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ABSTRACT. Many real-world phenomena in engineering, economics, statistical inference, compressed sens-
ing and machine learning involve finding sparse solutions to under-determined or ill-conditioned equations.
Our interest in this paper is to introduce a derivative-free method for recovering sparse signal and blurred im-
age arising in compressed sensing by solving a nonlinear equation involving a monotone operator. The global
convergence of the proposed method is established under the assumptions of monotonicity and Lipschitz con-
tinuity of the underlying operator. Numerical experiments are performed to illustrate the efficiency of the pro-
posed method in the reconstruction of sparse signals and blurred images.

1. INTRODUCTION

This article considers finding sparse solutions to an under-determined linear system
arising from compressed sensing. In general, the sparse signal and blurred image recov-
ery problem is formulated by the inversion of the following observation model:

(1.1) b = Tz + r,

where z ∈ Rn, z, r and b are unknown original image/signal, unknown additive random
noise and known degraded observation, respectively and T ∈ Rm×n(m << n) is a linear
operator.

In the literature, there is a growing interest in using the `1-norm regularization to re-
cover the sparse signal and blurred image z from (1.1). The `1-norm regularization prob-
lem is given by

(1.2) min
z

{
1

2
‖Tz − b‖22 + τ‖z‖1

}
,

where τ is a nonnegative parameter.
Several authors have developed several iterative methods for approximating the solu-

tion of the `1-norm regularization problem (1.2). Notable algorithms developed in this
direction can be found in [13, 14, 16] and references therein. The gradient descent method
is one of the notable methods for approximating the solution of the `1-norm regulariza-
tion problem. In [15], a gradient projection algorithm was developed to approximate the
solution of (1.2). However, the `1-norm regularization problem was first transformed into
convex quadratic program (CQP). Referring to [15], we present a summary of the refor-
mulation of (1.2) into CQP.

Consider any vector z ∈ Rn, z can be rewritten as follows

z = ua − ub, ua ≥ 0, ub ≥ 0,
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where ua ∈ Rn, ub ∈ Rn and (ua)i = (zi)+, (ub)i = (−zi)+ ∀i ∈ [1, n] with (·)+ =
max{0, ·}. Therefore, the `1-norm could be represented as ‖z‖1 = 〈en, ua〉+〈en, ub〉,where
en is a vector of dimension n with all element one. Thus, the model (1.2) is rewritten as

(1.3) min
ua,ub
{1

2
‖b− T (ua − ub)‖2 + τ〈en, ua〉+ τ〈en, ub〉 : ua, ub ≥ 0, 〈ua, ub〉 = 0}.

By the definition of ua and ub, in order to ensure equivalence between (1.2) and (1.3),
the complementary restriction in (1.3) necessarily holds. Therefore, the penalty approach
allows the model (1.3) to be relaxed to

(1.4) min
ua,ub
{1

2
‖b− T (ua − ub)‖2 + τ〈en, ua〉+ τ〈en, ub〉+ a0〈ua, ub〉 : ua, ub ≥ 0}.

where a0 is a sufficiently large penalty coefficient. Clearly, the model (1.4) can be rewritten
in a more standard bound CQPP, we can write the above model as follows:

(1.5) min
x

1

2
xTGx+ cTx, x ≥ 0,

where x =

[
ua

vb

]
, y = 〈T, b〉, c = τe2n +

[
−y
y

]
, G =

[
TTT −TTT
−TTT TTT

]
.

One of the first derivative-free method and spectral gradient method for approximating
the `1-norm regularization problem (1.2) is the methods proposed by Xiao et al. [37,38] re-
spectively. However, (1.5) was first transformed into a linear variational inequality prob-
lem that is similar to a linear complementarity problem. They also noted that x ∈ Rn

is a solution to the bound-limited quadratic program problem (1.5) if and only if x is a
solution to the following nonlinear equation:

(1.6) F (x) := min{x,Gx+ c} = 0.

The function F is vector valued, the ”min” is interpreted as componentwise minimum.
Thus, (1.6) is equivalent to (1.2). We note that (1.6) is a monotone system of equation
[37, 38].

Exploiting the simplicity and low storage requirement of the conjugate gradient method
[1,2], in recent times, several authors have extended many conjugate gradient algorithms
designed to solve unconstrained optimization problems to solve large-scale nonlinear
equations (1.6) (see [3–11,17–33,36]). For instance, using the projection scheme of Solodov
and Svaiter [35], Xiao and Zhu [38] extended the Hager and Zhang conjugate descent
(CG DESCENT) method to solve (1.6). Besides, their proposed method was applied for
sparse signal and image recovery problem arising in compressed sensing.

Motivated and inspired by the presented results and the approximate equivalence be-
tween (1.2) and (1.6), in this paper, we propose a descent three-term projection method
for approximating (1.2). The proposed method is motivated by the three-term conjugate
gradient method (THREECG) for solving unconstrained optimization problems by An-
drei [12]. Under suitable conditions, global convergence is established. Numerical exper-
iments are performed to illustrate the efficiency of the proposed method in reconstruction
of sparse signals and blurred images.

The rest of this paper is organized as follows. In Section 2, we give some preliminar-
ies, recall the three-term conjugate gradient method for unconstrained optimization and
present our algorithm subsequently. Convergence properties of the proposed algorithm
are analyzed in Section 3. In Section 4, we demonstrate the efficiency of the proposed
algorithm in signal and image recovery problem. Finally, conclusion is given in the last
section. Throughout this article, unless otherwise specified, the symbol ‖ · ‖ denotes the
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Euclidean norm. In addition, we need the definition of the projection map (PΩ), which is
a mapping from R2n onto the non-empty, closed and convex subset Ω, that is,

PΩ(z) := arg min{‖z − y‖ : y ∈ Ω},

that has the well-known property of non-expansivity, that is,

(1.7) ‖PΩ(z)− PΩ(y)‖ ≤ ‖z − y‖, ∀z, y ∈ R2n.

2. PRELIMINARIES AND ALGORITHM

In this section, we recall the conjugate gradient method for the unconstrained opti-
mization problem

min{f(z) : z ∈ Rn},
where f : Rn → R is continuously differentiable whose gradient at point zk is g(zk), or
gk for the sake of simplicity. The three term conjugate gradient (THREECG) algorithm
of Andrei [12] is a conjugate gradient method which generate a sequence {zk} using the
iterative scheme

(2.8) zk+1 = zk + αkdk, k ≥ 0

where αk > 0 is the steplength obtained by a suitable line search procedure and dk is the
search direction computed as

(2.9) dk :=

{
−gk − δksk−1 − ηkỹk−1, if k > 0,

−gk if k = 0,

where sk = zk+1 − zk and

δk :=

(
1 +

‖ỹk−1‖2

〈ỹk−1, sk−1〉

)
〈sk−1, gk〉
〈ỹk−1, sk−1〉

− 〈ỹk−1, gk〉
〈ỹk−1, sk−1〉

, ỹk−1 = gk − gk−1(2.10)

ηk :=
〈sk−1, gk〉
〈ỹk−1, sk−1〉

.(2.11)

Based on the THREECG method, (2.8)-(2.11), we propose a projection procedure for
solving (1.6) which generates a sequence {uk} such that

uk := zk + αkdk,

where the steplength αk > 0 and the search direction is defined as

(2.12) d0 := −F (z0), dk := −F (zk)− δksk−1 − ηkyk−1, ∀k ≥ 0.

where sk = uk − zk = αkdk and the parameter δk and ηk are defined as follows

δk :=

(
1 +

‖yk−1‖2

〈wk−1, sk−1〉

)
〈sk−1, F (zk)〉
〈wk−1, sk−1〉

− 〈y
k−1, F (zk)〉
〈wk−1, sk−1〉

,(2.13)

ηk :=
〈sk−1, F (zk)〉
〈wk−1, sk−1〉

,(2.14)

and

yk−1 := F (uk−1)− F (zk−1) + rsk−1, sk−1 := uk−1 − zk−1 = αk−1dk−1, r > 0,(2.15)

wk−1 := yk−1 + jk−1dk−1, jk−1 := 1 + max

{
0,−〈d

k−1, yk−1〉
〈dk−1, dk−1〉

}
.(2.16)

In view of the above, we present the algorithm for the propose method.
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Algorithm 2.1.
Initialization. Choose any arbitrary point z0 ∈ Ω, the positive constants: Tol ∈ (0, 1),
σ > 0, γ ∈ (0, 1], ρ ∈ (0, 1), κ ∈ (0, 2). Set k = 0.

Step 0. Compute F (zk). If ‖F (zk)‖ ≤ Tol, stop. Otherwise, dk should be computed as follows

(2.17) d0 := −F (z0), dk := −θkF (zk)− δksk−1 − ηkyk−1, ∀k ≥ 0.

where δk and ηk, are computed using (2.13) and (2.14) respectively.

Step 1. Compute uk = zk +αkdk and let the steplength αk = σγi, be determined by the following
line-search

(2.18) −〈F (zk + αkdk), dk〉 ≥ ραk‖F (zk + αkdk)‖ · ‖dk‖2.

Step 2. If uk ∈ Ω and ‖F (uk)‖ ≤ Tol, stop. Otherwise, compute

(2.19) zk+1 = PΩ

[
zk − κµkF (uk)

]
where

µk :=
〈F (uk), (zk − uk)〉
‖F (uk)‖2

.

Step 3. Set k := k + 1 and go to step 0.

In the next section, we investigate the global convergence of Algorithm 2.1.

3. CONVERGENCE ANALYSIS

In this section, we will establish the convergence of the proposed algorithm. We first
study the convergence of Algorithm 2.1 under the condition:

(1) The solution set SolF,Ω is nonempty.
(2) The operator F is Lipschitz continuous, that is, there exists a constant L > 0 such

that

(3.20) ‖Fz − Fy‖ ≤ L‖z − y‖, ∀z, y ∈ Rn.

(3) For the problem (1.6), the associated operator F is monotone (see Xiao et al. [37] ).
That is,

(3.21) 〈Fz − Fy, z − y〉 ≥ 0, ∀z, y ∈ Rn.

Lemma 3.1. Assume that Suppose that dk is given by (2.12) Then, the following result

(3.22) 〈F (zk), dk〉 ≤ −‖F (zk)‖2, ∀k ≥ 0.

holds for any k ≥ 0.

Proof. From (2.15) and (2.16), it holds that
(3.23)
〈wk−1, sk−1〉 ≥ αk−1〈yk−1, dk−1〉+ αk−1‖dk−1‖2 − αk−1〈yk−1, dk−1〉 = αk−1‖dk−1‖2.

Assume that αk−1‖dk−1‖2 > 0, multiplying both sides of (2.12) with F (zk)T and using
(2.13), (2.14) and (3.23), the the proof of Lemma 3.1 follows. �

Lemma 3.2. Let the sequences {dk} and {zk} be generated by Algorithm 2.1, then the line search
(2.18) is well-defined.
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Proof. By contradiction, suppose there exist k0 ≥ 0 such that (2.18) is not satisfied for any
nonnegative integer i, that is,

−〈F (zk0 + σγidk0), dk0〉 < ρσγi‖F (zk0 + σγidk0)‖‖dk0‖2,∀i ≥ 1.

Using the continuity of F and letting i→∞ yields

−〈F k0 , dk0〉 ≤ 0

which contradicts (3.22). This completes the proof. �

Lemma 3.3. Suppose F is monotone and Lipchitz continuous on Rn and the sequence {zk} and
{uk} is generated by Algorithm 2.1, then for any solution z∗ of (1.6), it holds that

(3.24) ‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − κ(2− κ)ρ2‖zk − uk‖4,

and the sequence {zk} and {uk} are bounded. Furthermore, it holds that

(3.25) lim
k→∞

‖zk − uk‖ = 0.

Proof. Let uk = zk + αkdk, it is clear from the line-search (2.18) that,
(3.26)
〈F (uk), zk − uk〉 = −αk〈F (uk), dk〉 ≥ ρ(αk)2‖F (uk)‖‖dk‖2 = ρ‖F (uk)‖‖zk − uk‖2.

From the monotonicity of F , (3.26) with z∗ ∈ SolF,Ω, we have

〈F (uk), zk − z∗〉 = 〈F (uk), zk + uk − uk − z∗〉

= 〈F (uk), uk − z∗〉+ 〈F (uk), zk − uk〉

≥ 〈F (z∗), uk − z∗〉+ 〈F (uk), zk − uk〉

= 〈F (uk), zk − uk〉

≥ ρ‖F (uk)‖‖zk − uk‖2.(3.27)

From the nonexpansiveness of the operator, it holds that for any z∗ ∈ SolF,Ω,

‖zk+1 − z∗‖2 = ‖PΩ[zk − κµkF (uk)]− z∗‖2

≤ ‖zk − κµkF (uk)− z∗‖2

= ‖zk − z∗‖ − 2κµk〈F (uk), zk − z∗〉+ κ2(µk)
2‖F (uk)‖2

= ‖zk − z∗‖2 − 2κµk〈F (uk), (zk − z∗)〉+ κ2(µk)2‖F (uk)‖2

≤ ‖zk − z∗‖2 − 2κµk〈F (uk), zk − uk〉+ κ2(µk)2‖F (uk)‖2

= ‖zk − z∗‖2 − κ(2− κ)

(
〈F (uk), zk − uk〉
‖F (uk)‖

)2

≤ ‖zk − z∗‖2 − κ(2− κ)ρ2‖zk − uk‖4(3.28)

From the above, it can be observed that {‖zk − z∗‖} is decreasing as κ ∈ (0, 2). It holds
that ‖zk − z∗‖ ≤ ‖z0 − z∗‖. Therefore, by the assumption that F is Lipschitz continuous
on Rn, it follows that

‖F (zk)‖ = ‖F (zk)− F (z∗)‖ ≤ L‖zk − z∗‖ ≤ L‖z0 − z∗‖.

Now, taking % = L‖z0 − z∗‖, we have

‖F (zk)‖ ≤ %.
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Moreover, since F is monotone, by the Cauchy-Schwarz inequality and (2.18), we have

‖F (uk)‖‖zk − uk‖≥ 〈F (uk), zk − uk〉 ≥ ρ‖F (uk)‖‖zk − uk‖2,

where the last inequality can be implied from (3.26). Thus, we obtain

ρ‖zk − uk‖ ≤ 1.

The above implies that {uk} is bounded. By the continuity of F, there exist a constant
H > 0 such that

‖F (uk)‖ ≤ H, ∀k ≥ 0.

From (3.28), we have
κ(2− κ)ρ2‖zk − uk‖4 ≤ ‖zk − z∗‖2 − ‖zk+1 − z∗‖2.(3.29)

Adding (3.29) for k ≥ 0, we have

κ(2− κ)ρ2
∞∑
k=0

‖zk − uk‖4 ≤
∞∑
k=0

(‖zk − z∗‖2 − ‖zk+1 − z∗‖2) <∞.

(3.30)

We can infer from (3.30) that

lim
k→∞

‖zk − uk‖ = 0.

The proof is completed.

�

Lemma 3.4. Let sequences {zk} and {uk} be generated by Algorithm 2.1. Then, we have

(3.31) αk ≥ min

{
σ,

γ‖F (zk)‖2

(L+ ρ‖F (uk∗)‖)‖dk‖2

}
where uk∗ := zk + αk

∗d
k, αk

∗ := γ−1αk.

Proof. From the line search procedure, suppose αk 6= σ, then αk
∗ = γ−1αk does not satisfy

the line search procedure. That is,

−〈(zk + αk
∗d

k), dk〉 < ραk
∗‖F (zk + αk

∗d
k)‖ · ‖dk‖2.

By the descent condition (3.22) and the condition 1 (3.20), it holds that

‖F (zk)‖2 ≤ −〈F (zk), dk〉

= 〈(F (zk + αk
∗d

k)− F (zk)), dk〉 − 〈F (zk + αk
∗d

k), dk〉

≤ αk
∗(L+ ρ‖F (uk∗)‖) · ‖dk‖2.

Hence, this yield the desired inequality (3.31). �

We next show the global convergence of Algorithm 2.1.

Theorem 3.2. Consider the iterative method defined by Algorithm 2.1. Suppose conditions 1-2
hold. If {zk} is the sequence generated by Algorithm 2.1, then

(3.32) lim inf
k→∞

‖F (zk)‖ = 0.
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Proof. Suppose lim infk→∞ ‖F (zk)‖ = 0 does not hold, that is there exist a constant ω > 0
such that

‖F (zk)‖ ≥ ω, ∀k ≥ 0.

Connecting the sufficient descent condition (3.22) with the above equation implies that

‖dk‖ ≥ ‖F (zk)‖ ≥ ω, ∀k ≥ 0.

From the definition of yk−1, and by Lipschitz continuity, we have

‖yk−1‖ = ‖F (uk−1)− F (zk−1) + rsk−1‖

≤ (L+ r)‖uk−1 − zk−1‖

≤ (L+ r)αk−1‖dk−1‖.

Utilizing (2.13), (3.23), αk ∈ (0, 1) and the above inequality, from the proposed direction
dk defined by (2.12), it follows for all k > 0,

‖dk‖ = ‖ − θkF (zk)− δksk−1 − ηkyk−1‖

≤ ‖F (zk)‖+ |δk|‖sk−1‖+ |ηk|‖yk−1‖

= ‖F (zk)‖+

∣∣∣∣ (1 +
‖yk−1‖2

〈wk−1, sk−1〉

)
〈sk−1, F (zk)〉
〈wk−1, sk−1〉

− 〈y
k−1, F (zk)〉
〈wk−1, sk−1〉

∣∣∣∣‖sk−1‖

+

∣∣∣∣ 〈sk−1, F (zk)〉
〈wk−1, sk−1〉

∣∣∣∣‖yk−1‖

≤ ‖F (zk)‖+

[(
1 +

‖yk−1‖2

αk−1‖dk−1‖2

)
‖sk−1‖‖F (zk)‖
αk−1‖dk−1‖2

+
‖yk−1‖‖F (zk)‖
αk−1‖dk−1‖2

]
‖sk−1‖

+
‖sk−1‖‖F (zk)‖
αk−1‖dk−1‖2

‖yk−1‖

= ‖F (zk)‖+

[(
1 +

‖yk−1‖2

αk−1‖dk−1‖2

)
αk−1‖F (zk)‖+

‖yk−1‖‖F (zk)‖
‖dk−1‖

]
+
‖F (zk)‖
‖dk−1‖

‖yk−1‖

≤ ‖F (zk)‖
(

1 +

[(
1 + (L+ r)

)
+ (L+ r)

]
+ (L+ r)

)
≤ %
(

1 + [(1 + (L+ r)) + (L+ r)] + (L+ r)

)
, J .

Note, by the Lipschitz continuity of the mapping F, we obtain that the sequences {F (zk)}
and {F (uk)} are bounded, which implies that ‖F (zk + γ−1αkdk)‖ and the sequence {dk}
are bounded. Thus, there exist M∗ > 0 such that,

‖F (zk + γ−1αkdk)‖ ≤M∗, ∀k ≥ 0.

On the other hand, it can be implied from Lemma 3.4 and the boundedness of dk that

αk‖dk‖ ≥ min

{
σ,

γ‖F (zk)‖2

(L+ ρ‖F (uk∗)‖)‖dk‖2

}
‖dk‖

≥ min

{
σω,

γω2

(L+ ρM∗)J

}
> 0,

which contradicts (3.25). Thus, (3.32) holds. �
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4. NUMERICAL EXPERIMENT

This section gives numerical results to illustrate the effectiveness of our proposed algo-
rithm. We first consider two particular applications. In the first, the proposed algorithm
applied to recover sparse signals. The second situation we consider is the restoration
blurred images using the proposed algorithm. All the codes are written in Matlab R2019b
and performed on a HP PC with CPU 2.4GHz, 8.0GB RAM with windows 10 operating
system. In what follows, the proposed method (Algorithm 2.1) is referred as DSTT.

4.1. Recovery of Sparse signals. Consider a sparse signal of lengthm and n observations
distorted with noise. Our interest is to reconstruct the sparse signal from the noisy obser-
vations. Based on this, we utilise DSTT in recovering sparse signals. We compare the
performance of DSTT with the SGCS [37], CGD [38] and PCG [34] algorithms designed
for similar purpose. In the experiment, we consider a signal of size m = 212, n = 210 and
the original signal contains 26 randomly nonzero elements. The random T is the Gaussian
matrix which is generated by command randn(m,n) in Matlab. In this test, the measure-
ment b contains noise, that is, b = Tz + e0, where e0 is the Gaussian noise distributed
normally with mean 0 and variance 10−4. The quality of the recovered signal is assessed
by the mean of squared error (MSE) to the original signal z, that is,

MSE :=
1

n
‖z − z̄‖2

where z̄ is the recovered signal. The proposed algorithm is implemented with the follow-
ing parameters: σ = 1, γ = 0.6, κ = 1, ρ = 10−4, r = 10. For SGCS, CGD and PCG algo-
rithm, the parameters chosen for their implementation are set as reported in the numerical
section of their respective papers. The merit function used is f(z) = τ‖z‖+ 1

2‖b−Az‖
2

FIGURE 1. Illustration of the sparse signal recovery DSTT, SGCS, CGD
and PCG



A descent three-term derivative-free method 439

FIGURE 2. Comparison results of DSTT, SGCS, CGD and PCG algorithm.
The x-axes represent the number of iterations (top left and bottom left)
and the CPU time in seconds (top right and bottom right). The y-axes
represent the MSE (top left and top right) and the function values (bottom
left and right).

Each code was run from the same initial point, the same continuation method on the
parameter τ = 0.005‖TT b‖∞ for fairness. All algorithms are initialized with z0 = 〈T, b〉
and terminates when

Tol :=
|fk − fk−1|
|fk−1|

< 10−5,

where F (zk) is the function evaluation at zk.

To assess the performance of the methods, we evaluated the performance profiles of all
methods based on a set of metrics such as the number of total iterations, the mean squared
error and time in seconds (sec). In view of Figure 1, it is clear that DSTT is the winner in
recovering sparse signal.

To further highlight the efficiency of DSTT in recovering sparse signal, we repeat the ex-
periment over nine times. Table 1 contains the number of iterations, the MSE and sec of
the reconstructions with respect to the original signal for the repeated experiment. The
results presented in the table shows that, in recovering sparse signal, DSTT attains most
wins in terms of number of iterations, mean squared error.
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TABLE 1. Numerical results as regards to signal recovery
DSTT SGCS CGD PCG

ITER TIME MSE ITER TIME MSE ITER TIME MSE ITER TIME MSE

70 2.06 4.61E-06 122 3.80 5.07E-06 107 3.17 5.76E-06 106 3.09 4.08E-06
88 2.50 3.13E-06 127 3.36 4.12E-06 140 3.89 3.59E-06 114 3.17 3.31E-06
84 2.27 4.14E-06 129 3.52 4.74E-06 131 4.05 3.90E-06 111 3.20 3.78E-06
77 2.11 4.46E-06 129 3.27 5.72E-06 103 2.73 1.15E-05 109 3.20 4.75E-06
91 2.42 3.87E-06 128 3.31 4.54E-06 110 3.08 5.47E-06 111 3.11 3.60E-06
97 2.80 2.96E-06 129 3.27 3.47E-06 123 3.27 4.84E-06 110 2.88 2.78E-06
79 2.17 1.85E-06 132 3.39 2.53E-06 158 4.36 2.33E-06 104 2.77 2.00E-06
76 2.09 2.49E-06 130 3.44 3.25E-06 143 4.14 2.72E-06 114 3.02 2.63E-06
82 2.17 2.61E-06 125 3.17 3.52E-06 100 3.22 3.09E-06 94 3.58 5.11E-06
67 1.72 4.98E-06 125 3.16 5.16E-06 108 3.89 4.22E-06 115 4.33 4.00E-06

Average 81 2.23 3.51E-06 128 3.37 4.21E-06 122 3.58 4.74E-06 109 3.24 3.60E-06

4.2. Image restoration. In this subsection, image restoration experiment are presented to
demonstrate the performance of DSTT method. Moreover, we compare our method with
three different methods, including CGD [38] and SGCS [37]. The test images considered
are the benchmark images which includes Tiffany (512× 512), Lena (512× 512), Barbara
(720 × 576), obtained from http://hlevkin.com/06testimages.htm. We employ
the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR) and stuctural similarity
index (SSIM) metric to comprehensively evaluate the quality of restoration of the meth-
ods. In this experiment, the test images were degraded with gausian noise of 10%. The
parameters chosen for DSTT are: σ = 0.05, γ = 0.2, ρ = 10−4, κ = 1, r = 10. For CGD
and SGCS algorithm, their parameters are chosen as in the respective papers.

FIGURE 3. The original test images: From the left, Tiffany, Lenna and Barbara

From Figure 4, it can be observed that all algorithms were able to restore the images.
However, the quality of the restored images by DSTT algorithm is competitive to that of
CGD and SGCS methods. This is reflected by almost the same SNR, PSNR and SSIM. Con-
clusively, the proposed algorithm provides a valid approach to solve image de-blurring
problems and its performance is competitive compared with CGD and DCG methods.
The numerical results are reported in Table 2 below.

TABLE 2. Numerical result for image restoration

DSTT CGD SGCS

Images SNR PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM

Tiffany 20.93 22.77 0.9136 20.92 22.76 0.9132 20.89 22.72 0.9122
Lenna 16.68 22.02 0.9122 16.67 22 0.9119 16.62 21.95 0.9109

Barbara 13.61 20.03 0.6265 13.6 20.02 0.6258 13.56 19.98 0.6237
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FIGURE 4. The blurred and noisy images (left column), restored images
by DSTT(middle left column), restored images by CGD (middle right col-
umn) and restored images by SGCS (right column)

CONCLUSION

In this paper, we present a derivative-free conjugate gradient method to recover sparse
signal and image arising in compressed sensing by solving a nonlinear equation involv-
ing a monotone operator. The search direction of the proposed method is three-term and
descent. Furthermore, the global convergence of the proposed method is established un-
der the assumptions of monotonicity and Lipschitz continuity of the underlying operator.
Experimental results in reconstruction of sparse signals and blurred images show that our
algorithm has a better performance than other related algorithms.
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