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On quasi approximate solutions for nonsmooth robust
semi-infinite optimization problems

CHANOKSUDA KHANTREE1 and RABIAN WANGKEEREE∗,1,2

ABSTRACT. This paper devotes to the quasi ε-solution for robust semi-infinite optimization problems (RSIP)
involving a locally Lipschitz objective function and infinitely many locally Lipschitz constraint functions with
data uncertainty. Under the fulfillment of robust type Guignard constraint qualification and robust type Kuhn-
Tucker constraint qualification, a necessary condition for a quasi ε-solution to problem (RSIP). After introducing
the generalized convexity, we give a sufficient optimality for such a quasi ε-solution to problem (RSIP). Finally,
we also establish approximate duality theorems in term of Wolfe type which is formulated in approximate form.

1. INTRODUCTION

In recent years, the study of a semi-infinite programming problem (SIP in brief), which
is an optimization problem on a feasible set described by an infinite number of inequality
constraints, has received a great deal of attention from scholars since most of several engi-
neering problems are SIP, e.g., optimal control, transportation problems, etc; see [1, 2, 3, 4].
Recently, semi-infinite optimization problems without the convexity and differentiability
assumptions have attracted many authors to study actively [3, 5, 6, 7, 8, 9]. Let us recall
here some remarkable theoretical results from those mentioned earlier. For example, by
using the separation-type theorem for nonconvex closed sets, a general Lagrange multi-
plier rule in terms of Clarke subdifferentials is obtained by Zheng and Yang [5]. Kanzi
and Nobakhtian [7] derived a Fritz John type necessary optimality condition for optimal
solution by using Mordukhovich and Clarke subdifferential. Moreover, Kanzi [9] inves-
tigated Karush-Kuhn-Tucker type necessary optimality conditions for optimal solution
to nonsmooth semi-infinite programming problems where the objective and constraint
functions are locally Lipschitz.

Taken from another viewpoint, the majority of practical optimization problems are
often affected by data uncertainty due to prediction errors or lack of information, see
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and the references therein. Robust opti-
mization [12, 13, 21, 22] has grown rapidly over the past two decades as a remarkable
deterministic approach to treat mathematical optimization problems in the face of data
uncertainty.

Besides, because the exact solutions do not exist while the approximate ones do even
in the convex case, see [23, 24] and other references therein, the results on optimality
conditions as well as duality for approximate solutions to semi-infinite programming
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problems under uncertainty have been studied [22, 25]. Motivated by this, some prop-
erties of approximate solutions of robust nonsmooth/nonconvex semi-infinite optimiza-
tion problems seem to be developed. It is remarkable that unlike related works in [22, 25]
we cannot apply the tool of ε-subdifferential to study ε-solution since the involved func-
tions are not convex. This being a reason, we will focus on the quasi ε-solutions to non-
smooth/nonconvex semi-infinite optimization problems under a locally Lipschitz objec-
tive function and infinitely many locally Lipschitz constraint functions with data uncer-
tainty. More precisely, let us consider the following semi-infinite optimization problem in
the absence of data uncertainty

(SIP) minx∈Rn f(x) s.t. gt(x) ≤ 0, ∀t ∈ T,

where f, gt : Rn → R, t ∈ T are locally Lipschitz functions, and T is an index set with
coordinately possibly infinite. The semi-infinite optimization problem (SIP) in the face of
data uncertainty in the constraints can be captured by the problem

(USIP) minx∈Rn f(x) s.t. gt(x, vt) ≤ 0, ∀t ∈ T,

where gt : Rn×Rq → R, t ∈ T , are locally Lipschitz functions, and for each t ∈ T, vt ∈ Rq is
an uncertain parameter, which belongs to a convex compact set Vt ⊂ Rq . The uncertainty
set-valued mapping V : T ⇒ Rq is defined as V(t) := Vt for all t ∈ T . The notation v ∈ V
means that v is a selection of V , i.e., v : T → Rq and vt ∈ Vt for all t ∈ T . The robust
counterpart of (USIP) is as follows:

(RSIP) minx∈Rn f(x) s.t. gt(x, vt) ≤ 0, ∀vt ∈ Vt, ∀t ∈ T.

The robust feasible set of (RSIP) is defined by

F := {x ∈ Rn : gt(x, vt) ≤ 0, ∀vt ∈ Vt, ∀t ∈ T}.

Throughout this paper, we alway suppose that F is a nonempty set.
Below, let us recall the notion of a quasi ε-solution to problem (RSIP).

Definition 1.1. Let ε ≥ 0 be given. A point x̄ ∈ F is said to be a quasi ε-solution to problem
(RSIP) if f(x) ≥ f(x̄)− ε∥x− x̄∥, ∀x ∈ F.

Example 1.1. Let f : R → R and gt : R× Vt → R be defined by

f(x) :=
1

2
|x|+ 1

2
x3 and gt(x, vt) := tx3 − vtx,

where x ∈ R, t ∈ T := [0, 1], vt ∈ Vt := [−t+ 2, t+ 2]. We can see that the robust feasible
set F = [0, 1]. By taking xn := 1

n ∈ F and εn := 1
2 + 3

2xn where n ∈ N, we obtain that
for each x ∈ F, f(x) ≥ f(xn) −

(
1
2 + 3

2xn
)
|x − xn|. Hence, for each n ∈ N, xn is a quasi

εn-solution of (RSIP).

In this article, we aim to establish necessary optimality conditions for a quasi ε-solution
to problem (RSIP) under the fulfillment of new robust type constraint qualifications, ro-
bust type Guignard CQ and robust type Kuhn-Tucker CQ. With the help of generalized
convex functions defined in terms of the Clarke subdifferentials, the obtained necessary
conditions for quasi approximate solutions of the considered problem becomes sufficient.
Afterworld, we also propose the weak and strong duality theorems, stated in approximate
form, in the sense of Wolfe.

The layout of the paper is as follows. Section 2 collects definitions, notations and pre-
liminary results that will be used later in the paper. Section 3 establishes necessary and
sufficient of quasi ε-solution to problem (RSIP). Finally, duality results between the primal
problem and its dual one in the sense of Wolfe are given in Section 5.
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2. PRELIMINARIES

Let us first recall some notation and preliminary results which will be used throughout
this paper. Rn denotes the Euclidean space with dimension n. The nonnegative orthant
of Rn is denoted by Rn

+. R(T )
+ denotes the set of mapping λ : T → R+ (also denoted

by (λt)t∈T ) such that λt = 0 except for finitely many indexes. For a given set M ⊂ Rn,
we denote the closure, the convex hull, and the convex cone generated by M , by M ,
conv (M), and cone (M), respectively. The polar cone and strict polar cone of M are
respectively defined by M0 := {d ∈ Rn : ⟨x, d⟩ ≤ 0, ∀x ∈ M} and Ms := {d ∈ Rn :
⟨x, d⟩ < 0, ∀x ∈M} where ⟨·, ·⟩ exhibits the standard inner product in Rn. Also, cone(M)
denotes the closed convex cone of M .

Definition 2.2. Let M ⊆ Rn and x̂ ∈M .
(i) The contingent cone to M at x̂ is defined by

T (M, x̂) :=

{
d ∈ Rn :

∃{tk} ⊂ R+; tk → 0, ∃{dk} ⊂ Rn; dk → d
s.t. x̂+ tkd

k ∈M, ∀k ∈ N

}
.

(ii) The cone of attainable directions to M is defined by

A(M, x̂) :=

{
d ∈ Rn :

∀{tk} ⊂ R+; tk → 0, ∃{dk} ⊂ Rn; dk → d
s.t. x̂+ tkd

k ∈M, ∀k ∈ N

}
.

Notice that T (M, x̂) and A(M, x̂) are closed cones (generally nonconvex) in Rn, and we
always have A(M, x̂) ⊆ T (M, x̂).

Let M ⊆ Rn be a nonempty closed convex subset. The normal cone to M at x ∈ M
is defined by NM (x) := {ξ ∈ Rn : ⟨ξ, y − x⟩ ≤ 0,∀y ∈ M}. The indicator function
δM : Rn → R ∪ {+∞} is defined by δM (x) := 0 if x ∈M ; otherwise, δM (x) := +∞.

Let f be a function from Rn to R, where R = [−∞,+∞]. Here, f is said to be proper if
for all x ∈ Rn, f(x) > −∞ and there exists x0 ∈ Rn such that f(x0) ∈ R. We denote the
domain of f by dom f , that is, dom f := {x ∈ Rn : f(x) < +∞}. f is said to be convex if
for all µ ∈ [0, 1], f((1−µ)x+µy) ≤ (1−µ)f(x)+µf(y) for all x, y ∈ Rn. The function f is
said to be concave whenever −f is convex. In addition, if f : Rn → R is a convex function
then the one-sided or rather right-sided directional derivative always exists and is finite.
The right-sided directional derivative of f at x ∈ Rn in the direction d ∈ Rn is denoted by
f ′(x; d), is defined as

f ′(x; d) := lim
t→0+

f(x+ td)− f(x)

t
.

The subdifferential of convex function f at x ∈ dom f is defined by

∂f(x) := {ξ ∈ Rn : ⟨ξ, y − x⟩ ≤ f(y)− f(x),∀y ∈ Rn}.

For x /∈ dom f, ∂f(x) is empty.

Definition 2.3. A function φ : Rn → R is said to be locally Lipschitz at x ∈ Rn, if there
exists a positive scalar L and a neighborhood N of x such that, for all y, z ∈ N , one has

|φ(y)− φ(z)| ≤ L∥y − z∥.

Definition 2.4. [26] Let φ : Rn → R be locally Lipschitz at a given point x ∈ Rn. The
Clarke generalized directional derivative of φ at x in the direction d ∈ Rn, denoted φo(x; d),
is defined as

φo(x; d) := lim sup
y→x
t→0+

φ(y + td)− φ(y)

t
.
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Definition 2.5. [26] Let φ : Rn → R be locally Lipschitz at a given point x ∈ Rn. The
Clarke generalized subdifferential of φ at x, denoted by ∂cφ(x), is defined as

∂cφ(x) := {ξ ∈ Rn : φo(x; d) ≥ ⟨ξ, d⟩,∀d ∈ Rn}.
Definition 2.6. Let φ : Rn → R be locally Lipschitz at a given point x ∈ Rn. The function
φ is said to be regular at x ∈ Rn if, for each d ∈ Rn, the directional derivative φ′(x; d)
exists and coincides with φo(x; d), i.e., φo(x; d) = φ′(x; d), ∀d ∈ Rn.

Theorem 2.1. [26] Let φ and ψ be locally Lipschitz from Rn to R, and x̂ ∈ dom (φ) ∩ dom (ψ).
Then, the following properties hold:

(i) φo(x̂; d) = max {⟨ξ, d⟩ : ξ ∈ ∂cφ(x̂)} , ∀d ∈ Rn.
(ii) d 7−→ φo(x̂; d) is a convex functon, and ∂cφ(x̂) = ∂φo(x̂; ·)(0), where ∂φo(x̂; ·) denotes

the subdifferential of convex function φo(x̂; ·).
(iii) x 7−→ ∂cφ(x) is an upper semicontinuous set-valued function.
(iv) ∂c(φ+ ψ)(x̄) ⊆ ∂c(φ)(x̄) + ∂c(ψ)(x̄).

If φ and ψ are regular at x̄, then φ+ ψ is also regular at x̄, and equality holds above.
(v) If x̂ is a minimum point of φ over Rn, then 0 ∈ ∂cφ(x̂).

We assume here that each function gt, t ∈ T satisfying the following assumption.

Assumption For a given compact subset V of Rq and a given function g : Rn×V → R, the
following conditions will be considered in this paper.

(C1) g(x, v) is upper semicontinuous in (x, v);
(C2) g is a locally Lipschitz in x, uniformly for v in V , that is, for each x ∈ Rn, there

exist an open neighborhood U of x and a constant L > 0 such that for all y and z
in U , and v ∈ V , one has |g(y, v)− g(z, v)| ≤ L∥y − z∥;

(C3) for each (x, v) ∈ Rn × V , the function g(·, v) is regular at x, that is, go(x, v; ·) =
g′(x, v; ·), the derivatives being with respect to x;

(C4) set-valued map Rn × V ∋ (x, v) 7−→ ∂cg(·, v)(x) is upper semicontinuous where
∂cg(·, v)(x) denotes the Clarke subdifferential of g with respect to x.

Remark 2.1. In a suitable setting, if the function g is convex in x and continuous in v,
the conditions (C2), (C3), and (C4) are then automatically satisfied. These conditions also
hold whenever the derivative ∇xg(x, v) with respect to x exists and is continuous in (x, v).

Remark 2.2. [18] Under the assumptions (C1) and (C2) the function ψ : Rn → R,

ψ(x) := max{g(x, v) : v ∈ V},
is defined and finite. Further, ψ is locally Lipschitz on Rn, and hence for each x ∈ Rn the
set V(x) defined as

V(x) := {v ∈ V : g(x, v) = ψ(x)},
is a nonempty closed subset of Rq .

We conclude this section by the following lemmas which useful in our later analysis.

Lemma 2.1. [26] Let the function ψ be defined in Remark 2.2. Suppose that the conditions (C1) -
(C4) are fulfilled. Then the usual one-sided directional derivative ψ′(x; d) exists, and satisfies the
following : for each x, d ∈ Rn,

ψ′(x; d) = ψo(x; d) = max
v∈V(x)

gox(x, v; d) = max{⟨ξ, d⟩ : ξ ∈ ∂cg(·, v)(x), v ∈ V(x)}.

Lemma 2.2. [27] For a given compact convex subset V of Rq and a given function g : Rn×Rq →
R, suppose that the basic conditions (C1) - (C4) are fulfilled. Further, suppose that g(x, ·) is
concave on V , for each x ∈ Rn. Then

∂cψ(x) = {ξ ∈ Rn : ∃v ∈ V(x) such that ξ ∈ ∂cg(·, v)(x)}.
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3. ROBUST APPROXIMATE OPTIMALITY CONDITIONS

In this section, we establish the necessary and sufficient optimality conditions for ap-
proximate solutions to problem (RSIP).

Let T be an arbitrary (but nonempty) index set, and {gt : Rn × Vt → R} be a family of
functions satisfying (C1) and (C2). In the sequel, for a given x ∈ F , we turn our attention
to define for simplicity,

T (x) := {t ∈ T : ∃vt ∈ Vt s.t. gt(x, vt) = 0} and

Z(x) :=
⋃

t∈T (x)
vt∈Vt(x)

∂cgt(·, vt)(x),

with the convention
⋃

t∈∅Xt = ∅, for any set Xt, t ∈ T (x).

Remark 3.3. As a Clarke subdifferential of a locally Lipschitz function is always nonempty,
compact convex cone, we actually have Z(x) ̸= ∅ and Z(x) = coneZ(x).

Similar to the notions of Guignard CQ and Kuhn-Tucker CQ stated in [9, Definition
3.1], we now present the following robust type constraint qualification for F .

Definition 3.7. Let x̄ ∈ F . We say that σ := {gt(x, vt) ≤ 0, vt ∈ Vt, t ∈ T} satisfies
(i) The robust type Guignard CQ (RGCQ) at x̄, if (Z(x̄))0 ⊆ conv (T (F, x̄)).

(ii) The robust type Kuhn-Tucker CQ (RKTCQ) at x̄, if (Z(x̄))0 ⊆ A(F, x̄).

Remark 3.4. We point out that when considering the system σ as the form {ψt(x), t ∈ T},
by virtue of [9, Remark 3.8], the RKTCQ guarantees the fulfillment of RGCQ which can be
seen as the most generalization of the robust type constraint qualifications for nonconvex
semi-infinite system. Furthermore, we refer the reader to [9] for some related constraint
qualifications and their connections.

Now, with the aid of [28, Theorem 2.22, p.33], we turn our attention to give the neces-
sary robust approximate optimality condition theorem for a quasi ε-solution (RSIP).

Theorem 3.2. Suppose that the RKTCQ is satisfied at x̄ ∈ F , and each t ∈ T , gt satisfies (C1) -
(C4) and gt(x̄, ·) is concave on Vt. If x̄ is a quasi ε-solution of (RSIP), then

(i) 0 ∈ ∂cf(x̄) + cone(Z(x̄)) + εB;
(ii) If, in addition, the set cone(Z(x̄)) is closed, then there exist (λt)t∈T ∈ R(T )

+ and vt ∈
Vt(x̄), t ∈ T (x̄), such that

(3.1) 0 ∈ ∂cf(x̄) +
∑

t∈T (x̄)

λt∂cgt(·, vt)(x̄) + εB.

Proof. (i) A quasi ε-solution x̄ of (RSIP) can be viewed as an optimal solution of the fol-
lowing semi-infinite programming problem:

min
x∈Rn

f(x) + ε∥x− x̄∥ s.t. ψt(x) ≤ 0, ∀t ∈ T,

where ψt(x) := maxvt∈Vt
gt(x, vt). Note that in view of Lemma 2.1 that for each t ∈ T (x̄),

ψt is regular at x̄. Moreover, it follows from Lemma 2.2 that

∂cψ(x̄) = {ξ ∈ Rn : ∃vt ∈ Vt(x̄) s.t. ξ ∈ ∂cgt(·, vt)(x̄)},
which results in Z(x̄) = ∪t∈T (x̄)∂cψt(x̄). Set ϕ(x) := f(x) + ε∥x − x̄∥, observe that ϕ is
a locally Lipschitz function from Rn to R, inasmuch as ∥ · −x̄∥ is convex along with [28,
Theorem 2.22, p.33]. So, we apply [9, Theorem 4.3(a)] to assert that

0 ∈ ∂c(f + ε∥ · −x̄∥)(x̄) + cone(Z(x̄)).
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Then, there exists ξ ∈ ∂c(f + ε∥ · −x̄∥)(x̄) such that −ξ ∈ cone(Z(x̄)). It then follows from
[28, Theorem 3.13, p. 97] that for any d ∈ Rn,

fo(x̄; d) + ε∥d∥ ≥ fo(x̄; d) + ε(∥ · −x̄∥)′(x̄; d)
= fo(x̄; d) + ε(∥ · −x̄∥)o(x̄; d)
≥ (f + ε∥ · −x̄∥)o(x̄; d)
≥ ⟨ξ, d⟩.

This means that 0 is an optimal solution of the following unconstrained convex optimiza-
tion problem:

min
d∈Rn

fo(x̄; d) + ε∥d∥ − ⟨ξ, d⟩,

which results in 0 ∈ ∂(fo(x̄; ·) + ε∥ · ∥ + {−ξ})(0). Invoking the classical Sum Rule for
convex functions, together with the fact that ∂∥ · ∥(0) = B and Theorem 2.1(ii), one has
ξ ∈ ∂cf(x̄) + εB, and so, (i) has been justified.

(ii) The proof is done by (i) together with [29, Example 1.3.5, p. 77]
□

Now, let us provide an example illustrating our necessary optimality condition for
(RSIP).

Example 3.2. Let f , gt, T and Vt be defined as in Example 1.1. We now consider x̄ :=
0, ε := 1

2 . It can be verified that x̄ is a quasi ε-solution of (RSIP). On the other hand, we
have ∂cf(x̄) =

[
− 1

2 ,
1
2

]
, ∂cgt(x̄, vt) = {−vt}, T (x̄) = [0, 1] and Vt(x̄) = Vt = [−t+2, t+2].

It is easy to see that Z(x̄) = [−3,−1] and A(F, x̄) = [0,+∞). So, RKTCQ is satisfied at x̄.
In addition, letting vt := 2 for all t ∈ T (x̄) and

λt =

{
0, if t ∈ [0, 1),
1
2 , if t = 1,

one has

0 ∈ [−2, 0] =

[
−1

2
,
1

2

]
+

1

2
{−2}+

[
−1

2
,
1

2

]
= ∂cf(x̄) +

∑
t∈T (x̄)

λt∂cgt(·, vt)(x̄) + εB.

As an immediate consequence of [9, Theorem 4.4], we can obtain another necessary
robust approximate optimality condition theorem for a quasi ε-solution (RSIP).

Theorem 3.3. Let x̄ be a quasi ε-solution of (RSIP). Assume that the RGCQ satisfies at x̄ and
additionally (f + ε∥ · −x̄∥)o(x̄; .) is a concave function. Then, (i) and (ii) in Theorem 3.2 are
satisfied.

It is worth noting that the relation obtained in (3.1) hints us to state a robust type ap-
proximate Karush-Kuhn-Tucker (KKT) type condition when treating approximate solu-
tions of (RSIP) as follows:

Definition 3.8. Let F be the robust feasible set of (RSIP). A point x̄ ∈ F is said to satisfy
the robust approximate (KKT) condition on F if there exists there exist (λt)t∈T ∈ R(T )

+ and
vt ∈ Vt(x̄), t ∈ T (x̄), which (λt)t∈T are not all zero such that

0 ∈ ∂cf(x̄) +
∑

t∈T (x̄)

λt∂cgt(·, vt)(x̄) + εB.

Next, we give sufficient conditions for a feasible point of problem (RSIP) to be a quasi
ε-solution. To this aim, we consider the following generalized convexity notion which
states an analogous manner as in [30] and other references therein.



On quasi approximate solutions for nonsmooth robust... 423

Definition 3.9. Let gT := (gt)t∈T . We say that (f, gT ) is a generalized convex on F at x̄ ∈ F ,
if for any x ∈ F, ξ ∈ ∂cf(x̄), γt ∈ ∂cgt(·, vt)(x̄), and vt ∈ Vt(x̄), t ∈ T , there exists d ∈ Rn

such that

f(x)− f(x̄) ≥ ⟨ξ, d⟩,
gt(x, vt)− gt(x̄, vt) ≥ ⟨γt, d⟩, ∀t ∈ T,

⟨b, d⟩ ≤ ∥x− x̄∥, ∀b ∈ B.

Example 3.3. Let f , gt, T and Vt be defined as in Example 1.1. Recall that for x̄ = 0, we
have ∂cf(x̄) =

[
− 1

2 ,
1
2

]
, ∂cgt(x̄, vt) = {−vt}, T (x̄) = [0, 1] and Vt(x̄) = Vt = [−t+2, t+2].

For any x ∈ F = [0, 1], ξ ∈ ∂cf(x̄), γt ∈ ∂cgt(x̄, vt), by taking d := x, it follows that d ∈ R,

x3 + (1− 2ξ)x ≥ 0, ∀ξ ∈
[
−1

2
,
1

2

]
tx3 ≥ 0, ∀t ∈ [0, 1]

(1− b)x ≥ 0, ∀b ∈ [−1, 1].

and consequently,

f(x)− f(x̄) =
1

2
x+

1

2
x3 ≥ ξd,

gt(x, vt)− gt(x̄, vt) = tx3 − vtx ≥ γtd and

|x− x̄| = x ≥ bd, ∀b ∈ [−1, 1].

This shows that (f, gT ) is generalized convex on F at x̄.

Theorem 3.4. Suppose that x̄ ∈ F satisfies the robust approximate (KKT) condition. If (f, gT ) is
generalized convex on F at x̄, then x̄ is a quasi ε-solution of (RSIP).

Proof. Let x̄ ∈ F be satisfied the robust ε-approximate (KKT) condition. Therefore, there
exist vt ∈ Vt, λt ≥ 0, t ∈ T (x̄), ξ ∈ ∂cf(x̄), γt ∈ ∂cgt(·, vt)(x̄) and b ∈ B such that

(3.2) 0 = ξ +
∑

t∈T (x̄)

λtγt + εb.

Suppose on contrary that x̄ is not a quasi ε-solution of (RSIP). It then follows that there
exists x̂ ∈ F satisfying

(3.3) f(x̂) + ε∥x̂− x̄∥ < f(x̄).

By the generalized convexity of (f, gT ) at x̄, there exists d ∈ Rn such that

f(x̂)− f(x̄) ≥ ⟨ξ, d⟩,(3.4)

gt(x̂, vt)− gt(x̄, vt) ≥ ⟨γt, d⟩, ∀t ∈ T (x̄),(3.5)

⟨b, d⟩ ≤ ∥x̂− x̄∥, ∀b ∈ B.(3.6)

Combining (3.3) and (3.4), we obtain that

(3.7) ⟨ξ, d⟩+ ε∥x̂− x̄∥ < 0.

Since x̂ ∈ F, vt ∈ Vt, and t ∈ T (x̄), we have gt(x̂, vt) ≤ 0 = gt(x̄, vt). From (3.5), we can
concluded that ⟨γt, d⟩ ≤ 0. Since λt, t ∈ T (x̄) are not all zero and by (3.7), we obtain that

(3.8) ⟨ξ, d⟩+
∑

t∈T (x̄)

λt⟨γt, d⟩+ ε∥x̂− x̄∥ < 0.
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On the other hand, (3.6) together with (3.8) yields
〈
ξ +

∑
t∈T (x̄) λtγt + b, d

〉
< 0, which

contradicts to (3.2) that
〈
ξ +

∑
t∈T (x̄) λtγt + b, d

〉
= ⟨0, d⟩ = 0. Consequently, x̄ is a quasi

ε-solution of (RSIP). □

4. APPROXIMATE DUALITY THEOREM

Now, we formulate a Wolfe-type dual problem (RSID) of (RSIP) as follows:

(RSID) max
(y,v,λ)

f(y) +
∑
t∈T

λtgt(y, vt) s.t. (y, v, λ) ∈ FD,

where FD, the feasible set of (RSID), is defined by

FD :=

{
(y, v, λ) :

0 ∈ ∂cf(y) +
∑

t∈T λt∂cgt(y, vt) + εB
(λt)t∈T ∈ R(T )

+ , vt ∈ Vt, t ∈ T

}
.

Definition 4.10. Let ε ≥ 0. Then (x̄, v̄, λ̄) is a quasi ε-solution of (RSID) if for any (y, v, λ) ∈
FD,

f(x̄) +
∑
t∈T

λ̄tgt(x̄, v̄t) ≥ f(y) +
∑
t∈T

λtgt(y, vt)− ε∥y − x̄∥.

Now, we establish the following approximate weak duality theorem, which holds be-
tween (RSIP) and (RSID).

Theorem 4.5. (Approximate weak duality theorem) Let x and (y, v, λ) be feasible solution of
(RSIP) and (RSID), respectively. If (f, gT ) is generalized convex at y, then

f(x) ≥ f(y) +
∑
t∈T

λtgt(y, vt)− ε∥y − x∥.

Proof. Let x and (y, v, λ) be feasible solution of (RSIP) and (RSID), respectively. Since
(y, v, λ) is feasible solution of (RSID), there exist (λt)t∈T ∈ R(T )

+ , vt ∈ Vt, t ∈ T, ξ ∈
∂cf(y), γt ∈ ∂cgt(y, vt) and b ∈ B such that

(4.9) 0 = ξ +
∑
t∈T

λtγt + εb.

Since (f, gT ) is generalized convex at y, there exists d ∈ Rn such that

f(x)− f(y) ≥ ⟨ξ, d⟩,(4.10)

gt(x, vt)− gt(y, vt) ≥ ⟨γt, d⟩, ∀t ∈ T (x̄),(4.11)

∥d∥ ≤ ∥x− y∥.(4.12)

Then, by multiplying both sides of (4.11) by λt, t ∈ T , and summing up the obtained
inequalities, we obtain that

∑
t∈T λtgt(x, vt)−

∑
t∈T λtgt(y, vt) ≥

∑
t∈T λt⟨γt, d⟩. By virtue

of (4.12), it holds that ⟨b, d⟩ ≤ ∥d∥ ≤ ∥x− y∥. This together with (4.9) and (4.10), it entails
especially that

f(x)−

(
f(y) +

∑
t∈T

λtgt(y, vt)

)
≥ ⟨ξ, d⟩ −

∑
t∈T

λtgt(y, vt)

=

〈
−
∑
t∈T

λtγt − εb, d

〉
−
∑
t∈T

λtgt(y, vt) = −
∑
t∈T

λt⟨γt, d⟩ − ε⟨b, d⟩ −
∑
t∈T

λtgt(y, vt)

≥ −
∑
t∈T

λt⟨γt, d⟩ − ε∥x− y∥ −
∑
t∈T

λtgt(y, vt) ≥ −
∑
t∈T

λt (gt(x, vt)− gt(y, vt))− ε∥y − x∥
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−
∑
t∈T

λtgt(y, vt) = −
∑
t∈T

λtgt(x, vt)− ε∥y − x∥ ≥ −ε∥y − x∥,

and consequently, f(x) ≥ f(y) +
∑

t∈T λtgt(y, vt)− ε∥y − x∥. □

Now, under the condition RKTCQ, we give the following approximate strong duality
theorem, which holds between (RSIP) and (RSID).

Theorem 4.6. (Approximate strong duality theorem) Assume that the RKTCQ holds and
cone(Z(x̄)) is closed. Let x̄ be a quasi ε-solution of (RSIP). If (f, gT ) is generalized convex at x̄,
then there exists (v̄, λ̄) ∈ V × R(T )

+ such that (x̄, v̄, λ̄) is a quasi ε-solution of (RSID).

Proof. Let x̄ be a quasi ε-solution of (RSIP). Then, by Theorem 3.2 (ii), for any t ∈ T (x̄)
there exists v̄t ∈ Vt(x̄) and λ̄t ≥ 0, which not all zero such that

0 ∈ ∂cf(x̄) +
∑

t∈T (x̄)

λ̄t∂cgt(x̄, v̄t) + εB.

So (x̄, v̄, λ̄) is feasible solution of (RSID). By approximate weak duality theorem, for any
feasible (y, v, λ) of (RSID),

f(x̄) ≥ f(y) +
∑

t∈T (x̄)

λtgt(y, vt)− ε∥y − x̄∥.

For any t ∈ T (x̄), v̄t ∈ Vt(x̄), we obtain that gt(x̄, v̄t) = 0, so

f(x̄) +
∑

t∈T (x̄)

λ̄tgt(x̄, v̄t) ≥ f(y) +
∑

t∈T (x̄)

λtgt(y, vt)− ε∥y − x̄∥.

Therefore (x̄, v̄, λ̄) is a quasi ε-solution of (RSID). □
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[4] López, M. A. and Still, G., Semi-infinite programming, Eur. J. Opera. Res., 180 (2007), 491–518
[5] Zheng, X. Y. and Yang, X., Lagrange multipliers in nonsmooth semi-infinite optimization problems, J. Oper. Res.,

32 (2007), 168–181
[6] Kanzi, N. and Nobakhtian, S., Optimality conditions for nonsmooth semi-infinite programming, Optimization,

53 (2008), 717–727
[7] Kanzi, N. and Nobakhtian, S., Necessary optimality conditions for nonsmooth generalized semi-infinite program-

ming problems, Eur. J. Oper. Res., 205 (2010), 253–261
[8] Long, X. J., Xiao, Y. B. and Huang, N. J., Optimality conditions of approximate solutions for nonsmooth semi-

infinite programming problems, J. Oper. Res. Soc. China, 6 (2018), 289–299
[9] Kanzi, N., Necessary optimality conditions for nonsmooth semi-infinite programming problems, J. Global Optim.,

49 (2011), 713–725
[10] Ben-Tal, A., Ghaoui, L. E. and Nemirovski, A., Robust optimization, Princeton series in applied mathematics,

Priceton, NJ: Priceton University Press, 2009
[11] Ben-Tal, A. and Nemirovski, A., Robust solutions to uncertain linear programs, Operations Research Letters,

25 (1999), 1–13



426 Chanoksuda Khantree and Rabian Wangkeeree

[12] Ben-Tal, A. and Nemirovski, A., Robust optimization-methodology and applications, Mathematical program-
ming, series B, 92 (2002), 453–480

[13] Ben-Tal, A. and Nemirovski, A., A selected topics in robust convex optimization, Mathematical programming,
series B, 112 (2008), 125–158

[14] Jeyakumar, V. and Li, G. Y., Characterizing robust set containments and solutions of uncertain linear programs
without qualifications, Oper. Res. Lett. 38 (2010), 188–194

[15] Kuroiwa, D. and Lee, G.M., On robust multiobjective optimization, Vietnam Journal of Mathematics, 40 (2012),
305-317

[16] Lee, J.H. and Jiao, L., On quasi ε-solution for robust convex optimization problems, Optimization Letters, 11
(2017), 1609–1622

[17] Lee, J. H. and Lee, G. M., On ε-solutions for convex optimization problems with uncertainty data, Positivity, 16
(2012), 509–526

[18] Lee, G. M. and Lee, J. H., On nonsmooth optimality theorems for robust multiobjective optimization problems, J.
Nonlinear Convex Anal., 16 (2015), 2039–2052

[19] Bertsimas, D., Pachamanova, D. and Sim, M., Robust linear optimization under general norms, Oper. Res. Lett.,
32 (2004), 510–516

[20] Bertsimas, D. and Brown, D., Constructing uncertainty sets for robust linear optimization, Oper. Res., 57 (2009),
1483–1495

[21] Ben-Tal, A., Ghaoui, L. E. and Nemirovski, A., Robust Optimization, In: Princeton Series in Applied Mathe-
matics 2009.

[22] Lee, J. H. and Lee, G. M., On ε-solutions for robust semi-infinite optimization problems, Positivity.
https://doi.org/10.1007/s11117-018-0630-1 (2018)

[23] Loridan, P., Necessary conditions for ε-optimality, Math. Program. Study, 19 (1982), 140–152
[24] Strodiot, J. J., Nguyen, V. H. and Heukemes, N., ε-Optimal solutions in nondifferentiable convex programming

and some related questions, Math. Program., 25 (1983), 307–328
[25] Sun, X. K., Fu, H. Y. and Zeng, J., Robust approximate optimality conditions for uncertain nonsmooth optimization

with infinite number of constraints, Mathematics, 7 (2019), 12
[26] Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley, New York, 1983
[27] Lee, G.M. and Son, P.T., On nonsmooth optimality theorems for robust optimization problems, Bull. Korean Math.

Soc., 51 (2014), 287–301
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