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An iterative method for solving multiple-set split
feasibility problems in Banach spaces

S. AL-HOMIDAN1, B. ALI 2 and Y. I. SULEIMAN3

ABSTRACT. In this paper, we study generalized multiple-set split feasibility problems (in short, GMSSFP)
in the frame work of p-uniformly convex real Banach spaces which are also uniformly smooth. We construct
an iterative algorithm which is free from an operator norm and prove its strong convergence to a solution of
GMSSFP, that is, a solution of convex problem and a common fixed point of a countable family of Bregman
asymptotically quasi-nonexpansive mappings without requirement for semi-compactness on the mappings. We
illustrate our algorithm and convergence result by a numerical example.

1. INTRODUCTION

During the last two decades, split type problems have been extensively studied in the
literature because of their applications in many real life problems, namely, image pro-
cessing, data compression, magnetic resonance imaging, image reconstruction, intensity-
modulated radiation therapy, neural networks, graph matching, etc., see, for example,
[2, 3, 4, 5, 6, 7, 9, 10] and the references therein. One of spilt type problems is the following
generalized multiple-set split feasibility problem (in short, GMSSFP):

(1.1) find x∗ ∈
∞⋂
i=1

Fix(Ti) such that f(x∗) = 0,

where K is a nonempty closed and convex subset of a Banach space E, {Ti}i∈N : K → K
is a countable family of Bregman asymptotically quasi-nonexpansive mappings [14] such
that

⋂∞
i=1 Fix(Ti) 6= ∅, Fix(Ti) denotes the set of common fixed points of Ti, and f : E →

R is a lower semicontinuous convex function. We denote by Ω the solution set of the
problem (1.1). It is considered and studied by Giang et al. [16] in the setting of Hilbert
spaces. A more general version of this problem is introduced and studied by Al-Homidan
et al. [2].

If E1, E2 and E3 are Banach spaces, K1 ⊆ E1, K2 ⊆ E2, E = E1 × E2, and f : E → R
and Ti = T : K1 ×K2 → E, i ∈ N, are given, respectively, by

f(x, y) :=
1

2
‖Ax−By‖2 and T (x, y) :=

(
S1
i x, S

2
i y
)
, ∀(x, y) ∈ K1 ×K2,

where A : E1 → E3 and B : E2 → E3 are bounded linear operators, S1
i : K1 → K1

and S2
i : K2 → K2 are Bregman asymptotically quasi-nonexpansive mappings for each
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i = 1, 2, . . . ,m, then problem (1.1) coincides with the following multiple-set split equality
feasibility problem (MSSEFP) defined as:

(1.2)

{
find x∗ ∈

⋂m
i=1 Fix(S1

i ) and y∗ ∈
⋂m
i=1 Fix(S2

i )

such that Ax∗ = By∗.

Furthermore, if B = I the identity map and E2 = E3, then the problem (1.1) reduces to
the following multiple-set split feasibility problem:

(1.3)

{
find x∗ ∈

⋂m
i=1 Fix(S1

i )

such that Ax∗ = y∗ ∈
⋂m
i=1 Fix(S2

i ),

where S1
i : E1 → E1 and S2

i : E2 → E2 are asymptotically quasi-nonexpansive mappings
such that

⋂m
i=1 Fix(Sji ) 6= ∅, j = 1, 2. It is considered and studied in [11, 20] in the setting

of Hilbert spaces. A particular case of problem (1.3) is studied by Moudafi [18] for quasi-
nonexpansive mappings defined on Hilbert spaces.

Qin et al. [20] constructed an iterative scheme which requires prior knowledge of op-
erator norms and proved strong convergence theorem for approximating the solutions of
problem (1.3) under the assumption of semi-compactness on the asymptotically nonex-
pansive mappings. In practical, most of the operators do not posses this property. There-
fore, the following question can be raised.
Question. Can we obtain an iterative algorithm which converges strongly to a solution of problem
(1.3) for a class of asymptotically quasi-nonexpansive and / or more general than asymptotically
quasi-nonexpansive mappings in Banach spaces and without the assumption of semi-compactness
or without prior knowledge of operator norms?

Over the last decade, several attempts were made to provide answers to this question,
see, for example, [12, 23, 27]. Giang et al. [16] proved a strong convergence theorem for
approximating the solutions of problem (1.3) without prior knowledge of operator norms,
but for quasi-nonexpansive mappings in Hilbert spaces.

This fact has motivated us to consider generalized multiple-set split feasibility problem
(GMSSFP) in Banach spaces, and to provide the affirmative answer to the above question.
We also present a numerical example to demonstrate the validity of our results.

In the next section, we highlight some well-known definitions, notations and results
which will be needed in the proof of main results of this paper. In Section 3, we propose
an iterative algorithm and prove its strong convergence to a solution of the problem (1.1)
in the setting of p-uniformly convex real Banach spaces which are also uniformly smooth,
but without semi-compactness assumption of the mappings and without prior knowledge
of operator norms.

2. PRELIMINARIES

Let E be a smooth, strictly convex and reflexive Banach space with its topological dual
E∗, and K be a non-empty, closed and convex subset of E. For the geometry of Banach
spaces, we refer [15, 26]. Let fp : E → R be given by fp := 1

p‖x‖
p where 1 < p < ∞. The

Bregman distance [8] ∆p : E × E → [0,∞) with respect to fp is defined by

(2.4) ∆p(x, y) :=
1

q
‖x‖p − 〈Jpx, y〉+

1

p
‖y‖p,

where q > 1 satisfying 1
p + 1

q = 1, Jp is the generalized duality mapping from E into 2E
∗

defined by

Jp(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖∗ = ‖x‖p−1}, ∀x ∈ E.
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Alber [1] defined the Vp-mapping Vp : E∗ × E → [0,∞) associated with fp as

(2.5) Vp(x
∗, x) :=

1

q
‖x∗‖q − 〈x∗, x〉+

1

p
‖x‖p, ∀x ∈ E and x∗ ∈ E∗.

Clearly,

(2.6) Vp(x
∗, x) = ∆p(J

−1
p (x∗), x), ∀x ∈ E and x∗ ∈ E∗,

which implies that

(2.7) Vp(x
∗, x) + 〈y∗, J−Ip (x∗)− x〉 ≤ Vp(x∗ + y∗, x), ∀x ∈ E and x∗, y∗ ∈ E∗.

Moreover, Vp is convex in the first variable. So, for all z, xi ∈ E and λi ∈ (0, 1) with
n∑
i=1

λi = 1, we have

(2.8) ∆p

(
J−1
p

(
n∑
i=1

λiJpxi

)
, z

)
= Vp

(
n∑
i=1

λiJpxi, z

)
≤

n∑
i=1

λi∆p(xi, z).

Bregman [8] defined the generalized projection ΠK : E → K as

ΠKx = x∗ if and only if ∆p(x
∗, x) := inf

y∈K
∆p(y, x).

In Hilbert spaces, the Bregman projection ΠK coincides with the metric projection PK
onto K. Further, for a given x ∈ E,

(2.9) 〈Jpx− Jp(ΠKx), y −ΠKx〉 ≤ 0, ∀y ∈ K.

(2.10) and ∆p(ΠKx, y) + ∆p(x,ΠKx) ≤ ∆p(x, y), ∀y ∈ K.

We know that if a Banach space E is q−uniformly smooth then there exist a constant
Cq > 0 and a real number q > 1 such that

(2.11) ‖x− y‖q ≤ ‖x‖q − q〈Jqx, y〉+ Cq‖y‖q, ∀ x, y ∈ E;

Lemma 2.1. [19] Let E be a uniformly convex and smooth Banach space, and let {xn}∞n=1 and
{yn}∞n=1 be sequences in E. If lim

n→∞
∆p(xn, yn) = 0 and either {xn}∞n=1 or {yn}∞n=1 is bounded,

then lim
n→∞

‖xn − yn‖ = 0.

A mapping T : K → E is said to be:
(a) Bregman nonexpansive [21] if ∆p(Tx, Ty) ≤ ∆p(x, y), ∀x, y ∈ K;
(b) Bregman quasi-nonexpansive [21] if Fix(T ) 6= ∅ and ∆p(Tx, x

∗) ≤ ∆p(x, x
∗), ∀x ∈

K, ∀x∗ ∈ Fix(T ).
(c) Bregman asymptotically quasi-nonexpansive [14] if there exists a sequence
{kn}∞n=1 ⊂ [1,∞) satisfying lim

n→∞
kn = 1 such that for each n ∈ N, we have

∆p(T
nx, Tnx∗) ≤ kn∆p(x, x

∗), ∀x ∈ K, x∗ ∈ Fix(T ).

Lemma 2.2. [22] Let E be a reflexive Banach space and K be a nonempty, closed and convex
subset of E. Let T : K → K be a closed Bregman asymptotically quasi-nonexpansive mapping
with the sequence {kn}∞n=1 ⊂ [1,+∞) such that lim

n→∞
kn = 1. Then Fix(T ) is closed and convex.

Lemma 2.3. [25] Let q > 1 and r > 0 be fixed real numbers. A Banach space E is uniformly
convex if and only if there exists a continuous, strictly increasing convex function g : [0,∞) →
[0,∞) with g(0) = 0 such that for any given sequence {xn}∞n=1 ⊂ Br(0) and for any given
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sequence {αn}∞n=1 of positive numbers with
∞∑
n=1

αn = 1 and for any positive integers i, j with

i < j, ∥∥∥∥∥
∞∑
n=1

αnxn

∥∥∥∥∥
q

≤
∞∑
n=1

αn‖xn‖q − αiαjg(‖xi − xj‖).

Lemma 2.4. [17] Let {Γn}∞n=1 be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {Γnj

}∞j≥0 of {Γn}∞n=1 such that Γnj
< Γnj+1

for all
j ≥ 0. Also consider the sequence of integers {ζ(n)}∞n≥0 defined by ζ(n) := max{r ≤ n : Γr <

Γr+1}. Then {ζ(n)}∞n≥n0
is a decreasing sequence verifying lim

n→∞
ζ(n) = 0, and for all n ≥ n0,

the following two estimates hold;

Γζ(n) < Γζ(n)+1 and Γn < Γζ(n)+1.

Lemma 2.5. [24] Let {γn}∞n=1 be a sequences in (0, 1) and {δn}∞n=1 be in R satisfying
∞∑
n=1

γn =

∞ and lim sup
n→∞

δn ≤ 0 or
∞∑
n=1

|γnδn| < ∞. If {an}∞n=1 is a sequence of nonnegative real number

such that an+1 ≤ (1− γn)an + γnδn, ∀n ≥ 0, then lim
n→∞

an = 0.

Lemma 2.6. [13] Let {an}∞n=1, {bn}∞n=1 and {cn}∞n=1 be sequences of non-negative real numbers

such that
∞∑
n=1

bn <∞ and
∞∑
n=1

cn <∞. If an+1 ≤ (1 + bn)an + cn, ∀n ≥ 1, then lim
n→∞

an = 0.

3. MAIN RESULTS

Throughout this section, unless otherwise specified, we assume that E is a p-uniformly
convex real Banach space which is also uniformly smooth for 1 < p <∞ with its dual E∗

and a constant Cq in (2.11). Assume that the problem (1.1) is consistent and f : E → R
is a non-negative, weakly lower semicontinuous convex function with search direction ζn
and step length

τn =
ρn

f(xn)p−1

‖ζn‖p , if ζn 6= 0;

0, otherwise,

satisfying the following conditions with {ρn}∞n=1 ⊂
(

0,
(
q
Cq

) 1
q−1

)
:

(B1) 〈ζn, xn − x∗〉 ≥ f(xn), ∀x∗ ∈ Ω;
(B2) 0 ≤ a ≤ τn ≤ a for some a, a ∈ R and ∀n ∈ Γ = {n ∈ N : ζn 6= 0};

(B3) inf
n∈Γ

(
ρn

(
1− ρq−1

n Cq
q

))
> 0.

Theorem 3.1. Let K be a non-empty, closed and convex subset of E. Let {Ti}i∈N : K → K
be a countable family of closed Bregman asymptotically quasi-nonexpansive mappings with the
sequence {ki,n} ⊂ [1,∞) such that lim

n→∞
ki,n = 1 and (I − Ti) is demiclosed at zero for each

i ∈ N. For arbitrary u ∈ K and for the initial choice x0 ∈ K, define iterative algorithm by

(3.12)

{
un =

∏
K J
−1
p (Jpxn − τnζn),

xn+1 =
∏
K J
−1
p (αnJpu+ (1− αn) (βn,0Jpun +

∑∞
i=1 βn,iJpT

n
i un)) , n ≥ 0,
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where αn, βn,0, βn,i ∈ [ε, 1 − ε], ε ∈ (0, 1) satisfying βn,0 +

∞∑
i=0

βn,i = 1; lim
n→∞

αn = 0,

∞∑
i=1

αn = +∞, kn = sup{ki,n : i ≥ 1}; (1 − βn,0)kn ≤ 1. Then the sequence {xn} converges

strongly to x∗ =
∏

Ω u.

Proof. Let x∗ ∈ Ω and zn = J−1
p

(
βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un

)
. Using (3.1), we get

∆p(zn, x
∗) =∆p

(
J−1
p (βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un), x∗

)

=Vp

(
βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un, x

∗

)

=
1

q

∥∥∥∥∥βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un

∥∥∥∥∥
q

−

〈
βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un, x

∗

〉
+

1

p
‖x∗‖p .

This implies

∆p(zn, x
∗) ≤ 1

q

(
βn,0‖un‖p +

∞∑
i=1

βn,i‖Tni un‖q
)
− βn,0〈Jpun, x∗〉

−
∞∑
i=1

βn,i〈JpTni un, x∗〉+
1

p
‖x∗‖p

=
1

q
βn,0‖un‖q − βn,0〈Jpun, x∗〉+

1

p
βn,0‖x∗‖p +

1

q

∞∑
i=1

βn,i‖Tni un‖q

−
∞∑
i=1

βn,i〈JpTni un, x∗〉+
1

p

∞∑
i=1

βn,i‖x∗‖p

= βn,0∆p(un, x
∗) +

∞∑
i=1

βn,i∆p(T
n
i un, x

∗)

≤ βn,0∆p(un, x
∗) +

∞∑
i=1

βn,ikn,i∆p(un, x
∗)

≤ βn,0∆p(un, x
∗) + (1− βn,0)kn∆p(un, x

∗)

= (βn,0 + (1− βn,0)kn) ∆p(un, x
∗)

≤ (βn,0 + 1) ∆p(un, x
∗).

(3.13)



6 S. Al-Homidan, B. Ali and Y. I. Suleiman

We also compute

∆p(un, x
∗) =∆p(ΠKJ

−1
p (Jpxn − τnζn), x∗)

≤∆p(J
−1
p (Jpxn − τnζn), x∗)

=Vp(Jpxn − τnζn, x∗)

≤1

q
‖Jpxn − τnζn‖q − 〈Jpxn − τnζn, x∗〉+

1

p
‖x∗‖p

≤1

q
‖Jpxn‖q − τn〈ζn, xn〉+

Cqτ
q
n

q
‖ζn‖q − 〈Jpxn, x∗〉+ τn〈ζn, x∗〉+

1

p
‖x∗‖p

≤1

q
‖xn‖q − 〈Jpxn, x∗〉+

1

p
‖x∗‖p − τn〈ζn, xn − x∗〉+

Cq τ
q
n

q
‖ζn‖q

≤∆p(xn, x
∗)− τnf(xn) +

Cq τ
q
n

q
‖ζn‖q.

This implies

∆p(un, x
∗) ≤∆p(xn, x

∗)− ρnf(xn)p

‖ζn‖p
+
ρqnf(xn)q(p−1)Cq τ

q
n

q‖ζn‖pq
‖ζn‖q

≤∆p(xn, x
∗)− ρn

(
1− Cqρ

q−1
n

q

)
f(xn)p

‖ζn‖p

=∆p(xn, x
∗)− ρn

(
1− Cqρ

q−1
n

q

)
f(xn)p

‖ζn‖p
≤ ∆p(xn, x

∗).

(3.14)

It follows from (3.13) and (3.14) that

∆p(xn+1, x
∗) =∆p

(
ΠKJ

−1
p (αnJpu+ (1− αn)Jpzn), x∗

)
≤∆p

(
J−1
p (αnJpu+ (1− αn)Jpzn), x∗

)
=∆p(αnu+ (1− αn)zn, x

∗)

=
1

q
‖αnu+ (1− αn)zn‖p − αn〈Jpu, x∗〉 − (1− αn)〈Jpzn, x∗〉+

1

p
‖x∗‖p

≤1

q
αn‖u‖q + (1− αn)

1

q
‖zn‖q − αn〈Jpu, x∗〉 − (1− αn)〈Jpzn, x∗〉+

1

p
‖x∗‖p

=αn
1

q
‖u‖q − αn〈Jpu, x∗〉+ αn

1

p
‖x∗‖p + (1− αn)

1

q
‖zn‖q

− (1− αn)〈Jpzn, x∗〉+ (1− αn)
1

p
‖x∗‖p

=αn∆p(u, x
∗) + (1− αn)∆p(zn, x

∗)

≤αn∆p(u, x
∗) + (1− αn) (βn,0 + 1) ∆p(un, x

∗)

≤αn∆p(u, x
∗) + (1− αn) (βn,0 + 1) ∆p(xn, x

∗)

− ρn
(

1− Cqρ
q−1
n

q

)
f(xn)p

‖ζn‖p
(1− αn) (βn,0 + 1) .

(3.15)

Since lim inf
n∈Γ

(
ρn(1− Cqρ

q−1
n

q
)

)
> 0, from assumption (B3), the inequality (3.15) becomes

∆p(xn+1, x
∗) ≤αn∆p(u, x

∗) + (1− αn) (βn,0 + 1) ∆p(xn, x
∗)

≤ (1 + βn,0) ∆p(xn, x
∗) + αnM,
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where M = sup{∆p(u, x
∗), n ∈ N}. By Lemma 2.6, we conclude that the sequence {xn}

and so {un} are bounded in K.
Now, using the boundedness of {xn} and Lemma 2.2, we have that Ω is closed and

convex thanks to the convexity of f . So, we pick arbitrary element x∗ =
∏

Ω u and set
zn = J−1

p (βn,0Jpun +
∑∞
i=1 βn,iJpT

n
i un). Again by using (3.1), we compute

∆p(zn, x
∗) =∆p

(
J−1
p (βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un), x∗

)

=Vp

(
βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un, x

∗

)

=
1

q

∥∥∥∥∥βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un

∥∥∥∥∥
q

−

〈
βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un, x

∗

〉
+

1

p
‖x∗‖p.

Since {un} is bounded, by Lemma 2.3, we get

∆p(zn, x
∗) ≤βn,0

1

q
‖un‖q +

1

q

∞∑
i=1

βn,i‖Tni un‖p −
1

q
βn,0βn,ig(‖Jpxn − JpTni un‖)

− βn,0〈Jpun, x∗〉 −
∞∑
i=1

βn,i〈JpTni un, x∗〉+
1

p
‖x∗‖p

=βn,0
1

q
‖un‖q − βn,0〈Jpun, x∗〉+ βn,0

1

p
‖x∗‖p +

1

q

∞∑
i=1

βn,i‖Tni un‖q

−
∞∑
i=1

βn,i〈JpTiun, x∗〉+
1

p

∞∑
i=1

βn,i‖x∗‖p −
1

q
βn,0βn,ig(‖Jpun − JpTni un‖)

=βn,0∆p(un, x
∗) +

∞∑
i=1

βn,i∆p(T
n
i un, x

∗)− 1

q
βn,0βn,ig(‖Jpun − JpTni un‖)

≤βn,0∆p(un, x
∗) +

∞∑
i=1

βn,i kn,i∆p(un, x
∗)− 1

q
βn,0βn,ig(‖Jpun − JpTni un‖)

≤βn,0∆p(un, x
∗)+(1−βn,0) (βn,0+1) ∆p(un, x

∗)− 1

q
βn,0βn,ig(‖Jpun − JpTni un‖)

≤kn∆p(un, x
∗)− 1

q
βn,0βn,ig(‖Jpun − JpTni un‖).

(3.16)

Substituting relations (3.14) and (3.16) in (3.15), we obtain

∆p(xn+1, x
∗) =∆p(ΠKJ

−1
p (αnJpu+ (1− αn)Jpzn), x∗)

≤∆p(J
−1(αnJpu+ (1− αn)Jpzn), x∗)

=Vp(αnJpu+ (1− αn)Jpzn, x
∗)

=Vp(αnJpu+ (1− αn)Jpzn − αnJpu+ αnJpu− αnJpx∗ + αnJpx
∗, x∗)

=Vp
(
[αnJpu+ (1− αn)Jpzn − αn(Jpu− Jpx∗)] + [αn(Jpu− Jpx∗)], x∗

)
≤Vp(αnJpu+(1−αn)Jpzn −αn(Jpu−Jpx∗), x∗) +αn〈Jpu− Jpx∗, xn+1− x∗〉.
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This implies

∆p(xn+1, x
∗) ≤Vp(αnJpx∗ + (1− αn)Jpzn, x

∗) + αn〈Jpu− Jpx∗, xn+1 − x∗〉
=∆p(J

−1
p (αnJpx

∗ + (1− αn)Jpzn), x∗) + αn〈Jpu− Jpx∗, xn+1 − x∗〉
≤∆p(x

∗, x∗) + (1− αn)∆p(zn, x
∗) + αn〈Jpu− Jpx∗, xn+1 − x∗〉

≤(1− αn)kn∆p(un, x
∗) + αn〈Jpu− Jpx∗, xn+1 − x∗〉

− 1

q
(1− αn)βn,0βn,ig(‖Jpun − JpTni un‖)

≤(1− αn) (βn,0 + 1) ∆p(xn, x
∗) + αn〈Jpu− Jpx∗, xn+1 − x∗〉

− (1− αn)ρn

(
1− Cqρ

q−1
n

q

)
f(xn)p

‖ζn‖p

− 1

q
(1− αn)βn,0βn,ig(‖Jpun − JpTni un‖).

(3.17)

To show that {∆p(xn, x
∗)} converges strongly to zero. We consider two possibilities.

CASE 1. Suppose that the sequence {∆p(xn, x
∗)}∞n=1 is monotonically decreasing. This

implies that lim
n→∞

∆p(xn, x
∗) exists and lim

n→∞
∆p(xn+1, x

∗) = lim
n→∞

∆p(xn, x
∗) = 0. Since

{xn} is bounded, lim
n→∞

αn = 0 and βn,0, βn,i ∈ [ε, 1− ε], the inequality (3.17) becomes

(3.18) lim
n→∞

g(‖Jpun − JpTni un‖) ≤ lim
n→∞

((βn,0 + 1) ∆p(xn, x
∗)−∆p(xn+1, x

∗))

− lim
n→∞

ρn

(
1− Cqρ

q−1
n

q

)
f(xn)p−1

‖ζn‖p
f(xn).

Based on condition (B3), we deduce from (3.18) that

(3.19) lim
n→∞

g(‖Jpun − JpTni un‖) = 0 and

(3.20) lim
n→∞

f(xn)p−1

‖ζn‖p
f(xn) = 0.

Continuity of g implies

(3.21) lim
n→∞

‖Jpun − JpTni un‖ = 0.

Uniform norm to norm continuity of J−1
p gives

(3.22) lim
n→∞

‖un − Tni un‖ = 0.

From condition (B2) and equation (3.20), we obtain

(3.23) lim
n→∞

f(xn) = 0.

Hence,

(3.24) lim
n→∞

‖ζn‖ = 0.
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We compute

∆p(xn+1, zn)

= ∆p(ΠKJ
−1
p (αnJpu+ (1− αn)Jpzn), zn)

≤ ∆p(J
−1
p (αnJpu+ (1− αn)Jpzn), zn)

= Vp(αnJpu+ (1− αn)Jpzn, zn)

=
1

q
‖αnJpu+ (1− αn)Jpzn‖q − 〈αnJpu+ (1− αn)Jpzn, zn〉+

1

p
‖zn‖p

≤ 1

q
αn‖u‖q − αn〈Jpu, zn〉+

1

p
αn‖zn‖p +

1

q
(1− αn)‖zn‖q

− (1− αn)〈Jpzn, zn〉+
1

p
(1− αn)‖zn‖p

= αn∆p(u, zn) + (1− αn)∆p(zn, zn).

We immediately get lim
n→∞

∆p(xn+1, zn) = 0. By Lemma 2.1, we have

(3.25) lim
n→∞

‖xn+1 − zn‖ = 0.

Note that

‖Jpzn − Jpun‖ =

∥∥∥∥∥βn,0Jpun +

∞∑
i=1

βn,iJpT
n
i un − Jpun

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
i=1

βn,i(JpT
n
i un − Jpun)

∥∥∥∥∥
≤
∞∑
i=1

βn,i‖JpTni un − Jpun‖.

Using (3.21), we get lim
n→∞

‖Jpzn − Jpun‖ = 0 which implies

(3.26) lim
n→∞

‖zn − un‖ = 0.

Further, ‖Jpcn − Jpxn‖ = ‖Jpxn − τnζn − Jpxn‖ = τn‖ζn‖, where cn = J−1
p (Jpxn − τnζn).

It follows from (3.24) that
lim
n→∞

‖Jpcn − Jpxn‖ = 0.

This implies that

(3.27) lim
n→∞

‖cn − xn‖ = 0.

By Lemma 2.1 and relation (2.10), we get

∆p(un, xn) ≤ ∆p(cn, xn)−∆p(cn, un) ≤ ∆p(cn, xn).

By Lemma 2.1 again, we have

(3.28) lim
n→∞

‖xn − un‖ = 0.

Consequently,

(3.29) lim
n→∞

‖xn+1 − xn‖ = 0.

Since {xn} is bounded, E is reflexive, we can find a subsequence {xni
} of {xn} such that

xni
→ u and

(3.30) lim sup
n→∞

〈Jpu− Jpx∗, xn − x∗〉 = lim
i→∞
〈Jpu− Jpx∗, xni − x∗〉.
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Therefore,

(3.31) uni ⇀ u as i→∞.
It follows from the demiclosedness of (I − Ti) at zero for each i ∈ N, using (3.31) and
(3.22), that u ∈

⋂∞
i=1 Fix (Ti). In addition, using (3.23) and the fact that f is nonnegative

weakly lower semicontinuous, we obtain

0 ≤ f(u) ≤ lim inf
i→∞

f(xni
) = 0. Hence u ∈ Ω.

We next demonstrate that lim
n→∞

∆p(xn, x
∗) = 0, where x∗ = ΠΩu.

Applying (3.30) and (3.29), we get
(3.32)
lim sup
n→∞

〈Jpu− Jpx∗, xn+1 − x∗〉 ≤ lim sup
n→∞

〈Jpu− Jpx∗, xn − x∗〉 = 〈Jpu− Jpx∗, u− x∗〉 ≤ 0.

Note that

∆p(xn+1, x
∗) ≤(1− αn)(βn,0 + 1)∆p(xn, x

∗) + αn〈Jpu− Jpx∗, xn+1 − x∗〉.(3.33)

We write inequalities (3.33) as

Γn+1 ≤(1− αnβn,0)Γn +N(βn,0 − αn) + αnγn

≤(1− αnβn,0)Γn + αnβn,0

(
N(βn,0 − αn)

αnβn,0
+

γn
βn,0

)
≤(1− ωn)Γn + ωnδn,

(3.34)

where ωn = αnβn,0, N = sup{∆p(xn, x
∗) : n ≥ 0}, γn = 〈Jpu− Jpx∗, xn+1 − x∗〉 and δn =(

N(βn,0−αn)
αnβn,0

+ γn
βn,0

)
satisfying ωn ∈ (0, 1), lim

n→∞
ωn = 0,

∞∑
n=1

ωn = ∞, and lim sup
n→∞

δn ≤ 0.

By Lemma 2.5, we conclude that

lim
n→∞

∆p(xn, x
∗) = 0.

CASE 2. Suppose that the sequence {∆p(xn, x
∗)}∞n=1 is not monotonically decreasing.

Set Γn = ∆p(xn, x
∗), ∀n ≥ 1 and let Γ : N → N be a mapping for all n ≥ n0 for some n0

large enough by
ν(n) := max{r ∈ N : r ≤ n,Γr < Γr+1}.

Clearly, Γ is non-decreasing sequence such that Γ(n)→∞ as n→∞ and

(3.35) 0 ≤ Γνn < Γνn+1, ∀n ≥ n0.

Since {xνn} is bounded, repeating similar steps in Case 1, we deduce that

(3.36) Γνn+1 ≤ (1− ωνn)Γνn + ωνnδνn,

where lim
n→∞

ωνn = 0 and lim sup
n→∞

δνn ≤ 0. Substituting (3.35) in (3.36) gives

Γνn ≤ (1− ωνn)Γνn + ωνnδνn.

This implies Γνn ≤ δνn, lim supn→∞ Γνn ≤ 0, lim
n→∞

Γνn = 0, lim sup
n→∞

Γν(n+1) ≤ lim sup
n→∞

Γνn

and lim
n→∞

Γν(n+1) = 0. Therefore

0 ≤ Γνn ≤ max{Γνn,Γν(n+1)} ≤ Γν(n+1).

Applying Lemma 2.4, we conclude that

lim
n→∞

∆p(xn, x
∗) = 0.

Hence, in both cases, the sequence {xn} converge strongly to x∗ = ΠΩuwhere x∗ ∈ Ω. �
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If E = H a Hilbert space in Theorem 3.1, then ∆p(x, y) = ‖x− y‖2, and so, {Ti}ni=1 is a
finite sequence of asymptotically quasi-nonexpansive mappings.

Corollary 3.1. Let K be a non-empty, closed, convex subset of a real Hilbert space H . Let {Ti}ni :
K → K be a finite sequence of asymptotically quasi-nonexpansive mappings with the sequence
{ki,n} ⊂ [1,∞) such that lim

n→∞
ki,n = 1 and (I − Ti) is demiclosed at zero for each i ∈ N. For

arbitrary u ∈ K and for the initial choice x0 ∈ K, define iterative algorithm by

(3.37)

{
un = PK(xn − τnζn)

xn+1 = αnu+ (1− αn) (βn,0un +
∑∞
i=1 βn,iT

n
i un) , n ≥ 0,

where αn, βn,0, βn,i ∈ [ε, 1 − ε], ε ∈ (0, 1) satisfying βn,0 +
∞∑
i=0

βn,i = 1; lim
n→∞

αn = 0,

∞∑
i=1

αn = +∞, kn = sup{ki,n : i ≥ 1}; (1 − βn,0)kn ≤ 1. Then the sequences {xn} converge

strongly to x∗ = PΩu.

Finally, we illustrate our algorithm and convergence result by the following example.

Example 3.1. Let K be the unit ball in E = `2. For each i ∈ N, let Ti : K → K be defined
by

Ti(x) =

(
0,

1

2i
x2

1, a2x2, a3x3, . . .

)
, ∀x = (x1, x2, x3, . . .) ∈ K,

where {aj} is a sequence in (0, 1) such that
∏∞
j=2 aj = 1

2 . It is clear that

(i)
⋂∞
i=1 Fix(Ti) = {x = (0, 0, 0, . . .)},

(ii) ‖Tix− Tiy‖ ≤ 2‖x− y‖, ∀x, y ∈ K,
(iii) Tni =

(
0, 0, 1

2i a
n−1
2 x2

1, a
n−1
3 a2x2, a

n−1
4 a3x3, . . .

)
for n ≥ 2, and

(iv) ‖Tni x− Tni y‖ ≤ 2
∏n
j=2 aj‖x− y‖, ∀x, y ∈ K, n ≥ 2.

Let k
1
2
1 = 2 and k

1
2
n = 2

∏n
j=2 aj for n ≥ 2. Then lim

n→∞
kn = lim

n→∞

2

n∏
j=2

aj

2

= 1. In

view of (i), (ii) and (iv), we have

∆p (Tni x, T
n
i x
∗) ≤ kn∆p(x, x

∗), ∀x ∈ K, x∗ ∈ Fix(Ti).

Therefore each Ti is Bregman asymptotically quasi-nonexpansive which is not quasi-
nonexpansive and (I − Ti) is demiclosed at 0 for each i ∈ N. Consider a functional
f : E → R defined by

f(x) =
1

2
‖x‖2, ∀x ∈ E.

Clearly, f is a non-negative lower semi-continuous convex function. In fact, ∇f(x) = x
and

PK(x) =

{
x, x ∈ K;
x
‖x‖ , otherwise.

Take aj = 1
j , ζn = ∇f(xn), so that τn = ρn

2 and we obtain{
un = PK

(
xn − ρn

2 xn
)
,

xn+1 = 1
2n+1u+ 2n

2n+1

[
n

2n+1un +
∑∞
i=1

n+1
2i(2n+1)

(
0, 0, 1

2i

x2
1

2n−1 ,
x2

2×3n−1 ,
x3

3×4n−1 , . . .
)]
, n ≥ 2.
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Finally, all the hypothesis of Theorem 3.1 are satisfied with x∗ = (0, 0, 0, ...) ∈
∞⋂
i=1

Fix(Ti)

satisfying f(x∗) = 0. Therefore Ω = {(0, 0, 0, 0, ...)}.
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