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On solving split best proximity point and equilibrium
problems in Hilbert spaces

JUKRAPONG TIAMMEE and SUTHEP SUANTAI

ABSTRACT. In this paper, we introduce a split best proximity point and equilibrium problem, and find a
solution of the best proximity point problem such that its image under a given bounded linear operator is a
solution of the equilibrium problem. We construct an iterative algorithm to solve such problem in real Hilbert
spaces and obtain a weak convergence theorem. Finally, we also give an example to illustrate our result.

1. INTRODUCTION

In this paper, we introduce a new split problem, which is called a split best proximity
point and equilibrium problems (SBPEP). Let H1 and H2 be two real Banach spaces. Let
C and D be two subsets of H1 with d(C,D) = inf{∥c − d∥ : c ∈ C and d ∈ D}, K a
closed convex subset of H2, A : H1 → H2 a bounded linear operator. Let S : C → D be a
mapping and f : K ×K → R be a bi-function. The SBPEP is

(1.1) to find a element p ∈ C such that ∥p− Sp∥ = d(C,D),

and

(1.2) such that u := Ap ∈ K solves f(u, v) ≥ 0,∀v ∈ K.

If we consider only (1.1), then (1.1) is a classical best proximity point problem. The best
proximity point problem for nonlinear mappings is an interesting topic in the optimiza-
tion theory (see [2, 3, 9]). It is well known that the concept of a best proximity point
includes that of a fixed point as a special case.

On the other hand, if we consider only (1.2), then (1.2) is a classical equilibrium point
problem. Various problems arising in physics, optimization and economics can be mod-
eled as equilibirum problems. So equilibrium problem plays very important role in solv-
ing existence of solution of these problems (see [4, 11]). Some authors have proposed
some methods to find the solution of the best proximity point problems (see [13, 5]) and
equilibrirum problem (see [4, 11, 6, 7, 8, 10]).

In this paper, we construct some iterative algorithm for solving the SBPEP when the
nonlinear mapping is best proximally nonexpansive in Hilbert spaces. Some weak con-
vergence theorems are established. The results obtained in this paper can be established as
the common solution of best proximity point problem and equilibrium problem. Finally,
an example are given to illustrate our result.
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2. PRELIMINARIES

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and the norm ∥ · ∥. Recall that a
mapping T : H → H is said to be

(1) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ for allx, y ∈ H;

(2) quasi-nonexpansive if F (T ) ̸= ∅ and

∥Tx− q∥ ≤ ∥x− q∥ for all x ∈ H, q ∈ F (T ),

where F (T ) = {x ∈ C : Tx = x}. Observe that a nonexpansive mapping with at least one
fixed point is quasi-nonexpansive.

Let A and B be two nonempty closed convex subsets of H . We define A0 and B0 by the
following sets:

A0 = {x ∈ A : ∥x− y∥ = D(A,B), for some y ∈ B},
B0 = {y ∈ B : ∥x− y∥ = D(A,B), for some x ∈ A}.

We recall some useful definitions and lemmas, which will be used in the later sections.
Let C be a nonempty closed convex subset of Hilbert space H . For any x ∈ H , its

projection onto C is defined as

PC(x) = argmin{∥y − x∥|y ∈ C}
The mapping PC : H → C is called a projection operator, which has the well-known prop-
erties in the following lemma.

Lemma 2.1 ([1]). Let C be a nonempty closed convex subset of Hilbert space H . Then for all
x, y ∈ H and z ∈ C,

(1) ⟨PCx− x, z − PCx⟩ ≥ 0;
(2) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩;
(3) ∥PCx− z∥2 ≤ ∥x− z∥2 − ∥PCx− x∥2;
(4) ∥z − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− z∥2

A Banach space (X, ∥ · ∥) said to satisfy Opial’s condition if, for each sequence {xn} in X
which converges weakly to a point x ∈ X , we have

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥, ∀y ∈ X, y ̸= x.

It is well-known that each Hilbert space satisfies Opial’s condition.

Lemma 2.2 ([13]). Let A,B be two nonempty subsets of a uniformly convex Banach spaces X
such that A is closed and convex. Suppose that T : A → B is a mapping such that T (A0) ⊆ B0.
Then F (PAT |A0

) = BestA(T ).

Definition 2.1 ([13]). Let A and B be two nonempty subsets of a real Hilbert space H and
C a subset of A. A mapping T : A → B is said to be C-nonexpansive if

∥Tx− Tz∥ ≤ ∥x− z∥
for all x ∈ A and z ∈ C. If C = BestAT , we say that T is a best proximally nonexpansive
mapping.

Definition 2.2 ([12]). Let A and B be closed subsets of a metric space (X, d). Then, A
and B are said to satisfy the P-property if, for x1, x2 ∈ A0 and y1, y2 ∈ B0, the following
implication holds:

d(x1, y1) = d(x2, y2) = D(A,B) → d(x1, x2) = d(y1, y2).
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Notic that, for any pair (A,B) of nonempty closed and convex subsets of a real Hilbert
space, H has the P-property.

Lemma 2.3 ([5]). Let A,B be two nonempty subsets of a uniformly convex Banach space X such
that A is closed and convex. Suppose that T : A → B is mapping such that T (A0) ⊆ B0. Then,
T |A0 satisfies the proximal property if and only if I − PAT |A0 is demiclosed at zero.

Lemma 2.4 ([4]). Let K be a nonempty closed convex subset of H and F be a bi-function of K×K
into R satisfying the following conditions:
(A1) F (x, x) = 0 for all x ∈ K;
(A2) is monotone, that is, F (x, y) + F (y, x) ≤ 0 for all x, y ∈ K;
(A3) for each x, y ∈ K,

lim sup
t→0+

F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ K, y 7→ F (x, y) is convex and lower semi-continuous.
Let r > 0 and x ∈ H . Then, there exists z ∈ K such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, for all x, y ∈ K.

Lemma 2.5 ([8]). Let K be a nonempty closed convex subset of H and let F be a bi-function of
K ×K into R satisfying (A1)− (A4). For r > 0 and x ∈ H , define a mapping TF

r : H → K as
follows:

(2.3) TF
r (x) =

{
z ∈ K : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0 ∀y ∈ K

}
for all x ∈ H . Then the following hold:

(1) TF
r is single-valued;

(2) TF
r is firmly-nonexpansive, that is, for any x, y ∈ H ,

∥TF
r (x)− TF

r (y)∥2 ≤ ⟨TF
r (x)− TF

r (y), x− y⟩;

(3) F (TF
r ) = EP (F ) for all r > 0;

(4) EP (F ) is closed and convex.

Lemma 2.6 ([10]). Let K be a nonempty closed convex subset of H . For x ∈ H , let the mapping
TF
r be the same as in Lemma 2.5. Then for r, s > 0 and x, y ∈ H ,

∥TF
r (x)− TF

r (y)∥ ≤ ∥y − x∥+ |s− r|
s

∥TF
s (y)− y∥.

3. MAIN RESULTS

In this section, we prove some weak convergence theorem for SBPEP in Hilbert spaces.

Theorem 3.1 (Weak convergence theorem). Let H1 and H2 be two real Hilbert spaces and
C,D ⊂ H1,K ⊂ H2 be nonempty closed convex subsets of H1 and H2, respectively. Let A :
H1 → H2 be a bounded linear operator. Let S : C → D be best proximally nonexpansive
mapping such that S(C0) ⊂ D0 with BestCS ̸= ∅ and f : K ×K → R a bi-function satisfying
(A1) − (A4) with EP (f) ̸= ∅. Suppose that S satisfies the proximal property. Let {xn} be a
sequence generated by

x0 ∈ C0,

un = (1− αn)xn + αnPCSxn, ∀n ≥ 1,

xn+1 = PC

[
un + γA∗(T f

rn − I)Aun

]
, n ∈ N,

(3.4)
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where {αn} ⊂ (0, 1] with lim supn→∞ αn < 1, rn ⊂ (0,∞) with lim infn→∞ rn > 0 and
γ ∈

(
0, 1

∥A∗∥2

)
is a constant. Suppose that Ω = {p ∈ BestCS : Ap ∈ EP (f)} ̸= ∅, then the

sequence {xn} converges waekly to an element x∗ ∈ Ω.

Proof. Let p ∈ Ω. So p ∈ BestCS and Ap ∈ EP (f). Since S is a best proximally nonexpan-
sive mapping we have

∥un − p∥2 = (1− αn)∥xn − p∥2 + αn∥PCSxn − p∥2 − αn(1− αn)∥PCSxn − xn∥2

≤ (1− αn)∥xn − p∥2 + αn∥xn − p∥2 − αn(1− αn)∥PCSxn − xn∥2

≤ ∥xn − p∥2 − αn(1− αn)∥PCSxn − xn∥2.
(3.5)

By Lemma 2.5 and p ∈ EP (f), we have

∥T f
rnAun −Ap∥2 = ∥T f

rnAun − T f
rnAp∥2

≤ ⟨T f
rnAun − T f

rnAp,Aun −Ap⟩

=
1

2

[
∥T f

rnAun − T f
rnAp∥2 + ∥Aun −Ap∥2 − ∥T f

rnAun −Aun∥2
]
,

which implies that

(3.6) ∥T f
rnAun −Ap∥2 ≤ ∥Aun −Ap∥2 − ∥T f

rnAun −Aun∥2.

Consider, by (3.6), we obtain

2γ⟨un − p,A∗(T f
rn − I)Aun⟩

= 2γ⟨A(un − p, (T f
rn − I)Aun)⟩

= ⟨A(un − p) + (T f
rn − I)Aun − (T f

rn − I)Aun, (T
f
rn − I)Aun⟩

= 2γ
[
⟨T f

rnAun −Ap, (T f
rn − I)Aun⟩ − ∥(T f

rn − I)Aun∥2
]

= 2γ

[
1

2
∥T f

rnAun −Ap∥2 + 1

2
∥(T f

rn − I)Aun∥2 −
1

2
∥Aun −Ap∥2 − ∥(T f

rn − I)Aun∥2
]

≤ 2γ

[
1

2
∥Aun −Ap∥2 + 1

2
∥(T f

rn − I)Aun∥2 −
1

2
∥Aun −Ap∥2 − ∥(T f

rn − I)Aun∥2
]

= 2γ

[
−1

2
∥(T f

rn − I)Aun∥2
]

= −γ∥(T f
rn − I)Aun∥2.

(3.7)

From, we have

∥xn+1 − p∥2

= ∥PC

[
un + γA∗(T f

rn − I)Aun

]
− p∥2

= ∥PC

[
un + γA∗(T f

rn − I)Aun

]
− PCp∥2

≤ ∥un + γA∗(T f
rn − I)Aun − p∥2

= ∥un − p∥2 + γ2∥A∗∥2∥(T f
rn − I)Aun∥2 + 2γ⟨un − p,A∗(T f

rn − I)Aun⟩

≤ ∥un − p∥2 + γ2∥A∗∥2∥(T f
rn − I)Aun∥2 − γ∥(T f

rn − I)Aun∥2

= ∥un − p∥2 − γ(1− γ∥A∗∥2)∥(T f
rn − I)Aun∥2.

(3.8)
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Since γ ∈ (0,
1

∥A∗∥2
), γ(1− γ∥A∗∥2) > 0. It follows from (3.5) and (3.8) that

(3.9) ∥xn+1 − p∥ ≤ ∥un − p∥ ≤ ∥xn − p∥ for all n ∈ N.

Therefore limn→∞ ∥xn − p∥ = r ≥ 0. Again by (3.9), we have limn→∞ ∥un − p∥ = r. By
(3.5), we have limn→∞ ∥PCSxn − xn∥ = 0, which implies that

(3.10) ∥un − xn∥ = αn∥PCSxn − xn∥ → 0.

Because limn→∞ ∥xn − p∥ = r, then {xn} is bounded, hence {xn} has a weakly conver-
gence subsequence {xnj}. Assume that xnj ⇀ x∗ for some x∗ ∈ C. Then unj ⇀ x∗, and
Aunj ⇀ Ax∗ by (3.10) and A is a bounded linear operator.

Now we prove x∗ ∈ Ω, that is x∗ ∈ BestCS and Ax∗ ∈ EP (f). Since limn→∞∥un−p∥ =
limn→∞ ∥xn − p∥ = r and (3.5), we have

(3.11) lim
n→∞

∥PCSxn − xn∥ = 0.

Since S satisfy the proximal property, by Lemma 2.3, we have I − PCS|C0 is demiclosed
at zero. It follows by (3.11) that PCSx

∗ = x∗, i.e., x∗ ∈ BestCS. Since limn→∞∥un − p∥ =
limn→∞ ∥xn − p∥ = r and (3.8), we have

(3.12) lim
n→∞

∥T f
rnAun −Aun∥ = 0.

Otherwise, if T f
rnAx∗ ̸= Ax∗ for some r > 0, then by Opial’s condition, Lemma 2.6 and

(3.8), we have

lim inf
j→∞

∥Aunj
−Ax∗∥ < lim inf

j→∞
∥Aunj

− T f
rnj

Ax∗∥

≤ lim inf
j→∞

{
∥Aunj − T f

rnj
Aunj

∥+ ∥T f
rnj

Aunj
− T f

r Ax∗∥
}

= lim inf
j→∞

∥T f
rnj

Aunj − T f
r Ax∗∥

≤ lim inf
j→∞

(
∥Aunj −Ax∗∥+

|rnj
− r|
r

∥T f
r Aunj

−Aunj
∥
)

= lim inf
j→∞

∥Aunj
−Ax∗∥,

which is a contradiction. Therefore T f
r Ax∗ = Ax∗ for all r > 0, i.e., Ax∗ ∈ EP (f). The

proof is completed. □

By setting H = H1 = H2 and A := I (the identity mapping) in Theorem 3.1, we have
immediately the following collary.

Corollary 3.1. Let H be a real Hilbert spaces, and C,D be nonempty closed convex subsets of
H . Let S : C → D be best proximally nonexpansive mapping such that S(C0) ⊂ D0 with
BestCS ̸= ∅ and f : C×C → R a bi-function satisfying (A1)−(A4) with EP (f) ̸= ∅. Suppose
that S satisfies the proximal property. Let {xn} be a sequence generated by

x0 ∈ C0,

un = (1− αn)xn + αnPCSxn,

xn+1 = (1− γ)un + γT f
rnun, n ∈ N,

where {αn} ⊂ (0, 1] with lim supn→∞ αn < 1, rn ⊂ (0,∞) with lim infn→∞ rn > 0 and
γ ∈

(
0, 1

∥I∥2

)
is a constant. Suppose that BestCS ∩ EP (f) ̸= ∅, then the sequence {xn}

converges weakly to an element x∗ ∈ BestCS ∩ EP (f).
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By setting f(x, y) = 0 for all x, y ∈ C, rn = 1 for all n ∈ N in Corollary 3.1. Then
we obtain the algorithm which converges weakly to the best proximity point for best
proximally nonexpansive operators, which is difference from general Mann algorithm
defined by Suparatulatorn et al [14].

Corollary 3.2. Let H be a real Hilbert spaces, and C,D be nonempty closed convex subsets of
H . Let S : C → D be best proximally nonexpansive mapping such that S(C0) ⊂ D0 with
BestCS ̸= ∅. Suppose that S satisfies the proximal property. Let {xn} be a sequence generated by{

x0 ∈ C0,

xn+1 = (1− αn)xn + αnPCSxn, n ∈ N,

where {αn} ⊂ (0, 1] with lim supn→∞ αn < 1 and γ ∈
(
0, 1

∥I∥2

)
is a constant. Then the

sequence {xn} converges weakly to an element x∗ ∈ BestCS.

By setting S := I (the identity mapping) in Corollary 3.1, we have immediately the
following collary

Corollary 3.3. Let H be a real Hilbert spaces, and C be nonempty closed convex subsets of H . Let
f : C × C → R a bi-function satisfying (A1) − (A4) with EP (f) ̸= ∅. Let {xn} be a sequence
generated by {

x0 ∈ C,

xn+1 = (1− γ)xn + γT f
rnxn, n ∈ N,

where rn ⊂ (0,∞) with lim infn→∞ rn > 0 and γ ∈
(
0, 1

∥I∗∥2

)
is a constant. Then the sequence

{xn} converges weakly to an element x∗ ∈ EP (f).

4. NUMERICAL EXAMPLE

We give an example and numerical result for supporting our main theorem.

Example 4.1. Let H1 = R2, H2 = R, C = [−1, 0]× [0, 1], D = [3, 7]× [0, 1] and K = [−3, 0].
Define two mappings A : R2 → R and S : C → D by A(x(1), x(2)) = 3x(1) for all (x(1), x(2)) ∈

R2 and S(x(1), x(2)) = (3− x(1),
x(2)

2
) for all (x(1), x(2)) ∈ C. Then C0 = {(0, z) : 0 ≤ z ≤ 1}.

Let f(u, v) = (u − 1)(v − u) for all u, v ∈ K. Choose αn =
n

2n+ 1
, rn =

n

n+ 1
and γ =

1

20
.

It is easy to check that f satisfies all conditions in Theorem 3.1 such that EP (f) = {0} and S is a
best proximally nonexpansive mappings such that S(C0) ⊆ D0 with BestCS = {(0, 0)}

Then Algorithm (3.4) can be simplified as

x0 ∈ {(0, z) : 0 ≤ z ≤ 1}

un =

(
(n+ 1)x

(1)
n

2n+ 1
,
(3n+ 2)x

(2)
n

4n+ 2

)
,

xn+1 =
(
1, u(2)

n

)
, ∀n ≥ 1,

Next, choosing the initial point x0 = (0, 1) and the stopping criterion for our testing method
is En = ∥xn+1 − xn∥ ≤ 1 × 10−9. The following table shows the numerical experiment of the
proposed algorithm. From Table 1, we observe that the sequence {xn} converges to (0, 0) which is
a best proximity point of S and A(0, 0) = 0 is an equilibrium point of f . Figure 1 shows the errors
En = ∥xn+1 − xn∥ in each iteration.
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n xn En

0 (0, 1) -
1 (0, 0.8333) 0.1667
2 (0, 0.667) 0.1667
3 (0, 0.5238) 0.1429
...

...
...

70 (0, 1.4320e-08) 1.5758e-09
71 (0, 1.0765e-09) 1.1848e-09
72 (0, 4.4745e-09) 8.9082e-10

TABLE 1. Numerical results for Algorithm 3.4

FIGURE 1. The error ploting of En = ∥xn+1 − xn∥

5. CONCLUSION

This paper introduced and discussed the split best proximity point and equilibrium
problems in Hilbert spaces. We proposed an algorithms for solving such problems. We
also considered its convergence results and gives a numerical example.
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