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On the crossing numbers of the join products of five graphs
on six vertices with discrete graphs

ŠTEFAN BEREŽNÝ and MICHAL STAŠ

ABSTRACT. The crossing number cr(G) of a graph G is the minimum number of edge crossings over all
drawings of G in the plane. In the paper, the crossing number of the join product G∗ + Dn for the connected
graph G∗ on six vertices consisting of one path on four vertices P4 and two leaves adjacent with the same outer
vertex of the path P4 is given, where Dn consists of n isolated vertices. Finally, by adding some edges to the
graph G∗, we obtain the crossing numbers of the join products of other four graphs with Dn.

1. INTRODUCTION

The issue of reducing the number of crossings is interesting in a lot of areas. One of the
most popular areas is the implementation of the VLSI layout, which has revolutionized
circuit design and has had a strong effect on parallel calculations. Crossing numbers have
also been studied to improve the readability of hierarchical structures and automated
graphs. The visualized graph should be easy to read and understand. For the sake of
clarity of the graphic drawings, some reduction of an edge crossing is probably the most
important. Therefore, examining the number of crossings of simple graphs is a classic but
very challenging problem. Garey and Johnson [8] proved that determining cr(G) is an
NP-complete problem.

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the edge set
E(G) is the minimum possible number of edge crossings in a drawing of G in the plane
(for the definition of a drawing see Klešč [16]). One can easily verify that a drawing with
the minimum number of crossings (an optimal drawing) is always a good drawing, mean-
ing that no two edges cross more than once, no edge crosses itself, and also no two edges
incident with the same vertex cross. Let D be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G.
We denote the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj),
and the number of crossings among edges of Gi in D by crD(Gi). For any three mutually
edge-disjoint subgraphs Gi, Gj , and Gk of G by [18], the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .

A survey of the exact values of the crossing numbers for several families of graphs can
be found by Clancy et al. [6]. The purpose of this paper is to extend the known results
concerning this topic. Some parts of proofs will be based on Kleitman’s result [14] on the
crossing numbers for some complete bipartite graphs Km,n. He showed that

(1.1) cr(Km,n) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if min{m,n} ≤ 6.
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The join product of two graphs Gi and Gj , denoted Gi + Gj , is obtained from vertex-
disjoint copies of Gi and Gj by adding all edges between V (Gi) and V (Gj). For |V (Gi)| =
m and |V (Gj)| = n, the edge set of Gi + Gj is the union of the disjoint edge sets of the
graphs Gi, Gj , and the complete bipartite graph Km,n. Let Dn denote the discrete graph
(sometimes called empty graph) on n vertices, and let Pn be the path on n vertices. The
exact values for the crossing numbers of G+Dn for all graphs G of order at most four are
given by Klešč and Schrötter [21]. Also, the crossing numbers of the graphs G + Dn are
known for a lot of graphs G of order five and six [1, 5, 7, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22,
23, 26, 27, 29, 30, 33, 34, 35, 36]. In all these cases, the graph G is connected and contains
usually at least one cycle. The crossing numbers of the join product G + Dn are known
only for some disconnected graphs [4, 24, 25, 31, 32].

The methods in the paper mostly use the multiple combinatorial properties of the cyclic
permutations. Let G∗ = (V (G∗), E(G∗)) be the connected graph of order six consisting
of one path P4 and two leaves adjacent with the same outer vertex of the path P4, and let
also V (G∗) = {v1, v2, . . . , v6}. As |E(G∗)| < |V (G∗)|, we were unable to determine the
crossing number of the join product G∗+Dn using the methods used in [18] and [22]. The
crossing number of G∗+Dn equal to 6

⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
is determined in Theorem 3.1 with

the proof that is strongly based on various cases of a fixation mainly thanks to Lemma 3.2.
The crossing numbers of Gk + Dn for four other graphs Gk on six vertices are given in
Corollary 4.1 by adding new edges to the graph G∗. The paper concludes by giving the
crossing numbers of the join products of G∗, G1, and G2 with the paths Pn in Corollary 4.2
with the same values such as for the discrete graphs Dn. Certain parts of proofs can be
also simplified with the help of software COGA which generates all cyclic permutations
of six elements and its description can be found in Berežný and Buša [3]. In the proofs
of the paper, we will often use the term “region” also in nonplanar subdrawings. In this
case, crossings are considered to be vertices of the “map”.

2. CYCLIC PERMUTATIONS AND POSSIBLE DRAWINGS OF G∗

We consider the join product of the graph G∗ with the discrete graph Dn, which yields
that the graph G∗ +Dn (sometimes used notation G∗ + nK1) consists of just one copy of
G∗ and n vertices t1, t2, . . . , tn. Here, each vertex ti, i = 1, 2, . . . , n, is adjacent to every
vertex of the graph G∗. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six edges
incident with the fixed vertex ti. This means that the graph T 1 ∪ · · · ∪ Tn is isomorphic to
the complete bipartite graph K6,n and

(2.2) G∗ +Dn = G∗ ∪K6,n = G∗ ∪

(
n⋃

i=1

T i

)
.

Let D be a good drawing of the graph G∗ + Dn. The rotation rotD(ti) of a vertex ti in
the drawing D is the cyclic permutation that records the (cyclic) counterclockwise order
in which the edges leave ti, as defined by Hernández-Vélez et al. [9] or Woodall [37]. We
use the notation (123456) if the counter-clockwise order the edges is incident with the
vertex ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. We emphasize that a rotation is a cyclic
permutation; that is, (123456), (234561), (345612), (456123), (561234), and (612345) denote
the same rotation. Thus, 6!/6 = 120 different rotD(ti) can appear in a drawing of the
graph G∗ + Dn. By rotD(ti), we understand the inverse permutation of rotD(ti). In the
given drawing D, all subgraphs T i, i = 1, . . . , n of the graph G∗ + Dn are divided into
three mutually disjoint subsets depending on how many times the edges of the subgraph
T i cross the edges of G∗ in D. For i = 1, . . . , n, let T i ∈ RD if crD(G∗, T i) = 0, and T i ∈ SD

if crD(G∗, T i) = 1. Every other subgraph T i crosses the edges of G∗ at least twice in D.
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Moreover, let F i denote the subgraph G∗ ∪ T i for some T i ∈ RD, where i ∈ {1, . . . , n}.
Thus, for a given subdrawing of G∗ in D, any subgraph F i is exactly represented by
rotD(ti). Note that if D is a good drawing of G∗ + Dn with the empty set RD, then∑n

i=1 crD(G∗, T i) ≥ n enforces at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings in D provided by

crD(G∗ +Dn) ≥ crD(K6,n) + crD(G∗,K6,n) ≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

According to the expected result of the main Theorem 3.1, this leads to a consideration
of the nonempty set RD in all good drawings of G∗ + Dn. Moreover, we can redraw a
crossing of two edges of G∗ to get a new subdrawing of G∗ induced by D (with vertex
notation in a different order) with fewer edge crossings in three cases presented in Fig. 1,
and so, the proof of Lemma 2.1 can be omitted.

(a) (b) (c)

FIGURE 1. Elimination of a crossing in G∗.
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FIGURE 2. One planar drawing of G∗ and two drawings of G∗ with
crD(G∗) ≥ 1.

Lemma 2.1. In an effort to obtain a drawing D of the join product of the graph G∗ with the
discrete graph Dn with the smallest numbers of crossings, either the edges of G∗ do not cross each
other or it is not possible to eliminate any crossing on the edges of G∗ by redrawing it. Moreover,
the subdrawing of G∗ induced by D is isomorphic to one of the three drawings depicted in Fig. 2.

Remark that we would obtain a drawing of another graph in an effort to use some
elimination for both subdrawings of G∗ in Fig. 2(b) and (c). Assume a good drawing D of
the graph G∗ +Dn in which the edges of G∗ do not cross each other. In this case, without
loss of generality, let the vertices of G∗ be denoted in such a way as shown in Fig. 2(a).
Our aim is to list all possible rotations rotD(ti) which can appear in D if the edges of T i do
not cross the edges of G∗. Since there is unique subdrawing of F i \{v2, v3, v4} represented
by the edge rotation (156) on the vertex ti, we have three, two and two possibilities how
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to obtain the subdrawing of F i depending on which region the edges tiv4, tiv3 and tiv2
are placed in, respectively. These 3 × 2 × 2 = 12 possibilities under our consideration
can be denoted by A, B, and C with corresponding indexes and we will call them by
the configurations of corresponding subdrawings of the subgraph F i = G∗ ∪ T i in D.
The configuration of F i is of type A, B, or C in the drawing D, if there is a region of
the subdrawing D(F i) with five, four, or at most three vertices of G∗ on its boundary,
respectively. For our purposes, it does not matter which of the regions is unbounded, and
so we can assume that the drawings are as shown in Fig. 3.
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FIGURE 3. Twelve possible drawings of F i with a configuration from M.

In the rest of the paper, we represent each cyclic permutation by the permutation with
1 in the first position. The resulting descriptions of the twelve mentioned configurations
are collected in Table 1. Clearly, in a fixed drawing D of G∗ + Dn, some configurations
from M = {A1,A2,A3,A4,B1,B2,B3,B4,B5,B6, C1, C2} need not appear. We denote by
MD the set of all configurations that exist in the drawing D belonging to the set M.

conf(F i) rotD(ti) conf(F i) rotD(ti)

A1 (123456) A2 (156432)
A3 (123546) A4 (154632)
B1 (134562) B2 (125643)
B3 (135462) B4 (125463)
B5 (123564) B6 (145632)
C1 (124563) C2 (135642)

TABLE 1. The corresponding rotations of ti for F i = G∗ ∪ T i, where T i ∈ RD.
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Let X , Y be the configurations from MD. We briefly denote by crD(X ,Y) the number
of crossings in D between T i and T j for two different T i, T j ∈ RD such that F i, F j have
configurations X , Y , respectively. Finally, let cr(X ,Y) = min{crD(X ,Y)} over all good
drawings of the graph G∗ +Dn with X ,Y ∈ MD. Our aim shall be to establish cr(X ,Y)
for all pairs X ,Y ∈ M. In particular, the configurations A1 and A2 are represented by
the cyclic permutations (123456) and (156432), respectively. Since the minimum number
of interchanges of adjacent elements of (123456) required to produce cyclic permutation
(156432) = (123465) is one, any subgraph T j with the configuration A2 of F j crosses
the edges of any T i with the configuration A1 of F i at least once, i.e., cr(A1,A2) ≥ 1.
Details have been worked out by Woodall [37]. The similar reason gives remaining values
in the symmetric Table 2, where Xp and Yq are configurations of two different subgraphs
F i and F j with X ,Y ∈ {A,B, C}.

− A1 A2 A3 A4 B1 B2 B3 B4 B5 B6 C1 C2
A1 6 1 5 2 5 2 4 3 4 3 4 3
A2 1 6 2 5 2 5 3 4 3 4 3 4
A3 5 2 6 3 6 3 5 4 5 5 6 4
A4 2 5 3 6 3 6 4 5 5 5 4 6
B1 5 2 6 3 6 6 5 5 6 4 6 4
B2 2 5 3 6 6 6 5 5 4 6 4 6
B3 4 3 5 4 5 5 6 6 5 6 6 5
B4 3 4 4 5 5 5 6 6 6 5 5 6
B5 4 3 5 5 6 4 5 6 6 6 6 5
B6 3 4 5 5 4 6 6 5 6 6 5 6
C1 4 3 6 4 6 4 6 5 6 5 6 6
C2 3 4 4 6 4 6 5 6 5 6 6 6

TABLE 2. The necessary number of crossings between T i and T j for
the configurations Xp, Yq .

3. THE CROSSING NUMBER OF G∗ +Dn

Two vertices ti and tj of G∗+Dn are antipodal in a drawing of G∗+Dn if the subgraphs
T i and T j do not cross. A drawing is antipode-free if it has no antipodal vertices. In the rest
of the paper, each considered drawing of the graph G∗ + Dn will be assumed antipode-
free. In the proof of the main Theorem 3.1, the following lemmas related to some restricted
subdrawings of the graph G∗ +Dn are required.

Lemma 3.2. For n > 2, let D be a good and antipode-free drawing of G∗+Dn satisfying |RD| >⌈
n
2

⌉
, |SD| <

⌊
n
2

⌋
, and 2|RD| + |SD| >

⌈
3n
2

⌉
. Let Tn−1, Tn ∈ RD be two different subgraphs

with crD(Tn−1 ∪ Tn) ≥ 2. Let α, β, γ be integers fulfilling the assumptions α + β + γ = 18,
7 ≤ α ≤ 10, 4 ≤ β ≤ 6, and 4 ≤ γ ≤ 5. If the conditions

(3.3) crD(G∗ ∪ Tn−1 ∪ Tn, T i) ≥ α for any T i ∈ RD \ {Tn−1, Tn},

(3.4) crD(G∗ ∪ Tn−1 ∪ Tn, T i) ≥ β for any T i ∈ SD,

(3.5) crD(G∗ ∪ Tn−1 ∪ Tn, T i) ≥ γ for any T i ̸∈ RD ∪ SD

hold, then there are at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings in D.
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Proof. For easier reading, let r = |RD| and s = |SD|. By the assumption of Lemma 3.2,
r ≥

⌈
n
2

⌉
+ 1, −s ≥ 1−

⌊
n
2

⌋
, and 2r + s ≥

⌈
3n
2

⌉
+ 1. The number of T i that cross the graph

G∗ at least twice is equal to n − r − s. If the conditions (3.3), (3.4) and (3.5) hold, then by
fixing of the graph G∗ ∪ Tn−1 ∪ Tn we have

crD(G∗+Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+α(r−2)+βs+γ(n−r−s)+2 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
,

where all possible values of the integers α, β, and γ are given in Table 3. Of course, there
are a lot of possibilities using a software, e.g., Matlab to verify the last inequality in all
mentioned cases.

α 7 8 8 9 9 10
β 6 5 6 4 5 4
γ 5 5 4 5 4 4

TABLE 3. Possibilities for α + β + γ = 18, 7 ≤ α ≤ 10, 4 ≤ β ≤ 6, and
4 ≤ γ ≤ 5.

□

Lemma 3.3. For n > 2, let D be a good and antipode-free drawing of G∗+Dn with crD(G∗) = 0
and with the vertex notation of G∗ in such a way as shown in Fig. 2(a). If Tn−1, Tn ∈ RD are
two subgraphs such that Fn−1 and Fn have different configurations from any of the sets {A1,B6}
and {A2,B5}, then

crD(Tn−1 ∪ Tn, T j) ≥ 4 for any T j ∈ SD,

i.e.,
crD(G∗ ∪ Tn−1 ∪ Tn, T j) ≥ 5 for any T j ∈ SD.

Proof. Let us assume the configurations A1 of Fn and B6 of Fn−1. The unique subdrawing
D(Fn) of the subgraph Fn contains just six regions with the vertex tn on their boundaries.
If we consider a subgraph T j ∈ SD satisfying the restriction crD(Tn, T j) = 1, then the
corresponding vertex tj can only be placed in the region with the five vertices v1, v2, v3,
v4, and v6 of G∗ on its boundary. Using this knowledge, the edges tjv1, tjv3, tjv4, and
tjv6 produce no crossings on edges of Fn, and the edge tjv2 either does not cross any
edge of Fn or crosses the edge tnv1. If the edges of Fn are not crossed by tjv2 and also
tjv5 produces two crossings on edges of Fn, then rotD(tj) = (164532). If tjv2 crosses tnv1
and also tjv5 crosses v4v6 of G∗, then rotD(tj) = (126543). Since the minimum number
of interchanges of adjacent elements of rotD(tj) = (164532) required to produce cyclic
permutation rotD(tn−1) = (123654) is four, the subgraph T j crosses the edges of Tn−1

at least four times. For the second case of rotD(tj) = (126543), the subdrawing of Fn−1

enforces at least three crossings on the edges T j provided by tjv5 must cross v4v6 of G∗.
For both such subcases, we obtain the desired result crD(Tn−1 ∪ Tn, T j) ≥ 3 + 1 = 4.

We can apply the same idea for the case, if there is a T j ∈ SD with crD(Tn−1, T j) = 1
(but only with one possible subdrawing of T j in which tjv5 and tjv6 crosses tn−1v4
and v3v4, respectively). It remains to consider the case where crD(Tn, T j) ≥ 2 and
crD(Tn−1, T j) ≥ 2, which yields that crD(Tn−1 ∪ Tn, T j) ≥ 2 + 2 = 4 trivially holds
for any such T j ∈ SD. Due to the symmetry, the proof proceeds in the similar way for the
second pair of configurations {A2,B5}, and this completes the proof of Lemma 3.3. □

We have to emphasize that we cannot generalize Lemma 3.3 for all pairs of different
configurations from MD with the number of crossings between Tn−1 and Tn equal to
three in Table 2. E.g., if we consider the configurations A1 of Fn and C2 of Fn−1, then the



On the crossing numbers of the join products of five graphs on six vertices with Dn 377

reader can easily find a subdrawing of G∗ ∪ Tn−1 ∪ Tn ∪ T j in which crD(G∗ ∪ Tn−1 ∪
Tn, T j) = 4 with T j ∈ SD.
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FIGURE 4. The good drawing of G∗ +Dn with 6
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Lemma 3.4. cr(G∗ +D1) = 0 and cr(G∗ +D2) = 1.

Proof. The graph G∗+D1 is planar, hence cr(G∗+D1) = 0. Fig. 4 offers the subdrawing of
G∗ +D2 with 1 crossing, and so cr(G∗ +D2) ≤ 1. The graph G∗ +D2 contains a subgraph
isomorphic to K3,3, and it is well-known by [14] that cr(K3,3) = 1. As cr(G∗ + D2) ≥
cr(K3,3) = 1, the proof of Lemma 3.4 is done. □

Theorem 3.1. cr(G∗ +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 1.

Proof. By Lemma 3.4, the result is true for n = 1 and n = 2. In Fig. 4, the edges of K6,n

cross each other

6

(
⌈n
2 ⌉
2

)
+ 6

(
⌊n
2 ⌋
2

)
= 6
⌊n
2

⌋⌊n− 1

2

⌋
times, each subgraph T i, i = 1, . . . ,

⌈
n
2

⌉
on the left side does not cross the edges of G∗

and each subgraph T i, i =
⌈
n
2

⌉
+ 1, . . . , n on the right side crosses the edges of G∗ exactly

once. Thus, 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings appear among the edges of the graph G∗ +Dn in

this drawing. To prove the reverse inequality by induction on n, suppose now that there
is a good drawing D of G∗ +Dn with

(3.6) crD(G∗ +Dn) < 6
⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
for some n ≥ 3,

and that

(3.7) cr(G∗ +Dm) = 6
⌊m
2

⌋⌊m− 1

2

⌋
+
⌊m
2

⌋
for any integer m < n.

If we use the notation r = |RD| and s = |SD|, then crD(K6,n) ≥ 6
⌊
n
2

⌋⌊
n−1
2

⌋
by (1.1)

together with (3.6) force the following relation with respect to the edge crossings of G∗ in
D:

crD(G∗) +
∑

T i∈RD

crD(G∗, T i) +
∑

T i∈SD

crD(G∗, T i) +
∑

T i ̸∈RD∪SD

crD(G∗, T i) <
⌊n
2

⌋
,

i.e.,

(3.8) crD(G∗) + 0r + 1s+ 2(n− r − s) <
⌊n
2

⌋
.

The mentioned inequality (3.8) subsequently enforces r >
⌈
n
2

⌉
, s <

⌊
n
2

⌋
, and 2r+s >

⌈
3n
2

⌉
.

As the set RD is nonempty, we deal with the possibilities of obtaining a subgraph T i ∈ RD,
and a contradiction with the assumption (3.6) will be reached in all considered subcases:
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Case 1: crD(G∗) = 0. Without loss of generality, we consider the subdrawing of G∗

induced by D given in Fig. 2(a). Thus, we will deal with the configurations belonging to
the nonempty set MD. Let us first show that the considered drawing D must be antipode-
free. As a contradiction, suppose that, without loss of generality, crD(Tn−1, Tn) = 0.
Using positive values in Table 2, one can easily to verify that {Tn−1, Tn} ̸⊆ RD, i.e.,
crD(G∗, Tn−1 ∪ Tn) ≥ 1. Again by (1.1), we know that crD(K6,3) ≥ 6, which yields that
any T k, k = 1, 2, . . . , n − 2, crosses the edges of Tn−1 ∪ Tn at least six times. So, for the
number of crossings in D we have

crD(G∗ +Dn) = crD(G∗ +Dn−2) + crD(Tn−1 ∪ Tn) + crD(K6,n−2, T
n−1 ∪ Tn)+

+crD(G∗, Tn−1∪Tn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+
⌊n− 2

2

⌋
+0+6(n−2)+1 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

The obtained contradiction with the assumption (3.6) does not allow the existence of two
antipodal vertices, that is, D is antipode-free.

(1) {A1,A2} ⊆ MD. Without lost of generality, let us assume two different sub-
graphs Tn−1, Tn ∈ RD such that Fn−1 and Fn have configurations A1 and A2,
respectively. Then, crD(G∗ ∪ Tn−1 ∪ Tn, T i) ≥ 7 is fulfilling for any T i ∈ RD with
i ̸∈ {n−1, n} by summing the values in all columns in the first two rows of Table 2.
Moreover, crD(Tn−1 ∪ Tn, T j) ≥ 5 holds for any subgraph T j ̸∈ RD provided by
the minimum number of interchanges of adjacent elements of rotD(tn−1) required
to produce the cyclic permutation rotD(tn) is five. As crD(Tn−1 ∪ Tn) ≥ 1, by
fixing the subgraph G∗ ∪ Tn−1 ∪ Tn, we have

crD(G∗ +Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 7(r − 2) + 6s+ 6(n− r − s) + 1 =

= 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6n+ r − 13 ≥ 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 6n+

+
⌈n
2

⌉
+ 1− 13 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

This contradicts the assumption (3.6), and so, suppose that {A1,A2} ̸⊆ MD.
(2) {A1,A4} ⊆ MD or {A2,A3} ⊆ MD or {A1,B2} ⊆ MD or {A2,B1} ⊆ MD.

Let us consider two different subgraphs Tn−1, Tn ∈ RD such that Fn−1 and Fn

have configurations A1 and A4, respectively. Then, the condition (3.3) for α = 8
holds summing the values in two considered rows for eleven possible columns of
Table 2. Since crD(Tn−1 ∪Tn, T j) ≥ 4 for any T j ̸∈ RD according to the minimum
number of interchanges of adjacent elements of rotD(tn−1) required to produce
rotD(tn) is four, both conditions (3.4) and (3.5) for β = 5 and γ = 5 are trivially
fulfilling. If Fn−1 and Fn have different configurations from the set {A2,A3}
or {A1,B2} or {A2,B1}, the same argument is applied. In the next part, we can
suppose {A1,A4} ̸⊆ MD, {A2,A3} ̸⊆ MD, {A1,B2} ̸⊆ MD, and {A2,B1} ̸⊆ MD,
that is, there are at least three crossings on the edges of T i∪T j for any two different
subgraphs T i, T j ∈ RD.

(3) {A1,B6} ⊆ MD or {A2,B5} ⊆ MD. If Tn−1, Tn ∈ RD are two different subgraphs
such that Fn−1 and Fn have configurations A1 and B6, respectively, then all three
conditions (3.3), (3.4), and (3.5) also hold for α = 8 using values of Table 2, β = 5
by Lemma 3.3, and γ = 5 provided by the minimum number of interchanges of
adjacent elements of rotD(tn−1) required to produce rotD(tn) is three. Due to the
symmetry, the same argument can be applied for the case {A2,B5} ⊆ MD. In
addition, suppose that {A1,B6} ̸⊆ MD and {A2,B5} ̸⊆ MD.

To finish the proof of this case, suppose that {A1, C2} ⊆ MD or {A1,B4} ⊆ MD

or {A3,A4} ⊆ MD or {A3,B2} ⊆ MD or {A4,B1} ⊆ MD or {A2, C1} ⊆ MD or
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{A2,B3} ⊆ MD. If Tn−1, Tn ∈ RD are two subgraphs such that Fn−1 and Fn

have different configurations from one of the subsets mentioned above, then the
conditions (3.3), (3.4), and (3.5) are true for α = 9 using values of Table 2, and
β = 4, γ = 5 due to the minimum number of interchanges of adjacent elements
of rotD(tn−1) required to produce rotD(tn) is three. As Lemma 3.2 contradicts
(3.6) of D, let us also assume {A1, C2} ̸⊆ MD, {A1,B4} ̸⊆ MD, {A3,A4} ̸⊆ MD,
{A3,B2} ̸⊆ MD, {A4,B1} ̸⊆ MD, {A2, C1} ̸⊆ MD, and {A2,B3} ̸⊆ MD.

(4) Cp ∈ MD for p ∈ {1, 2}. In the rest of the paper, let Tn ∈ RD with the configuration
Cp of Fn = G∗ ∪ Tn for some p ∈ {1, 2}. Since there are at most three vertices of
G∗ on its boundary in each region of D(Fn), the edges of Fn must be crossed at
least three times by any subgraph T j ̸∈ RD. By fixing the subgraph Fn, we have

crD(G∗ +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(r − 1) + 3s+ 3(n− r − s) =

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+ r − 4 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+

⌈n
2

⌉
+ 1− 4 ≥

≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

This also contradicts the assumption (3.6) of D, and therefore, let Cp ̸∈ MD for
p = 1, 2.

Now, let us turn to a subcase with {A1,B3} ⊆ MD or {A1,B5} ⊆ MD or
{A2,B4} ⊆ MD or {A2,B6} ⊆ MD or {A3,B4} ⊆ MD or {A4,B3} ⊆ MD or
{B1,B6} ⊆ MD or {B2,B5} ⊆ MD. Without lost of generality, let us consider two
different subgraphs Tn−1, Tn ∈ RD such that Fn−1 and Fn have configurations
A1 and B3, respectively. Then, crD(G∗∪Tn−1∪Tn, T i) ≥ 10 holds for any T i ∈ RD

with i ̸∈ {n − 1, n} using values of Table 2. Moreover, the edges of Tn−1 ∪ Tn

are crossed at least twice by any subgraph T j ̸∈ RD according to the minimum
number of interchanges of adjacent elements of rotD(tn−1) required to produce
rotD(tn) is two. As crD(Tn−1 ∪ Tn) ≥ 4, by fixing the subgraph G∗ ∪ Tn−1 ∪ Tn,
we have

crD(G∗ +Dn) ≥ 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 10(r − 2) + 3s+ 4(n− r − s) + 4 =

= 6
⌊n− 2

2

⌋⌊n− 3

2

⌋
+ 4n+ 6r − s− 16 ≥ 6

⌊n− 2

2

⌋⌊n− 3

2

⌋
+

+4n+ 6
(⌈n

2

⌉
+ 1
)
+ 1−

⌊n
2

⌋
− 16 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

This also confirms a contradiction with (3.6) in D. Finally, let us also consider
that the subsets of configurations mentioned above are not included in MD, that
is, there are at least five crossings on the edges of T i ∪ T j for any two different
subgraphs T i, T j ∈ RD.

(5) Ap ∈ MD for p ∈ {1, . . . , 4} or Bq ∈ MD for q ∈ {1, . . . , 6}. In the rest of the
paper, let Tn ∈ RD with the configuration Ap or Bq of Fn = G∗ ∪ Tn for some
p ∈ {1, . . . , 4} or q ∈ {1, . . . , 6}. Therewith, the antipode-free property of D forces
that the edges of Fn are crossed at least two and three times by any subgraph
T j ∈ SD and T j ̸∈ RD ∪ SD, respectively. By fixing the subgraph Fn, we have

crD(G∗ +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 5(r − 1) + 2s+ 3(n− r − s) + 0 =

= 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+ 2r − s− 5 ≥ 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+
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+2
(⌈n

2

⌉
+ 1
)
+ 1−

⌊n
2

⌋
− 5 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

Case 2. crD(G∗) ≥ 1, and we consider the subdrawing of G∗ induced by D given
in Fig. 2(b). Again, for subgraphs T i ∈ RD, we establish all possible rotations rotD(ti)
which could appear in D. Clearly, there is only one subdrawing of F i \ {v2, v4} and
can be represented by the subrotation (1536). We have just four possibilities of getting
a subdrawing of F i = G∗ ∪ T i depending on which of the two regions the edges tiv2
and tiv4 can be placed in. Thus, there are four different cyclic permutations for rotD(ti)
with crD(G∗, T i) = 0, namely, the cyclic permutations (125436), (124536), (154362), and
(145362). For any two different subgraphs T i, T j ∈ RD, the edges of T i are crossed by T j

at least four times because the minimum number of interchanges of adjacent elements of
rotD(ti) required to produce cyclic permutation rotD(tj) is at least four. In the rest of the
paper, let Tn ∈ RD. Since there are at most three vertices of G∗ on its boundary in each
region of D(Fn), the edges of Fn must be crossed at least three times by any subgraph
T k ̸∈ RD. By fixing the subgraph Fn, we have

crD(G∗ +Dn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 4(r − 1) + 3(n− r) + 1 = 6

⌊n− 1

2

⌋⌊n− 2

2

⌋
+

+3n+ r − 3 ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 3n+

⌈n
2

⌉
+ 1− 3 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+
⌊n
2

⌋
.

Finally, if we assume the subdrawing of the graph G∗ induced by D given in Fig. 2(c), the
same process as in the previous case can be applied (but only with two possible rotations
(124356) and (143562) for subgraphs T i ∈ RD).

Thus, it was shown that there is no good drawing D of the graph G∗ + Dn with less
than 6

⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings, and proof of Theorem 3.1 is done. □

4. FOUR OTHER GRAPHS
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FIGURE 5. Four graphs G1, G2, G3, and G4 by adding new edges to the
graph G∗.

In Fig. 5, let G1 be the graph obtained from the planar drawing of G∗ in Fig. 2(a) by
adding the edge v5v6, i.e., G1 = G∗ ∪ {v5v6}. Similarly, let G2 = G∗ ∪ {v3v5}, G3 =
G∗∪{v1v6}, and G4 = G∗∪{v1v6, v5v6}. Since we can add these edges v1v6, v3v5, and v5v6
to the graph G∗ without additional crossings in at least one Fig. 4 or 6, the good drawings
of Gk +Dn with exactly 6

⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
crossings are obtained for all k = 1, 2, 3, 4.

Corollary 4.1. cr(Gk +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
for k = 1, 2, 3, 4 and n ≥ 1.
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crossings.

Remark that the crossing number of the graph G4 + Dn was obtained in [20] without
using the vertex rotation. Moreover, into both drawings in Fig. 4 and 6, it is possible to
add n − 1 edges which form the path Pn, n ≥ 2 on the vertices of Dn without additional
crossing. The same holds for the graph G1 and G2 in Fig. 4 and 6, respectively. Thus, the
next results are also obvious.

Corollary 4.2. cr(G∗ + Pn) = cr(G1 + Pn) = cr(G2 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+
⌊
n
2

⌋
for n ≥ 2.

5. CONCLUSIONS

A lot of attention began to be focused to the crossing number of crossing-critical graphs.
A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any
edge of G, its crossing number drops below k. Some necessary conditions for k-crossing-
criticality of graphs were described by Barát and Tóth [2], and Richter and Thomassen [28].
At this moment, we cannot extend the behavior of the graphs G∗ +Dn from the point of
view of k-crossing-criticality, because we do not yet know the crossing numbers of H+Dn

for disconnected subgraphs H obtained by removing one edge from the graph G∗.
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University of Košice, (2011), 522–527.
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[35] Su, Z.; Klešč, M. Crossing Numbers of K1,1,4,n and K1,1,4□T . Ars Combinatoria 148 (2020), 137–148.
[36] Wang, Y.; Huang, Y. The crossing number of Cartesian product of 5-wheel with any tree. Discuss. Math.

Graph Theory 41 (2021), no. 1, 183–197.
[37] Woodall, D. R. Cyclic-order graphs and Zarankiewicz’s crossing number conjecture. J. Graph Theory 17

(1993), no. 6, 657–671.

DEPARTMENT OF MATHEMATICS AND THEORETICAL INFORMATICS

FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS

TECHNICAL UNIVERSITY OF KOŠICE
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