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Limiting proper minimal points of nonconvex sets in
finite-dimensional spaces

SHOKOUH SHAHBEYK1 and MAJID SOLEIMANI-DAMANEH2

ABSTRACT. In this paper, limiting proper minimal points of nonconvex sets in Euclidean finite-dimensional
spaces are investigated. The relationships between these minimal points and Borwein, Benson, and Henig
proper minimal points, under appropriate assumptions, are established. Furthermore, a density property is
derived and a linear characterization of limiting proper minimal points is provided.

1. INTRODUCTION

One of the most important solution concepts in modern vector optimization and set
optimization is proper minimality. This notion has been defined and investigated by var-
ious scholars; see e.g. Kuhn and Tucker [10], Geoffrion [6], Benson [2], Borwein [3], and
Henig [7] among others. See also, [1, 9, 13, 15].

In a recently published paper [14], we have introduced a new proper minimality no-
tion, leading to defining a solution concept called limiting proper minimal point (LPM).
These points have been defined from a dual space standpoint, invoking limiting (Mor-
dukhovich) normal cone [11], a strong tool in variational analysis. In [14], we have char-
acterized and established the properties of LPMs in (infinite-dimensional) Banach spaces.
In the current work, we investigate LPMs more in a finite-dimensional setting, because
of the following reasons: 1) Some results are derived which are not valid in an infinite-
dimensional setting; 2) Some important restrictive assumptions imposed in [14] can be
relaxed in finite-dimensional spaces; and 3) The practical-oriented vector optimization
problems are usually modeled in a finite-dimensional framework and many scholars in
applied optimization are not familiar with infinite-dimensional case.

In the current work, the relationships between LPMs from one side and Borwein, Ben-
son, and Henig proper minimal points from other side are established. These connections
highlight the density of LPMs in minimals. Moreover, a linear characterization of LPMs
is provided. The required preliminaries are addressed in Section 2, and the main results
are given in Section 3.

2. PRELIMINARIES

In this section, some standard notations and definitions are addressed which are used
in the sequel. Given Ω ⊆ Rn, notations intΩ, convΩ, and clΩ stand for the interior, convex
hull, and the closure of Ω, respectively.

A nonempty set C ⊆ Rn is said to be a cone if λC ⊆ C for each λ ≥ 0. A cone C
is convex if and only if C + C ⊆ C. A cone C is called pointed if C ∩ (−C) = {0}.
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Furthermore, it is called nontrivial if C ̸= Rn and C ̸= {0}. A cone C is called an ordering
cone if it is nontrival, convex, closed and pointed.

The standard inner product is denoted by ⟨·, ·⟩. The nonnegative and positive dual
cones of a cone C ⊆ Rn are respectively defined as

C∗ := {d ∈ Rn : ⟨d, c⟩ ≥ 0, ∀c ∈ C},

C∗◦ := {d ∈ Rn : ⟨d, c⟩ > 0, ∀c ∈ C \ {0}}.
The cone generated by Ω ⊆ Rn, denoted by cone(Ω), is defined as cone(Ω) :=

⋃
λ≥0 λΩ.

The asymptotic cone to Ω is the set

As(Ω) =
{
d ∈ Rn : ∃

(
xν ∈ Ω, tν ↓ 0

)
s.t. tνxν → d

}
.

Hereafter, the notation x
Ω→ x̄ means x → x̄ while x ∈ Ω. The Bouligand and Clarke

tangent cones to Ω at x̄ are expressed as follows

T (x̄; Ω) :=
{
d ∈ Rn : ∃

(
tν ↓ 0, xν

Ω→ x̄
)
s.t. tν(xν − x̄) → d

}
,

TC(x̄; Ω) :=
{
d ∈ Rn : ∀

(
tν ↓ 0, xν

Ω→ x̄
)
, ∃ dν → d s.t. x̄+ tνdν ∈ Ω, ν ∈ N

}
.

It follows from the definitions that TC(x̄; Ω) ⊆ T (x̄; Ω). In contrast to T (x̄; Ω), the Clarke
tangent cone TC(x̄; Ω) is always convex. The contingent and Clarke normal cone to Ω at x̄
are respectively defined as

N(x̄; Ω) = −T (x̄; Ω)∗, NC(x̄; Ω) = −TC(x̄,Ω)
∗.

Given x̄ ∈ Ω, the Fréchet normal cone to Ω at x̄, is defined as

N̂(x̄; Ω) :=

{
d ∈ Rn : lim sup

x
Ω→x̄

⟨d, x− x̄⟩
∥x− x̄∥

≤ 0

}
.

The limiting/Mordukhovich normal cone [11] to Ω at x̄ is defined as

NL(x̄; Ω) =
{
d ∈ Rν : ∃

(
xν

Ω→ x̄, dν → d
)

with dν ∈ N̂(xν ; Ω), ν ∈ N
}
.

It is not difficult to show that N̂(x̄; Ω) ⊆ NL(x̄; Ω).

Definition 2.1. [11] (normal regularity of sets) A set Ω ⊆ Rn is called limiting normally
regular at x̄ ∈ Ω if NL(x̄; Ω) = N̂(x̄; Ω).

Let a nonempty set Ω ⊆ Rn and an ordering cone C ⊆ Rn be given. A vector x̄ ∈ Ω is
called a minimal point of Ω w.r.t C if (Ω − x̄) ∩ (−C) = {0}. The set of minimal points of
Ω w.r.t C is denoted by E[Ω, C].

Definition 2.2. [2, 3, 7] A point x̄ ∈ Ω is said to be
i) a Borwein proper minimal of Ω w.r.t C, written as x̄ ∈ Bor[Ω, C], if T (x̄; Ω + C) ∩

(−C) = {0}.
ii) a Benson proper minimal of Ω w.r.t C, written as x̄ ∈ Ben[Ω, C], if cl cone(Ω+C −

x̄) ∩ (−C) = {0}.
iii) a Henig proper minimal of Ω w.r.t C, written as x̄ ∈ He[Ω, C], if there is an order-

ing cone C ′ such that C \ {0} ⊆ int(C ′) and x̄ ∈ E[Ω, C ′].

It is known that

He[Ω, C] = Ben[Ω, C] ⊆ Bor[Ω, C] ⊆ E[Ω, C].(2.1)

The first equality in (2.1) comes from [7, Theorem 2.1] and [12, Proposition 2.1.4]. On the
other hand, as T (x̄; Ω) ⊆ clcone(Ω− x̄), then Ben[Ω, C] ⊆ Bor[Ω, C].
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In a very recently-published paper [14], we have defined a new proper minimality
notion, called limiting proper minimality. These points have been defined in terms of the
limiting (Mordukhovich) normal cone.

Definition 2.3. [14] A point x̄ ∈ E[Ω, C] is called a limiting proper minimal of Ω w.r.t C,
written as x̄ ∈ L[Ω, C], if NL(x̄; Ω + C) ∩ (−C∗◦) ̸= ∅.

The condition x̄ ∈ E[Ω, C] in Definition 2.3 cannot be dropped [14].

3. MAIN RESULTS

One of the main aims of this short paper is establishing the relationships between limit-
ing proper minimality and other proper minimality notions in finite-dimensional spaces.
Theorem 3.1 investigates the connection with Borwein proper minimality.

Theorem 3.1. Let Ω + C be limiting normally regular at x̄ ∈ Ω. Then, x̄ ∈ L[Ω, C] implies
x̄ ∈ Bor[Ω, C]. This converse holds if furthermore Ω+ C is closed.

Proof. Let x̄ ∈ L[Ω, C]. Taking limiting normal regularity into account, there exists some
0 ̸= d ∈ N̂(x̄; Ω + C) ∩ (−C∗◦).

Considering 0 ̸= v ∈ T (x̄; Ω + C), there are sequences xν ∈ Ω+ C and tν > 0 such that
tν(xν − x̄) → v. Since d ∈ N̂(x̄; Ω + C), we get

lim sup
xν−→x̄

⟨d, xν − x̄⟩
∥xν − x̄∥

≤ 0,

which implies ⟨d, v⟩ ≤ 0. So,

⟨d, v⟩ ≤ 0, v ∈ T (x̄; Ω + C).(3.2)

If x̄ /∈ Bor[Ω, C], then there exists some ῡ ̸= 0 such that ῡ ∈ T (x̄; Ω + C) ∩ (−C). Since
ῡ ∈ −C \ {0} and d ∈ −C∗◦, we have ⟨d, ῡ⟩ > 0. This contradicts (3.2).

To prove the converse, assume that x̄ ∈ Bor[Ω, C] while x̄ /∈ L[Ω, C]. Then

∅ =
(
NL(x̄; Ω + C) ∩ (−C∗◦)

)
⊇

(
N̂(x̄; Ω + C) ∩ (−C∗◦)

)
.

By applying a standard separation theorem [8, Theorem 3.16], there exists 0 ̸= p ∈ Rn

such that

(3.3) ⟨p, d⟩ ≥ 0, ∀d ∈ N̂(x̄; Ω + C),

(3.4) ⟨p, c⟩ ≤ 0, ∀c ∈ −C∗◦.

By (3.3) and limiting normal regularity, invoking [4, Theorem 11.36], we get

p ∈ (N̂(x̄; Ω + C))∗ =
(
clconv(N̂(x̄; Ω + C))

)∗
=

(
cl conv(NL(x̄; Ω + C))

)∗

= (NC(x̄; Ω + C))∗ = −TC(x̄; Ω + C) ⊆ −T (x̄; Ω + C).

On the other hand, by (3.4), p ∈ −(−C∗◦)∗ ⊆ C. Therefore, 0 ̸= −p ∈ T (x̄; Ω + C) ∩ (−C).
This contradicts x̄ ∈ Bor[Ω, C], and the proof is completed. □

Example 3.1 highlights the importance of limiting normal regularity assumption in
Theorem 3.1.
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Example 3.1. Let

Ω = {(x1, x2) ∈ R2 : x2 ≥ −x1} ∪ {(x1, x2) ∈ R2 : x2 > x1},
C = {(x1, x2) ∈ R2 : x1 = x2 ≥ 0}, x̄ = (0, 0).

Then, NL(x̄; Ω +C) = {(x1, x2) : x1 = x2 ≤ 0} while N̂(x̄; Ω +C) = {(0, 0)}. So, Ω+C is
not limiting normally regular at x̄. Furthermore,

T (x̄; Ω + C) ∩ (−C) = cl(Ω) ∩ (−C) = {(x1, x2) : x1 = x2 ≤ 0},

NL(x̄; Ω + C) ∩ (−C∗◦) ̸= ∅.
These imply x̄ ∈ L[Ω, C] while x̄ /∈ Bor[Ω, C].

The closedness of Ω+ C is essential for converse part in Theorem 3.1:

Example 3.2. Let
Ω = {(x1, x2) ∈ R2 : x2 > −|x1|},

C = {(0, x2) ∈ R2 : x2 ≥ 0}, x̄ = (0, 0).

Here, NL(x̄; Ω + C) = N(x̄; Ω + C) = {(0, 0)}, and so Ω + C is limiting normally regular
at x̄. Furthermore

T (x̄; Ω + C) ∩ (−C) = cl(Ω) ∩ (−C) = {(0, 0)}, NL(x̄; Ω + C) ∩ (−C∗◦) = ∅.
These imply x̄ ∈ Bor[Ω, C] while x̄ /∈ L[Ω, C]. Notice that Ω+ C = Ω is not closed.

Theorem 3.2 addresses the relationship between limiting and Henig proper minimality.

Theorem 3.2. Let Ω+ C be limiting normally regular at x̄ ∈ Ω.
i) If Ω+ C is closed, then x̄ ∈ He[Ω, C] implies x̄ ∈ L[Ω, C].

ii) If As(Ω) ∩ (−C) = {0}, then x̄ ∈ L[Ω, C] implies x̄ ∈ He[Ω, C].

Proof. i) Apply Theorem 3.1 and relation (2.1). ii) Apply Theorem 3.1 and [7, Theorems
2.1 and 2.2]. □

Corollary 3.1 is a direct consequence of Theorem 3.2 due to (2.1).

Corollary 3.1. Let Ω+ C be limiting normally regular at x̄ ∈ Ω.
i) If Ω+ C is closed, then x̄ ∈ Ben[Ω, C] implies x̄ ∈ L[Ω, C].

ii) If As(Ω) ∩ (−C) = {0}, then x̄ ∈ L[Ω, C] implies x̄ ∈ Ben[Ω, C].

In Example 3.2, Ω + C is not closed and x̄ ∈ Ben[Ω, C], while x̄ /∈ L[Ω, C]. This high-
lights the necessity to closedness of Ω+ C in Corollary 3.1(i).

Remark 3.1. One of the most powerful tools for working with limiting normal cones is
“exact extremal principle”; see [11]. In the current work, for avoiding complicated proofs,
we did not use this principle. As can bee seen from [14, Theorem 3.5], if one applies this
principle in the proof of Theorem 3.2, then limiting normal regularity assumption will be
redundant in Theorem 3.2(i), and then in Corollary 3.1(i).

Example 3.3 gives a situation to show that if condition As(Ω) ∩ (−C) = {0} does not
hold, then a limiting proper minimal may not be a Benson proper minimal.

Example 3.3. Let

Ω = {(x1, x2) ∈ R2 : x1 ≥ −x2} ∪ {(x1, x2) ∈ R2 : x1 ≥ 1 or x2 ≥ 1},
x̄ = (0, 0), and C = R2

+ := {(x1, x2) ∈ R2 : x1, x2 ≥ 0}. Here, Ω is limiting normally
regular at x̄. Furthermore,

cl cone(Ω + C − x̄) = R2 \ {(x1, x2) ∈ R2 : x1 < 0, x2 < 0},
NL(x̄; Ω + C) = {(x1, x2) : x1 = x2 ≤ 0}.
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Thus

cl cone(Ω + C − x̄) ∩ (−C) = {(x1, 0) : x1 ≤ 0} ∪ {(0, x2) : x2 ≤ 0} ≠ {(0, 0)},
and NL(x̄; Ω+C)∩ (−C∗◦) ̸= ∅. These imply x̄ ∈ L[Ω, C] while x̄ /∈ Ben[Ω, C]. Notice the
As(Ω) ∩ (−C) ̸= {(0, 0)}.

By Example 3.4, it is seen that if limiting normal regularity is not fulfilled, then a limit-
ing proper minimal may not be a Benson proper minimal.

Example 3.4. Let Ω = {(x1, x2) ∈ R2 : x2 ≥ −|x1|, x2 ≥ −1} ∪ {(x1, x2) ∈ R2 : x1 ≥
1, x2 ≥ −2} ∪ {(x1, x2) ∈ R2 : x1 ≤ −1, x2 ≥ −2, (x1, x2) ̸= (−1,−2)}, C := {(x1, x2) ∈
R2 : x2 = 2x1 ≥ 0}, x̄ = (0, 0). We have, NL(x̄; Ω + C) = {(x1, x2) : x2 = x1 ≤ 0} while
N̂(x̄; Ω + C) = {(0, 0)}. So, Ω+ C is not limiting normally regular at x̄. Furthermore,

As(Ω)∩ (−C) = {(0, 0)}, cl cone(Ω+C− x̄)∩ (−C) ̸= {(0, 0)}, NL(x̄; Ω+C)∩ (−C∗◦) ̸= ∅.

These imply x̄ ∈ L[Ω, C] while x̄ /∈ Ben[Ω, C].

Corollary 3.2 results from Theorems 3.1 and 3.2 invoking [7, Theorems 2.1 and 2.2] and
(2.1).

Corollary 3.2. Let Ω+ C be limiting normally regular at x̄ ∈ Ω.
i) If Ω+ C is closed, then

x̄ ∈ Ben[Ω, C] ⇐⇒ x̄ ∈ He[Ω, C] =⇒ x̄ ∈ Bor[Ω, C] =⇒ x̄ ∈ L[Ω, C].

ii) If As(Ω) ∩ (−C) = {0}, then

x̄ ∈ L[Ω, C] =⇒ x̄ ∈ Bor[Ω, C] ⇐⇒ x̄ ∈ He[Ω, C] ⇐⇒ x̄ ∈ Ben[Ω, C].

iii) If Ω is compact, then

x̄ ∈ L[Ω, C] ⇐⇒ x̄ ∈ Bor[Ω, C] ⇐⇒ x̄ ∈ He[Ω, C] ⇐⇒ x̄ ∈ Ben[Ω, C].

Corollary 3.3 presents an important result showing that the set of limiting proper min-
imals is dense in that of minimals (under appropriate assumptions).

Corollary 3.3. Let Ω + C be limiting normally regular. Under either (i) or (ii), L[Ω, C] is dense
in E[Ω, C].

(i)] Ω+ C is closed and As(Ω + C) ∩ (−C) = {0}; (ii)] Ω is compact.

Proof. Apply [7, Theorem 5.1] and Theorem 3.2(i). □

The next result provides a characterization of limiting proper minimal points utilizing
a linear scalarization technique.

Theorem 3.3. Let x̄ ∈ Ω be given.
a) If there exists some λ ∈ C∗◦ such that ⟨λ, x̄⟩ ≤ ⟨λ, x⟩ for any x ∈ Ω, then x̄ ∈ L[Ω, C].
b) If Ω + C is convex and x̄ ∈ L[Ω, C], then there exists some λ ∈ C∗◦ such that ⟨λ, x̄⟩ ≤

⟨λ, x⟩ for any x ∈ Ω.

Proof. (a) It is not difficult to see that x̄ ∈ E[Ω, C]. As λ ∈ C∗◦ and N̂(x̄; Ω + C) ⊆
NL(x̄; Ω +C), it is sufficient to prove −λ ∈ N̂(x̄; Ω +C). Since λ ∈ C∗◦ and ⟨λ, x̄⟩ ≤ ⟨λ, x⟩
for any x ∈ Ω, we get

⟨−λ, x+ c− x̄⟩ ≤ 0, ∀ x ∈ Ω ⇒ −λ ∈ N̂(x̄; Ω + C).

(b)] To prove the converse, let x̄ ∈ L[Ω, C]. Then x̄ ∈ E[Ω, C] and there is some d ∈
NL(x̄; Ω + C) ∩ (−C∗◦). As Ω + C is convex, ⟨d, x − x̄⟩ ≤ 0 for each x ∈ Ω. By setting
λ = −d, the proof is completed.

□
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Example 3.3 shows the second part of the above theorem may not hold in the absence
of the convexity of Ω+ C. We close the paper by two remarks.

Remark 3.2. The relationships between proximal proper minimal points and robust so-
lutions from one side and limiting proper minimal points from other side in Euclidean
finite-dimensional spaces have been proved in [14].

Remark 3.3. As discussed in [14], one cannot derive desired properties for limiting proper
minimals if replaces the condition NL(x̄; Ω+C)∩(−C∗◦) ̸= ∅ in defining these points with
NL(x̄; Ω) ∩ (−C∗◦) ̸= ∅. Provided that 0 ∈ E[clcone(Ω), C]; See [14, Theorem 3.24],(

NL(x̄; Ω + C) ∩ (−C∗◦)

)
⊆

(
NL(x̄; Ω) ∩ (−C∗◦)

)
.

REFERENCES

[1] Ansari, Q. H., Yao, J. C., Recent Developments in Vector Optimization, Springer, NY, 2012
[2] Benson, H. P., An improved definition of proper efficiency for vector maximization with respect to cones, J. Math.

Anal. Appl., 71 (1979), 232–241
[3] Borwein, J. M., Proper efficient points for maximization with respect to cones, SIAM J. Optimiz., 15 (1977), 57–63
[4] Clarke, F. H., Functional Analysis, Calculus of Variations and Optimal Control, Springer, London, 2013
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problem, Bul. Ştiinţ. Univ. Baia Mare, Ser. B 15, (1999), No. 1-2, 79–87
[6] Geoffrion, A., Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22 (1968), 618–630
[7] Henig, M., Proper efficiency with respect to cones, J. Optimiz. Theory App., 36 (1982), 387–407
[8] Jahn, J., Vector Optimization, Springer, Berlin, 2012
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