 hi(xi), where hi : R → R, for all i = 1, ..., n.
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The problem (1.1) is called the constrained composite convex optimization problems.
A concrete example of the coordinatewise separable function is the ℓ1-regularization:

h(x) = µ∥x∥1(1.2)

where µ > 0. It is well-known that the ℓ1-regularization is a coordinatewise separable
function that has attracted a lot of attention in the area of signal processing and data
mining, see [9] and references therein.

Moreover, the constrained composite convex optimization problems also arise in many
contemporary statistical and signal processing applications including compressive sens-
ing, signal denoising, image processing, support vector machine, traffic equilibrium, and
network flow problem, see [7], [9], [10], [23].

The problem (1.1) was initially studied by Attouch and Czarnecki [3] which repre-
sented the starting point of a series of articles approaching the minimization of a smooth
or nonsmooth objective function subject to the set of minimizers of another function.

The development of the numerical algorithms for finding the solution of the problem
(1.1) motivated many researchers to propose several variant types of problems (1.1) in-
volving hierarchical minimization problems, see [1], [2], [4], [16]. In particular, Attouch et
al [4] considered a generalized form of (1.1) and proposed the forward-backward schemes
with a penalty for constrained variational inequalities. We notice that, in particular, the
proximal-gradient method with a penalization term which is based on full-gradient infor-
mation has been introduced in [4].

Recently, there has been much interest in the design of algorithms suitable for solving
optimization problems concerning the structure of big data. One of the most successful
classes of algorithms for solving the big data optimization problem is the coordinate de-
scent methods. These methods were among the first optimization methods studied in
literature [8]. The idea of the coordinate descent methods is based on the strategy of up-
dating a single coordinate or a single block coordinate of the vector of variables at each
iteration. This often drastically reduces memory requirements as well as the arithmetic
complexity of a single iteration, making the methods easily implementable and scalable.

The main differences between all variants of coordinate descent methods are the cri-
terion of choosing the coordinate over minimize the objective function at each iteration.
The classical criteria are the cyclic coordinate descent method which significantly differs
by the number of computations required to choose the appropriate index. The cyclic co-
ordinate descent method was proposed by Bertsekas in [8] and has been applied to solve
a composite convex optimization problem with the separable function, see [6], [22]. After
that, based on the Gauss-Southwell choice rule, Tseng [24] extended a cyclic block co-
ordinate gradient descent method to solve the composite optimization problem of type
(1.1) with linear constraint. Another interesting approach is based on random coordinate
descent which randomly chooses one block of the coordinate for updating according to
a prescribed probability distribution at each iteration. In particular, Nesterov [15] pre-
sented the random coordinate descent methods for smooth convex optimization problem
and these methods have been extended to the case of a composite optimization problem
with a nonsmooth separable component in [20]. After that, Necoara[13] proposed the
random coordinate descent algorithms which randomly choose two block coordinate for
minimizing multi-agent convex optimization problems with linearly coupled constraints
over networks. In 2014, Necoara et al. [14] extended the random two blocks coordinate
descent method for solving a composite optimization problem (1.1) with linearly coupled
constraints. Recently, Combettes and Pesquet[11] presented the stochastic block coordi-
nate forward-backward splitting method for solving the monotone inclusion problem.
We notice that the stochastic block coordinate forward-backward splitting method can
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be viewed as a stochastic block coordinate proximal-gradient method for solving uncon-
strained composite convex optimization problems.

Motivated by the above literature, in this paper, we will introduce a stochastic block co-
ordinate proximal-gradient method with penalization terms (Sto-PGP) for the purpose of
solving the problem (1.1). The numerical experiments will be considered for comparing
the performance of Sto-PGP algorithm with the other well-known types of block coor-
dinate descent algorithm on the randomly generated optimization problems with a ℓ1-
regularization term, which was proposed in [14].

2. STOCHASTIC BLOCK COORDINATE PROXIMAL-GRADIENT TYPE MOTHODS

We begin this section by reminding the notations which will be used in this paper.
Let x := (x1, ..., xn) ∈ Rn be decomposed into N non-overlapping blocks of variables

x̃1, ..., x̃N with x̃(i) ∈ Rni such that
∑N

i=1 ni = n.
For each i ∈ {1, 2, ..., N}, we denote by Ui for the blocks of identity matrix, that is

In := [U1 · · ·UN ],

where Ui ∈ Rn×ni , for i = 1, ..., N .
Note that for a vector x ∈ Rn, we have x̃(i) = U⊤

i x for i ∈ {1, ..., N}, where ⊤ is denoted
for the transpose of the considered matrix. We also denote by ∇if(x) for the i-th block in
the gradient of the function f at x, that is ∇if(x) := U⊤

i ∇f(x).
Under the above setting, the problem (1.1) can be extended to the following form of the

block structure:

minimize F (x) := f(x) +

N∑
i=1

hi(x̃(i))(2.3)

subject to x ∈ argmin g(x),

where x := (x̃1, ..., x̃N ) is a block-wise partition such that
N∑
i=1

ni = n,

and
hi : Rni → R

are all convex lower semi-continuous(possibly non-smooth) functions. A special case the
problem (2.3) was considered by Tseng [24] and Necoara et al. [14] with the linear con-
straint a⊤x = b, where a, x ∈ Rn and b ∈ R.

We end this section by recalling the definition of proximal operator. For a function
h : Rn → R, the proximal operator of h induced by a parameter λ is defined by

proxλh(z) := arg min
x∈Rn

{
λh(x) +

1

2
∥x− z∥22

}
.

For more information on the proximal operator, one may consult the book by Beck [5].

Now, we introduce the stochastic block coordinate proximal-gradient method with pe-
nalization terms(Sto-PGP).

Algorithm: Stochastic block coordinate proximal-gradient type method (Sto-PGP)

Let (λk)k∈N and (βk)k∈N be positive sequences of real numbers. Let (εk)k∈N be identi-
cally distribution D-valued random variable, where D = {0, 1}N\{0}N . Let x0 ∈ Rn.
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for k = 0, 1, ...
for i = 1, ..., N

xi,k+1 = xi,k + εi,k

(
proxλkhi

[
xi,k − λk∇if(xk)− λkβk∇ig(xk)

]
− xi,k

)
.(2.4)

Remark 2.1. (1) It is worth to point out that the Sto-PGP is calculated only the block
coordinate with εi = 1 for updating at each iteration, according to the distribution
of the random variable εi at each iteration.

(2) If εj = 1 for only j ∈ {1, ..., N} with a cyclic choice rule for updating the al-
gorithm at each iteration, the Sto-PGP is the cyclic block coordinate proximal-
gradient method with penalization term(Cyclic-PGP):
for k = 0, 1, ...
1: Choose coordinate j ∈ {1, ..., N} by cyclic search.
2: Update xk+1 by
for i = 1, ..., N
set xi,k+1 = xi,k,∀i ̸= j

xi,k+1 = proxλkhj

[
xk − λk∇jf(xk)− λkβk∇jg(xk)

]
.(2.5)

(3) If there is only one block coordinate j ∈ {1, ..., N} such that εj = 1 for updating
the algorithm at each iteration, the Sto-PGP is the random single block coordinate
proximal-gradient method with penalization term(Single-PGP):
for k = 0, 1, ...
1: Choose randomly only one coordinates j ∈ {1, ..., N}.
2: Update xk+1 by
for i = 1, ..., N
set xi,k+1 = xi,k,∀i ̸= j

xj,k+1 = proxλkhj

[
xk − λk∇jf(xk)− λkβk∇jg(xk)

]
.(2.6)

(4) In the case that there are only two block coordinate j, l ∈ {1, ..., N} such that εj =
1 = εl for updating the algorithm at each iteration, the Sto-PGP is the random two-
block coordinate proximal-gradient method with penalization term(Two-PGP):
for k = 0, 1, ...
1: Choose randomly two coordinates (j, l) ∈ {1, ..., N} with j ̸= l.
2: Update xk+1 by
for i = 1, ..., N
set xi,k+1 = xi,l,∀i /∈ (j, l)

xj,k+1 = proxλkhj

[
xk − λk∇jf(xk)− λkβk∇jg(xk)

]
.

xl,k+1 = proxλkhl

[
xk − λk∇lf(xk)− λkβk∇lg(xk)

]
.(2.7)

(5) If εi = 1, for all i ∈ {1, ..., N}, for updating the algorithm at each iteration, the
Sto-PGP is the proximal-gradient method with penalization term(Full-PGP) in [4]:
for k = 0, 1, ...

xk+1 = proxλkh

[
xk − λk∇f(xk)− λkβk∇g(xk)

]
.(2.8)
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3. NUMERICAL EXPERIMENT

In this section, we present the experiments for testing the performance of the Sto-PGP
algorithm to the optimization problem (1.1). We consider the Sto-PGP algorithm for ran-
domly generated problems with a ℓ1-regularization term, which was considered in [14].

In [14], the authors presented the random two-coordinate descent method on the ran-
domly generated problems with a ℓ1-regularization term and compared the experiments
to the full-gradient information algorithm and the cyclic coordinate descent methods.
They gave the conclusion that the random two-coordinate descent method with block
size 1 performs up to 100 CPU times better than the full-gradient information algorithm
and the cyclic coordinate descent method.

Here, the major experiments are the comparison of the iteration numbers and CPU
times of the Sto-PGP with some variant numbers of block sizes, Two-PGP with the block
size 1, and Single-PGP with the block size 2. The experiment is performed under MAT-
LAB 9.2 (R2017a) running on a laptop with 2.59 GHz Intel Core i7 and 4 GB RAM.

We consider the randomly generated problems with ℓ1-regularization term in the fol-
lowing form:

minimize
1

2
x⊤Z⊤Zx+ q⊤x+

(
µ

n∑
i=1

|xi|+ 1[l,u](x)

)
(3.9)

subject to a⊤x = b,

where x, q ∈ Rn, Z ∈ Rm×n, 1[l,u] is the indicator function for the box constranit set [l, u]n

and the parameter µ > 0. Notice that many applications from signal processing and data
mining can be formulated into the optimization problem (3.9), see [9], [19].

The problem (3.9) can be written in the form of the problem (1.1) as

minimize
1

2
x⊤Z⊤Zx+ q⊤x+

(
µ

n∑
i=1

|xi|+ 1[l,u](x)

)
(3.10)

subject to x ∈ argmin g(·) := 1

2
∥a⊤x− b∥22.

We observe that the problem (3.10) can be presented as the block structure problem
(2.3) by the following setting:

f(x) =
1

2
x⊤Z⊤Z + q⊤x,

g(x) =
1

2
∥a⊤x− b∥22,

for all x ∈ Rn, and
hi(x(i)) = µ|x(i)|+ 1[l(i),u(i)](x(i)),

for i = 1, ..., N, where x(i) ∈ Rni is the N non-overlapping blocks of x ∈ Rn.
Moreover, under these setting we can check that f, g : Rn → R are convex smooth

functions and hi : Rni → R are convex lower semi-continuous functions, for all i =
1, ..., N .

We generate the problems under the setting dimensions of n = 5000, 8000, 10000 and
m = 10, and generated randomly the matrix Z ∈ Rm×n and q ∈ Rn, by using uni-
form distribution. Further, the parameters are chosen as follows: a = e, b = 1, with
e = [1...1]⊤ ∈ Rn and −l = u = 1. We test the Sto-PGP algorithm with µ = 10 and us-
ing the parameter λk = 1/(Lh + k) and the penalization parameter βk = (Lh + k)/2Lg ,
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TABLE 1. The comparison of the number of iterations and CPU time for
the Sto-PGP, Two-PGP, and Single-PGP on randomly generated problems
with ℓ1-regularization term.

Algorithms ni n Number of iterations Terminated value CPU time(s)

Two-PGP 1 5000 302 8.8694 70.71
8000 476 8.8836 286.39

10000 364 9.3033 357.03

Single-PGP 2 5000 280 8.9582 65.74
8000 426 8.9733 253.89

10000 316 9.3987 305.17

Sto-PGP 1 5000 549 8.9577 129.46
8000 864 8.9733 518.65

10000 630 9.3974 614.62

2 5000 278 8.9556 64.86
8000 436 8.9712 260.43

10000 315 9.3991 308.23

10 5000 58 8.8838 13.06
8000 89 8.9678 52.32

10000 75 9.2689 72.97

where Lh = γmax(
∑m

i=1 Z
⊤
i Zi) and Lg = γmax(a

⊤a), which γmax(·) denotes the largest
eigenvalue of a matrix. We perform the algorithms with the starting point x0 = e.

We proceed the experiment as follows: firstly, we computed F ∗ with the algorithm
Two-PGP by using relative stopping criteria

(3.11) max

{
|F (xk)− F (xk+1)|

|F (xk)|
,
|g(xk)− g(xk+1)|

|g(xk)|

}
≤ ϵ,

where ϵ = 10−5. Secondly, we used the pre-computed optimal value of F ∗ to test the other
algorithms with a termination criterion

(3.12) max

{
|F (xk)− F ∗|

|F (xk)|
,
|g(xk)− g(xk+1)|

|g(xk)|

}
≤ ϵ,

where ϵ = 10−5 to obtain the number of iterations and CPU times, where the CPU times
are considered in the second unit.

The results are presented in Table 1. We see that when the block size ni = 1, the Two-
PGP shows better performance than the Sto-PGP. However, when we consider the block
size ni by 2 and 10, the Sto-PGP provides better performance both CPU times and the
number of iterations than those of the Two-PGP. Furthermore, we observe that the bigger
block size of Sto-PGP provides better performance than the smaller block size both the
CPU times and the number of iterations for all dimensional cases.

Moreover, one can see that the Single-PGP with the block size ni = 2 provides the
better performance both CPU times and the number of iterations than those of Two-PGP
with the block size ni = 1 for all dimensional cases. This may suggest that updating with
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a block method, by packing and fix each two coordinates into one block, should provide
better performance than randomly the independent two coordinates method. In fact, we
notice that in [14] the authors considered the Two-PGP in the sense of coordinate descent
algorithm, while in this work we consider the Sto-PGP in the sense of block descent al-
gorithm. These observations will be the topic for further researches both to consider a
suitable partition of block structure for improving the performance of the algorithms and
proving its convergence theorems.

4. CONCLUSIONS

The main purpose of this paper is to discuss the numerical experiments of the algo-
rithms for finding a solution of convex constrained optimization problems when the ob-
jective function is the sum of two functions over the set of a minimizer of another func-
tion. We propose a stochastic block coordinate proximal-gradient algorithm with penal-
ization (Sto-PGP) and present the preliminary experiments to evaluate the performance
of the Sto-PGP algorithm and compare its performance with the other well-known types
of block coordinate descent algorithm. The presented Sto-PGP algorithm and its numer-
ical experiments in this paper can be viewed as the guiding concept of the theoretical
convergence theorems in the future researches.
Acknowledgements. P. Promsinchai is supported by the Thailand Research Fund through
the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0023/2555) and Naresuan Uni-
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