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Characterizing the Lagrange multiplier rule in nonconvex
set-valued optimization

S. ATARZADEH1 , M. FAKHAR1 and J. ZAFARANI2

ABSTRACT. In this article, by using the notions of contingent derivative, contingent epiderivative and gen-
eralized contingent epiderivative, we obtain some characterizations of the Lagrange multiplier rule at points
which are not necessarily local minima.

1. INTRODUCTION AND PRELIMINARIES

Set-valued optimization is very known in optimization theory and Economics ( see for
instance [1, 2, 3, 10, 13]). In recent years, many scholars have a great attention to the
set-valued optimization problems; see [3, 4, 8, 11, 13, 17] and the references therein. In set-
valued optimization, derivative of a set-valued map plays an important role in different
aspects. These derivatives have been formulated in different ways. Aubin [1] introduced
the concept of the contingent derivative. While, Chen and Jahn [3] introduced a gener-
alized contingent epiderivative of set-valued map, which exists under standard assump-
tions.
Lagrange [14] published his multiplier rule, which is a vital tool in constrained optimiza-
tion. The Lagrange rule remains valid in the vector optimization problem. Jahn and Khan
[11] extended the Lagrange rule to set-valued optimization for the notion of generalized
contingent epiderivative. However, it is important to find some conditions ensuring that
the multiplier of the objective function is nonzero. In scalar and vector optimization the-
ory of such conditions are referred to as constraint qualification.
We use the notions of contingent derivative, contingent epiderivative and generalized
contingent epiderivative and obtain some necessary and sufficient conditions for estab-
lishing the Lagrange multiplier rule. Also similar results by weak contingent epideriva-
tive and the second order composed adjacent contingent derivatives are obtained.
Here, we give some notation and definitions, which will be used in the sequel. Let X
be a normed space and let A be a nonempty subset of X . The symbols int(A), A, co(A)
and co(A) denote the interior, closure, convex hull and closed convex hull of A, respec-
tively. A nonempty subset C of X is called a convex cone if C is convex and tC ⊆ C for
any t ≥ 0. We say that the cone C is solid whenever int(C) ̸= ∅ and it is called pointed
if C ∩ {−C} = {0}. Also the smallest cone containing of a nonempty subset B of X is
denoted by cone(B). It is easy to see that

cone(B) = ∪t≥0tB.
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Additionally, we set
cone+(B) = ∪t>0tB.

Let X and Y be normed spaces and F : X ⇒ Y be a set-valued map. Let C ⊂ Y be a
closed convex cone inducing a partial ordering in Y . The effective domain, the graph and
the epigraph of F are defined as follows:

dom(F ) := {x ∈ X | F (x) ̸= ∅},

graph(F ) := {(x, y) ∈ X × Y | y ∈ F (x)},
epi(F ) := {(x, y) ∈ X × Y | x ∈ X, y ∈ F (x) + C}.

Let A be a subset of Y , an element ȳ ∈ A is said to be a minimal point of A if A∩(ȳ−C) =
{ȳ}. The set of all minimal points of A with respect to the cone C will be denoted by
Min(A,C).
If int(C) ̸= ∅, then ȳ ∈ A is said to be a weakly minimal point of A if A ∩ (ȳ − int(C)) = ∅.
The set of all weakly minimal points of A with respect to cone C, will be denoted by
WMin(A,C).
Throughout this paper, let X , Y , Z be real normed spaces, C and D be pointed, closed
convex cone in Y and Z, respectively. Suppose S is a nonempty subset of X and F :
S ⇒ Y and G : S ⇒ Z are two set-valued maps. We consider the following set-valued
optimization problems:

(P) minF (x) subject to x ∈ S

and
(CP) minF (x) subject to x ∈ S1 := {x ∈ S | G(x) ∩ (−D) ̸= ∅}.

Let x̄ ∈ S1. The point (x̄, ȳ) ∈ graph(F ) is a (CP)- minimizer, if ȳ ∈ Min(F (S1), C); that is
F (S1) ∩ (ȳ − C) = {ȳ}, where F (S1) = ∪x∈S1

F (x).
Suppose that x̄ ∈ S. The contingent cone (resp. the adjacent cone ) of S at x̄, T (S, x̄) is

defined as follows:

T (S, x̄) := {x ∈ X : ∃tk ↓ 0,∃xk ∈ X,xk → x, x̄+ tkxk ∈ S,∀k}.

(resp. A(S, x̄) := {x ∈ X : ∀{λn} ⊂ R+\{0},∃{xn}n∈N ⊂ X,xn → x, x̄+λnxn ∈ S, ∀n ∈ N}.)
If T (S, x̄) = A(S, x̄), we say that the set S is derivable at x̄.
Now, we give the notions of contingent derivative, contingent epiderivative and general-
ized contingent epiderivative of a set-valued map.

Definition 1.1. [1, 3, 12] Assume that x̄ ∈ S and (x̄, ȳ) ∈ graph(F ).
(1) A set-valued map DF (x̄, ȳ) : X ⇒ Y which is defined by

DF (x̄, ȳ)(x) := {y ∈ Y | (x, y) ∈ T (graph(F ), (x̄, ȳ))}

is called the contingent derivative of F at (x̄, ȳ).
(2) A single valued map DEF (x̄, ȳ) : X → Y is called the contingent epiderivative of

F at (x̄, ȳ), if the epigraph of DEF (x̄, ȳ) coincides with the contingent cone to the
epigraph of F at (x̄, ȳ), that is epi(DEF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ)).

(3) A set-valued map DgF (x̄, ȳ) : X ⇒ Y , is called generalized contingent epideriva-
tive of F at (x̄, ȳ), if the following identity holds

DgF (x̄, ȳ)(x) = Min(D(F + C)(x̄, ȳ)(x), C), x ∈ dom(D(F + C)(x̄, ȳ)).

Remark 1.1. If int(C) ̸= ∅, then we can replace the ”Min” in the Definition 1.1 (3) by
”WMin” and define similarly DwF (x̄, ȳ)(.), the weak contingent epiderivative of F at
(x̄, ȳ).
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The map F is called Lipschitz-like around (x̄, ȳ) ∈ graph(F ), if there exist a constant
L ⩾ 0 and neighborhoods U of x̄ and V of ȳ such that for every x1, x2 ∈ U ∩ dom(F ), one
has

F (x1) ∩ V ⊆ F (x2) + L||x1 − x2||BY ,

where BY is the closed unit ball of Y.

As a necessary optimality condition for set-valued optimization problem, we refer to
the following Lagrange multiplier rule along with a constraint qualification.

Theorem 1.1 (Theorem 12.1.11, [13]). Let C, D be solid cones. For x̄ ∈ S, let (x̄, ȳ) ∈
graph(F ), be a local weak minimizer of (CP ), and let z̄ ∈ G(x̄) ∩ (−D). Assume that either
(F + C) is Lipschitz-like around (x̄, ȳ) or (G + D) is Lipschitz-like around (x̄, z̄). Suppose
that either epi(F ) is derivable at (x̄, ȳ) or epi(G) is derivable at (x̄, z̄). Let (D(F + C)(x̄, ȳ),
D(G + D)(x̄, z̄))(Ω) be convex, where Ω := dom(D(F + C)(x̄, ȳ)) ∩ dom(D(G + D)(x̄, z̄)).
Then there exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)}, ξ ∈ C+, ζ ∈ D+:

ξ(y) + ζ(z) ⩾ 0,∀(y, z) ∈ (D(F + C)(x̄, ȳ), D(G+D)(x̄, z̄))(Ω).

Furthermore, if additionally we consider the following constraint qualification

D(G+D)(x̄, ȳ)(Ω) + cone(D + z̄) = Z,

then ξ ̸= 0.

2. MAIN RESULTS

In this section, we give some characterizations of the Lagrange multiplier rule at points
which are not necessarily local minima. Theorems of alternative type, play an important
role in optimization. In the following we give an alternative theorem for the contingent
derivative.

Theorem 2.2. (Alternative type) Suppose that C, D are solid, x̄ ∈ S1, (x̄, ȳ) ∈ graph(F )
and z̄ ∈ G(x̄) ∩ −D. Let B be a nonempty cone subset of dom(D(F + C)(x̄, ȳ)) ∩ dom(D(G+
D)(x̄, z̄)), and let (D(F+C)(x̄, ȳ), D(G+D)(x̄, z̄))(B) be convex, then only one of the following
statements holds.

(i) There exists v ∈ B such that

D(F + C)(x̄, ȳ)(v) ∩ (−int(C)) ̸= ∅ and D(G+D)(x̄, z̄)(v) ∩ (−int(D)) ̸= ∅.
(ii) There exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)} such that ξ ∈ C+, ζ ∈ D+, ζ(z̄ = 0 and

ξ(y) + ζ(z) ⩾ 0, ∀(y, z) ∈ (D(F + C)(x̄, ȳ), D(G+D)(x̄, z̄))(B).

Proof. Consider A := Φ(B) + (0, z̄), where Φ := (D(F +C)(x̄, ȳ), D(G+D)(x̄, z̄)), then A
is convex. From standard separation theorem, exactly one of the following two assertions
holds.

(i) A ∩ (−int(C ×D)) ̸= ∅.
(ii) There exists a continuous and linear functional s : Y × Z → R such that s = (ξ, ζ) ∈

(C+ ×D+) \ {(0, 0)} and s(y, z) ⩾ 0 for every (y, z) ∈ A, and so

ξ(y) + ζ(z + z̄) ⩾ 0,∀(y, z) ∈ (D(F + C)(x̄, ȳ), D(G+D)(x̄, z̄))(B).

Since (0, 0) ∈ (D(F + C)(x̄, ȳ), D(G + D)(x̄, z̄))(B), we get ζ(z̄) ⩾ 0. Since ζ ∈ D+

and z̄ ∈ −D, we have ζ(z̄) ≤ 0. Therefore, ζ(z̄) = 0 and

ξ(y) + ζ(z) ⩾ 0, ∀(y, z) ∈ (D(F + C)(x̄, ȳ), D(G+D)(x̄, z̄))(B).

□
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Notice that the functionals ξ and ζ in condition (ii) of the above theorem are called the
Lagrange multiplier and this condition is a necessary optimal condition, see [13, Theorem
12.1. 10]. Also, if X = Rn, Y = R, Z = Rm, F , G are differentiable single-valued func-
tions and B is convex cone, then the above alternative theorem reduce to Theorem 3.1 of
[6]. However, an important question is to fined conditions ensuring that ξ ̸= 0. In what
follows we give an answer to this question.

Let us consider the CP -weak minimizers:

V0 := WMin(D(F + C)(x̄, ȳ)(G0(x̄, z̄)), C),

where z̄ ∈ G(x̄) ∩ (−D), B is a cone and

G0(x̄, z̄) := {v ∈ coB : D(G+D)(x̄, z̄)(v) ∩ (−int(D)) ̸= ∅}.
By Remark 1.1, we have V0 = DwF (x̄, ȳ)(G0(x̄, z̄)).

In the following result, we obtain a necessary and sufficient condition of the Lagrange
multiplier rule along with ξ ̸= 0, by using the alternative theorem at points which are not
necessarily local weak minimizer.

Corollary 2.1. If G0(x̄, z̄) ̸= ∅, then in Theorem 2.2 ξ ̸= 0, and [(ii) ⇔ 0 ∈ V0].

Now, we obtain a characterization of the Lagrange multiplier rule along with ξ ̸= 0,
without using the alternative theorem and constraint qualification.

Theorem 2.3. Let C be solid, Ω = dom(D(F + C)(x̄, ȳ)) ∩ dom(D(G+D)(x̄, z̄)) and B be a
cone in Ω. If x̄ ∈ S and (x̄, ȳ) ∈ graph(F ), then the following assertions are equivalent.
(a) co(Φ(B)) ∩−(int(C)× {0}) = ∅, where Φ(B) := (D(F + C)(x̄, ȳ), D(G+D)(x̄, z̄))(B).
(b) There exist (ξ, ζ) ∈ Y ∗ \ {0} × Z∗ such that ξ ∈ C+, ζ ∈ D+ and

ξ(y) + ζ(z) ⩾ 0, ∀(y, z) ∈ (D(F + C)(x̄, ȳ), D(G+D)(x̄, z̄))(B).

Proof. (a) ⇒ (b) Let c ∈ int(C) and V be an open convex neighborhood of 0 in Y such that
−c+ V ⊂ −int(C). Assume that W is an open convex neighborhood of 0 in Z and

U := (−c, 0) + (V (0Y )×W (0Z)).

Then, cone+(U) is an open convex set and condition (b) implies that

co(Φ(B)) ∩ cone+(U) = ∅.
By the Hahn-Banach separation theorem, there exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)} such that

ξ(y) + ζ(z) ⩾ 0, ∀(y, z) ∈ Φ(B),

and
ξ(y) + ζ(z) ⩽ 0, ∀(y, z) ∈ cone(U).

Now we show that ξ ̸= 0. Suppose on the contrary that ξ = 0, then ζ(z) ⩽ 0, for
any z ∈ W and so ζ = 0, which contradicts (ξ, ζ) ̸= (0, 0). Let us prove that ξ ∈ C+ and
ζ ∈ D+. Since D(F+C)(x̄, ȳ)(.) = DEF (x̄, ȳ)(.)+C, D(G+D)(x̄, z̄)(.) = DEG(x̄, z̄)(.)+D
and (0, 0) ∈ (DEF (x̄, ȳ), DEG(x̄, z̄))(B), we put y = v + c, z = w + d and by taking d = 0,
v = 0 and w = 0Z , we obtain ξ(c) ⩾ 0 for every c ∈ C. Hence, ξ ∈ C+. Also by taking
c = 0, v = 0 and w = 0, we obtain ζ ∈ D+.
(b) ⇒ (a) Let ξ(y) + ζ(z) ⩾ 0, for any (y, z) ∈ Φ(B), ξ ∈ C+, ζ ∈ D+, ξ ̸= 0. Therefore,
ξ(y) + ζ(z) ⩾ 0, for every (y, z) ∈ co(Φ(B)).
Since ξ(y) + ζ(z) = ξ(y) < 0, for each (y, z) ∈ −(int(C)× {0}), then (b) holds. □

Theorem 2.4. Let C be a solid cone, and let B be a cone in Ω. For x̄ ∈ S, let (x̄, ȳ) ∈ graph(F ),
and let z̄ ∈ G(x̄) ∩ (−D). Consider the following conditions

(a) Φ(coB) ∩ −(int(C)× {0}) = ∅.
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(b) There exists (ξ, ζ) ∈ Y ∗ \ {0} × Z∗ such that ξ ∈ C+, ζ ∈ D+ and ξ(y) + ζ(z) ⩾ 0, for
every (y, z) ∈ Φ(B).

If F is C−convex and G is D−convex, then condition (a) implies (b).

Proof. First we show that Φ(coB) is convex. If (y1, z1), (y2, z2) ∈ Φ(coB), then there exist
x1, x2 ∈ coB such that

(yi, zi) ∈ (DEF (x̄, ȳ)(xi), DEG(x̄, z̄)(xi)) + (C ×D).

Therefore,
(xi, yi) ∈ epi(DEF (x̄, ȳ)) = T (epi(F ), (x̄, ȳ)),

and
(xi, zi) ∈ epi(DEG(x̄, z̄)) = T (epi(G), (x̄, z̄)).

Since T (epi(F ), (x̄, ȳ)) and T (epi(G), (x̄, z̄)) are convex, then for all 0 ⩽ λ ⩽ 1 we have

λ(x1, y1) + (1− λ)(x2, y2) ∈ T (epi(F ), (x̄, ȳ)),

and
λ(x1, z1) + (1− λ)(x2, z2) ∈ T (epi(G), (x̄, z̄)).

Hence,

λ(y1, z1) + (1− λ)(y2, z2) ∈ (DEF (x̄, ȳ), DEG(x̄, z̄))(λx1 + (1− λ)x2) + (C ×D),

and so λ(y1, z1)+ (1−λ)(y2, z2) ∈ Φ(coB). Now, suppose (a) holds, c ∈ int(C) and define

U := (−c, 0) + V ×W,

where −c + V ⊂ −int(C), V and W are open convex neighborhoods of 0 in Y and Z,
respectively. Then, cone+(U) is an open convex set and by (a), we have

Φ(coB) ∩ cone+(U) = ∅.
By the Hahn-Banach separation theorem, there exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)} such that

ξ(y) + ζ(z) ⩾ 0, ∀(y, z) ∈ Φ(coB) ⊃ Φ(B),

and
ξ(y) + ζ(z) ⩽ 0, ∀(y, z) ∈ cone(U).

Now, we prove that ξ ̸= 0. Suppose on the contrary that ξ = 0. Then ζ(z) ⩽ 0, for each
z ∈ W which implies ζ = 0. This contradicts (ξ, ζ) ̸= (0, 0). Therefore, ξ ̸= 0. Also, by a
similar proof as that of the proof of Theorem 2.3, we have ξ ∈ C+ and ζ ∈ D+. □

Remark 2.2. (I) Suppose that X = Rn, Y = Z = R, C = D = R+ , F = f and G = g are
single-valued and differentiable at point x̄. By [9, Remark 15.2] D(f + C)(x̄, f(x̄))(x) =
⟨∇f(x̄), x⟩+ C, D(g +D)(x̄, g(x̄))(x) = ⟨∇g(x̄), x⟩+D and we have

(i) condition (b) in Theorem 2.3, is the same condition (d) in [6, Theorem 4.1] and con-
dition (a) is the same condition (b) (KKT condition) in [6, Theorem 4.1], in the case
where |I| = 1;

(ii) condition (a) in Theorem 2.4 turns into the condition (c) in [6, Theorem 4.1], with
|I| = 1, and condition (b) in Theorem 2.4 is the same condition (b) in [6, Theorem
4.1].

(II) Let f : X → Y be Hadamard directionally differentiable at x̄ ∈ X in the direction
x ∈ X. Then by [13, Proposition 11.1.3]

Df(x̄) := Df(x̄, f(x̄))(x) = {f ′(x̄, x)},
where f ′(x̄, x) is a Hadamard directional derivative of f at x̄ ∈ X in the direction x ∈
X. Also, if f : X → R is a convex function and f is continuous at x̄ ∈ X , then by [9,



412 Atarzadeh, Fakhar, Zafarani

Theorem 15.15], the contingent epiderivative is equal to the directional derivative. Hence,
in these cases from Theorem 2.3 we obtain an equivalent condition to KKT condition in
the nonsmooth case.
(III) When the directional derivative or the Fréchet derivative of single-valued map does
not exist, the contingent derivative can be very useful, see [16].

Condition (b) in Theorems 2.3 and 2.4 is a necessary optimality condition but it is not
a sufficient optimality condition in the general case. Moreover, by considering convexity
assumptions on F and G, it is proved that condition (b) in Theorems 2.3 and 2.4 is a
sufficient optimality condition, see [3, 8, 11, 12, 13].

In order to show that condition (b) in the above theorems can be a sufficient optimality
condition, we need a similar notion of convexity to Definition 12.3.3 of [13] as follows.

Definition 2.2. Let S ⊂ X, and Ξ ⊂ Y × Z. Let F : S ⊆ X ⇒ Y , G : S ⊆ X ⇒ Z be
two set-valued maps, and let (x̄, ȳ) ∈ graph(F ), (x̄, z̄) ∈ graph(G). The pair (F,G) is said
to be Ξ-composite-contingently-quasi-convex at (x̄, ȳ, z̄) if for every x ∈ S, the condition
[(F,G)(x)− (ȳ, z̄)] ∩ Ξ ̸= ∅ ensures that (DF (x̄, ȳ), DG(x̄, z̄))(x− x̄) ∩ Ξ ̸= ∅.

The following result is similar to [13, Theorem 12.3.6] and its proof is similar to that of
Theorem 12.3.4 in [13] and so it is omitted.

Theorem 2.5. Let C be solid, S be convex, (x̄, ȳ, z̄) ∈ graph(F,G) and let S − x̄ ⊆ Ω, where
Ω = dom(D(F +C)(x̄, ȳ))∩ dom(D(G+D)(x̄, z̄)). Assume that there exist ξ ∈ C+ \ {0} and
ζ ∈ D+ with ζ(z̄) = 0 such that for all x ∈ S,

ξ(y) + ζ(z) ⩾ 0, ∀(y, z) ∈ (D(F + C)(x̄, ȳ), D(G+D)(x̄, z̄))(x− x̄).

Let Ŝ := {x ∈ S | G(x)∩(−D+cone(z̄)−cone(z̄)) ̸= ∅}. If (F +C,G+D) : Ŝ ⇒ Y ×Z is Ξ-
composite-contingently-quasi-convex at (x̄, ȳ, z̄) with Ξ = (−intC)×(−D+cone(z̄)−cone(z̄)),

then (x̄, ȳ)) is a weak minimizer of F on Ŝ.

Since the inclusion (DF (x̄, ȳ), DG(x̄, z̄))(.) ⊇ D(F,G)(x̄, ȳ)(.) always holds, while the
reverse inclusion in general not true. Thus, the above theorem is an improvement of [13,
Theorem 12.3.6]. Also, since S1 ⊆ Ŝ, from Theorem 2.5 one can obtain that (x̄, ȳ) is a weak
minimizer of (CP ).

In the following result by using generalized contingent epiderivative, we establish an-
other characterization of the Lagrange multiplier rule along with ξ ̸= 0, without constraint
qualification.

Theorem 2.6. Let C be solid, (x̄, ȳ) ∈ graph(F ) and let z̄ ∈ G(x̄) ∩ (−D). Let

Ω := dom(DgF (x̄, ȳ)) ∩ dom(DgG(x̄, z̄)) ̸= ∅,

and (0, 0) ∈ (DgF (x̄, ȳ), DgG(x̄, z̄))(B), where B be a cone in Ω. Then the following conditions
are equivalent.
(a) co[(DgF (x̄, ȳ), DgG(x̄, z̄))(B) + (C ×D)] ∩ −(int(C)× {0Z}) = ∅.
(b) There exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)} with ξ ∈ C+ and ζ ∈ D+ such that ξ ̸= 0 and

ξ(y) + ζ(z) ⩾ 0, for every (y, z) ∈ (DgF (x̄, ȳ), DgG(x̄, z̄))(B).

Proof. (a) ⇒ (b) Let

co[Ψ(B) + C ×D] ∩ −(int(C)× {0Z}) = ∅,
where Ψ(B) := (DgF (x̄, ȳ), DgG(x̄, z̄))(B). Set

U := (−c, 0) + V ×W,
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where c ∈ int(C), −c + V ⊂ −int(C) and V , W are open convex neighborhood of 0 in Y
and Z, respectively. Then, cone+(U) is an open convex set and by (b), we have

co(Ψ(B) + (C ×D)) ∩ cone+(U) = ∅.

By the Hahn-Banach separation theorem there exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)}, such that

ξ(u) + ζ(v) ⩾ 0,∀(u, v) ∈ (Ψ(B) + C ×D),

and
ξ(u) + ζ(v) ⩽ 0,∀(u, v) ∈ cone(U).

We prove that ξ ̸= 0. Suppose on the contrary that ξ = 0; then ζ(v) ⩽ 0, for all v ∈ W
which implies ζ = 0, and so we have a contradiction. Therefore, ξ ̸= 0. Now we take
u = y + c and v = z + d,, therefore

ξ(y + c) + ζ(z + d) ⩾ 0,∀(y, z) ∈ Ψ(B), ∀(c, d) ∈ C ×D.

If we set c = d = 0, then we obtain ξ(y) + ζ(z) ⩾ 0, for every (y, z) ∈ Ψ(B). Since
ξ(u)+ζ(v) ⩾ 0, for each (u, v) ∈ Ψ(B)+(C×D), ξ and ζ are continuous, then the inequality
holds for all (u, v) ∈ Ψ(B) + (C × D). We now show that ξ ∈ C+ and ζ ∈ D+. Since
(0, 0) ∈ Ψ(B) and (0, 0) ∈ C ×D, by taking c = 0, (y, z) = (0, 0) and u = y+ c, v = z+ d in
the above inequality, we have ζ(d) ⩾ 0,∀d ∈ D, and by putting d = 0 and (y, z) = (0, 0),
we have ξ(c) ⩾ 0, for any c ∈ C.
(b) ⇒ (a) Since ξ ∈ C+ and ζ ∈ D+, then

ξ(y + c) + ζ(z + d) ⩾ 0, ∀(y, z) ∈ Ψ(B), ∀(c, d) ∈ C ×D.

Thus, ξ(u) + ζ(v) ⩾ 0, ∀(u, v) ∈ co[Ψ(B) + C ×D]. Also,

ξ(u) + ζ(v) < 0, ∀(u, v) ∈ −(int(C)× {0}).

Therefore,
co[Ψ(B) + C ×D] ∩ −(int(C)× {0}) = ∅.

□

Remark 2.3. Note that the previous theorem is more involved than Theorem 2.3, because
the set DgF (x̄, ȳ)(.) + C could be convex, but the contingent cone T (epi(F ), (x̄, ȳ)) can
be non convex. However, D(F + C)(x̄, ȳ)(.) is convex if and only if the contingent cone
T (epi(F ), (x̄, ȳ)) is convex. The following example [11] justifies our claim.

Example 2.1. Consider the set valued map F : [0, 1] ⇒ R2 defined in [Example 2.2, [11]]
by:

F (x) = {(y,−√
y) ∈ R2 | 0 ⩽ y ⩽ x} ∪ {(y,−y) ∈ R2 | y ⩽ 0},

and C = R2
+. The generalized contingent epiderivative DgF (0, (0, 0)) of F at (0, (0, 0)) ∈

graph(F ) is given by:

DgF (0, (0, 0))(x) := {(y, z) ∈ R2 | z = −y, y < 0}, x ∈ R+;

Note that DgF (0, (0, 0))(R+) + R2
+ is convex but the contingent cone T (epi(F ), (0, (0, 0)))

is nonconvex.
Also DgF (0, (0, 0))(R+) + R2

+∩−int(R2
+) = ∅, and condition (a) of Theorem 2.6 holds, for

G = 0. Then the Lagrange multiplier rule holds with ξ ̸= 0.

In the following example, condition (a) of Theorem 2.6 is fulfilled, while the regularity
condition in the [11, Theorem 2.4] does not hold.
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Example 2.2. Consider the (CP) with the set valued map F : [0, 1] ⇒ R2 given in example
2.1, and the set valued map G : [0, 1] ⇒ R such that G(x) = [−x3,+∞) for every x ∈ [0, 1].
If D = R+, then for every x ∈ [0, 1], we have D(G+D)(0, 0)(x) = R+ and DgG(0, 0)(x) =
{0}. Clearly, S1 = [0, 1] and the point (x̄, ȳ) = (0, (0, 0)) ∈ graph(F ) is a minimizer of (CP).
The point

(0, 0) = ((0, 0), 0) ∈ (DgF (x̄, ȳ), DgG(x̄, z̄))(S)

and

co[(DgF (0, (0, 0)), DgG(0, 0))(R+) + (R2
+ × R+)] ∩ −(int(R2

+)× {0}) = ∅.

Therefore, by Theorem 2.6, there exist (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)} with ξ ∈ C+ and ζ ∈ D+

such that ξ ̸= 0 and

ξ(y) + ζ(z) ⩾ 0, ∀(y, z) ∈ (DgF (x̄, ȳ), DgG(x̄, z̄))(B),

while the regularity condition in [11, Theorem 2.4] does not hold, since

DgG(0, 0)(R+) + cone(D + z̄) = R+ ̸= Z.

Definition 2.3. [11] The generalized contingent epiderivative DgF (x̄, ȳ)(.) of the map F
at point (x̄, ȳ) ∈ graph(F ), is said to have a domination at x ∈ dom(DgF (x̄, ȳ)) if D(F +
C)(x̄, ȳ)(x) ⊆ DgF (x̄, ȳ)(x) + C.

The following lemma in [11] ensured that the set DgF (x̄, ȳ)(Ω) + C is a convex cone.

Lemma 2.1. [11] Let F : X ⇒ Y be a set valued map. Let the map F be locally C-convex at
(x̄, ȳ) ∈ graph(F ), let Ω = dom(DgF (x̄, ȳ)), and let DgF (x̄, ȳ)(.) have a domination for all
x ∈ Ω. Then, the set DgF (x̄, ȳ)(Ω) + C is a convex cone.

Remark 2.4. [11] If the set DgF (x̄, ȳ)(0) + C is convex and DgF (x̄, ȳ) have a domination
at 0 ∈ Ω, then 0 ∈ DgF (x̄, ȳ)(Ω).

By using Lemma 2.1 and Remark 2.4, the following result deduces from Theorem 2.6,
while G = 0.

Corollary 2.2. Let F : X ⇒ Y be locally C-convex at (x̄, ȳ) ∈ graph(F ), let Ω = dom(DgF (x̄, ȳ),
and let DgF (x̄, ȳ)(.) have a domination for all x ∈ Ω. Suppose that the set DgF (x̄, ȳ)(0) + C is
convex and C is solid. Then the following conditions are equivalent.

(a) There exists ξ ∈ Y ∗ \ {0} with ξ ∈ C+ such that ξ(y) ⩾ 0, for every y ∈ DgF (x̄, ȳ)(Ω).
(b) [(DgF (x̄, ȳ))(Ω) + C] ∩ −(int(C)) = ∅.

In the following result, we give another equivalent condition with respect to weak
contingent epiderivative DwF (x̄, ȳ). Its proof is similar to the proof of Theorem 2.6, so it
is omitted.

Theorem 2.7. Let C be solid, (x̄, ȳ) ∈ graph(F ) and let z̄ ∈ G(x̄) ∩ (−D). Let

Ω := dom(DwF (x̄, ȳ)) ∩ dom(DwG(x̄, z̄)) ̸= ∅,

and (0, 0) ∈ (DwF (x̄, ȳ), DwG(x̄, z̄)(B)), where B be a cone in Ω. Then the following conditions
are equivalent.

(a) There exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)} with ξ ∈ C+, ζ ∈ D+ such that ξ ̸= 0 and
ξ(y) + ζ(z) ⩾ 0, for each (y, z) ∈ (DwF (x̄, ȳ), DwG(x̄, z̄))(B),

(b) co[(DwF (x̄, ȳ), DwG(x̄, z̄))(B) + (C ×D)] ∩ −(int(C)× {0Z}) = ∅.
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Example 2.3. Consider the set valued map F : [0, 1] ⇒ R2 defined in [Example 2.3, [11]]
by:

F (x) := {(y, z) ∈ R2 | y2 + z2 ⩽ x2}.
Let R2

+ be ordering cone. Note that the point (1, (0,−1)) ∈ graph(F ) and weak contingent
epiderivative DwF (1, (0,−1)) : R− ⇒ R2

+ is given by:

DwF (1, (0,−1))(x) := {(y, z) ∈ R2 | z ⩾ |x|, y ∈ R},∀x ∈ R−.

Clearly condition (b) of the above theorem with G = 0 holds, for every cone B in R−, and
so the Lagrange multiplier rule holds with ξ ̸= 0.

Definition 2.4. [15] Let F : X ⇒ Y , (x̄, ȳ) ∈ graph(F ) and (ū, v̄) ∈ X × Y. The second
order composed adjacent (resp. contingent) derivative of F at (x̄, ȳ) in the direction (ū, v̄)

is the set valued map Db′′F (x̄, ȳ, ū, v̄) : X ⇒ Y (resp. D
′′
F (x̄, ȳ, ū, v̄) : X ⇒ Y ) defined by

graphDb′′F (x̄, ȳ, ū, v̄) = A(A(graphF, (x̄, ȳ)), (ū, v̄)).

(resp. graphD
′′
F (x̄, ȳ, ū, v̄) = T (T (graphF, (x̄, ȳ)), (ū, v̄))).

Remark 2.5. [15] The second-order composed contingent derivative and the second order
composed adjacent derivative is strictly positive homogeneous.

In the following by using the second order composed adjacent derivative, we give a
characterization of the Lagrange multiplier rule. The proof of the following result is simi-
lar to that given in Theorem 2.6, so it is omitted.

Theorem 2.8. Let F : X ⇒ Y and G : X ⇒ Z be a set valued maps. Let (x̄, ȳ) ∈ graph(F ),
z̄ ∈ G(x̄) ∩ (−D), (ū, v̄, w̄) ∈ X × (−C) × (−D), int(C) ̸= ∅ and Ω = dom(Db′′(F +

C)(x̄, ȳ, ū, v̄)) ∩ dom(Db′′(G + D)(x̄, z̄, ū, w̄)) ̸= ∅, and B be a cone in Ω . Suppose Φ(B) is
define by

Φ(B) := (Db′′(F + C)(x̄, ȳ, ū, v̄), Db′′(G+D)(x̄, z̄, ū, w̄))(B).

If (0Y , 0Z) ∈ co[Φ(B)], then the following conditions are equivalent.
(i) There exists (ξ, ζ) ∈ Y ∗ × Z∗ \ {(0, 0)} with ξ ∈ C+, ζ ∈ D+ such that ξ ̸= 0 and

ξ(y) + ζ(z) ⩾ 0, for every (y, z) ∈ Φ(B).
(ii) co[Φ(B) + (C ×D)] ∩ −(int(C)× {0Z}) = ∅.

Notice that the above result also holds for the second-order composed contingent de-
rivative.
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