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ABSTRACT. In this paper, we make a comprehensive comparison in terms of the quality of the achieved
solutions, the corresponding execution time and impact of the genetic operators on the quality of the results
between the Haploid Genetic Algorithms (HGAs) and Diploid Genetic Algorithms (DGAs). The standard ge-
netic algorithms, referred to in our paper as HGAs are characterized by the fact that they are using a haploid
representation relating an individual with a chromosome, while the DGAs are using diploid individuals which
are made of two chromosomes corresponding to the dominant and recessive genes. Even though the general
opinion is that DGAs do not provide much benefit as compared to classical GAs, based on extensive computa-
tional experiments, we do show that the DGAs are robust, have a high degree of consistency and perform better,
sometimes almost twice as well, than the HGAs, but are slower due to the high number of operations to be per-
formed, caused by the duplication of the genetic information. However, the quality of the solutions achieved by
the DGAs compensate their relative high execution time. The better quality of the DGAs, proving the efficiency
of using diploid genes, is given by the homogeneity of the population which covers the search space thoroughly
and in this way being capable of avoiding the local optima.

1. INTRODUCTION

Genetic algorithms (GAs) are adaptive heuristic search techniques, based on the prin-
ciples of genetics and natural selection, inspired from the theory of natural evolution de-
veloped by Charles Darwin [10] based on the ”survival of the fittest” principle. These al-
gorithms were introduced in practice by Holland [22], and the mechanism is similar to the
biological process of evolution, according to which only species that are better adapted to
the environment are able to survive and evolve over generations, while those less adapted
do not survive and eventually disappear, as a result of natural selection. In other words,
GAs have the ability to deliver a ”good-enough” solution ”fast-enough”, making them
very attractive in solving optimization problems. However, only few aspects of the natu-
ral characteristics have been taken into consideration by the classical GA, some other fea-
tures such as the number of chromosomes carrying out the genetic information of a cell,
dominant/recessive nature of genes, the dominance principle, the change of the DNA
during the lifetime of an individual, etc. being barely investigated. That is why, there is
a continuous quest for improving the performances of the genetic algorithms. GAs have
been applied successfully to various problems, see for further details [38, 40, 41].

Usually, the population of genetic algorithms (GAs) consists of haploid individuals,
meaning individuals with a single chromosome. As a result, the genetic operators in-
volved in solving a problem using genetic algorithms use the only one chromosome as an
informational entity.
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It is also well-known that if a GA loses the diversity of the population it will be trapped
into a local optimum and by default its genetic operators like crossover become ineffec-
tive [47]. Several methods have been considered in the literature in order to preserve
population diversity in GA such as:

1. Methods based on increasing the population randomness by using high mutation
rate or immigration (injection) of new random individuals [7, 27];

2. Niching methods introduced by De Jong [11] were developed in order to decrease
the effect of genetic drift resulting from the selection operator in the standard GA.
A niche can be seen as a subspace in the environment that may support several
types of life. These methods preserve the population diversity and allow GAs to
explore many peaks in parallel. Fitness sharing methods are probably the best
known and most used niching methods, have been introduced by Holland [22]
and improved during time by several researchers. For more information on the
main features and developments of this method we refer to [42]. Other proposed
niching methods are: the crowding methods and the clearing methods, for further
information regarding these approaches, we refer to [11, 42] .

3. The restricted mating strategy applies conditions such as restriction or encourage-
ment, in order to select an individual and its mate. The first such strategies were
based on similarity relations between the parents [12]. Although these methods
have been shown to benefit GA performance, they are costly in computational
terms. Galan et al. [17] described an approach that has two main features: it
permits mating preferences to be defined either in terms of similarity between in-
dividuals or in terms of fitness of individuals, and it lends itself to a self-adaptive
implementation in which each individual from the population has its own mating
preference.

4. Another idea of maintaining population diversity was based on the use of mul-
tiploid (polyploid chromosomes) individuals considered by Collingwood et al.
[6], having as a source of inspiration the real situation from nature: there exist
many organisms having polyploid genotypes consisting of multiple sets of chro-
mosomes with different mechanisms for determining the dominant genes. Several
papers investigated the diploidy case, i.e. individual comprising of two chromo-
somes starting with Goldberg and Smith [19] who investigated the use of diploid
representations and dominance operators in GAs in order to improve performance
in environments that vary with time. Bhasin and Mehta [2] reviewed the work
done so far concerning the diploid genetic algorithms and their conclusion was
that DGAs have not been explored sufficiently. Next we will present some of the
most important achievements in the area of DGAs. Yukiko and Nobue [47] de-
scribed a diploid genetic algorithm (DGA) for preserving the population diversity
using the idea of meiosis to convert the genotype to phenotype. Lieckens et al.
[26] introduce a very simple diploid GA that limits the GA mainly in its discrete
time, non-overlapping populations setup and its representation of genotypes, and
they also provided formal methods to be used to study finite population mod-
els of diploid genetic algorithms, while Bull [4] presents a new variant of evolu-
tionary algorithm that harnesses the haploid-diploid cycle present in eukaryotic
organisms. In [45] Yang investigates the effect of the cardinality of genotypic rep-
resentation and the existence of uncertainty in the dominance scheme for DGAs in
dynamic environments. Other much practical approaches on the use of DGA were
presented by Bhasin et al. [3] focusing on the performances of DGA in relation to
the greedy approach in the case of the dynamic traveling salesman problem. Pop
et al. successfully used DGAs in order to solve the generalized traveling salesman
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problem [35], the generalized minimum spanning tree problem [36] and the fam-
ily traveling salesman problem [37]. Dulebenets [14] propose a Diploid Evolution-
ary Algorithm (DEA) that can assist the cross-docking operators with the design
of cost-efficient truck schedules, that can facilitate the flow of different products
within the cross-docking facilities, ensure the “just-in-time” deliveries within sup-
ply chains, and improve sustainability of the supply chain operations. Petrovan
et al. presented some of the advantages of diploid GAs in comparison to standard
GAs using real-coded chromosome representation [33] and a behavioural study of
the crossover operators in diploid genetic algorithms [34]. Jasuja [23] used DGA
on multi-objective optimization of a classification problem for feature selection,
showing the advantages of DGA in dealing with this kind of problems. Recently,
Dulebenets [15] proposed an adaptive polyploid memetic algorithm for sched-
uling trucks at a cross-docking terminal whose main feature is that the number
of chromosome copies is controlled through the adaptive polyploid mechanism
based on the objective function improvements achieved and computational time
changes.

Given these considerations, as well as the lack of a comparative approach to the be-
havior of diploid genetic algorithms compared to haploid ones, the aim of this article is
to make a comprehensive comparison in terms of the quality of the achieved solutions,
the corresponding execution time and the impact of the genetic operators on the quality
of the results between the Haploid Genetic Algorithms (HGAs) and Diploid Genetic Al-
gorithms (DGAs) based on extensive computational experiments on a set comprising 17
benchmark functions with different properties and difficulties, used for the performance
evaluation of genetic algorithms.

The remaining part of the paper is organized as follows: Section 2 presents the basic
concepts from the theory of genetic algorithms. The proposed genetic crossover operators
in the case of DGA that are used in this study are described in Section 4. The experiments
performed and the achieved results are presented and detailed in Section 5. Finally, the
conclusions and future research directions are presented in the last section.

2. PLOIDY IN GENETIC ALGORITHMS

In nature, the cells contain various number of sets of chromosomes, varying from 1 to
64. This feature is known as ploidy [44]. When there is at least a pair of chromosomes, a
characteristic of the cells, given by a gene (allele) is determined based on the phenotype,
which is a phenomenon which uses the dominant or recessive character of the respective
gene, and the genetic information thus determined will be transmitted to the offspring.
Therefore, within the diploid or more complex individuals a greater diversity of character-
istics is transmitted due to the additional information content and the way of transmitting
it to the offspring.

However, the use of genetic algorithms (GA) in solving different problems focuses on
haploid representation, in particular because of their ease of implementation. The hap-
loid representation retains only one set of each gene, thus avoiding the entire process of
determining the dominant allele that must be transmitted further in the population, the
recessive ones being avoided.

2.1. The haploid genetic algorithms. In the case of conventional genetic algorithms an
individual consists of one chromosome, which is a possible (feasible) solution of the op-
timization problem. The representation of the solution depends on the specificity of each
problem, as well as the way of solving it from the computer point of view. The algorithm
starts with a set of randomly generated solutions (represented by chromosomes) called
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population. The solutions (called individuals) of a population are taken and used to form
a new population, motivated by a hope, that the new population will be better than the
old one. The solutions (offspring) chosen to form a new population are selected on the
basis of a strategy, which is appropriate to their form of representation. The better chro-
mosomes that exist within the population (determined on the basis of their fitness), the
more likely they are to be selected.

As a result, the crossover operator has a significant role in a genetic algorithm. The spe-
cialized literature presents numerous crossing techniques [21], starting from some very
simple ones to very elaborate crossing techniques. The advantage of choosing one in fa-
vor of the other depends mainly on the results that they offer in terms of increasing the
convergence character of the solution towards the optimal global solution. Depending on
the type of problem, whose optimization function falls into one or more mathematical pat-
terns, choosing the type of crossover can result in finding an optimal solution in a shorter
time. The result of any crossing technique represents two offspring, each carrying genetic
information from both parents. In certain circumstances, in some newly formed offspring
one or more of their genes may be subject to mutation, with a low random probability.
This implies that the value of a gene is changed.

2.2. The diploid genetic algorithms. In the case of diploid genetic algorithms (DGA),
individuals consist of two coupled haploid chromosomes.

(2.1) I = (C1, C2)

where Ci are the chromosomes, with i ∈ {1, 2}.
This type of representation is called the diploid (bi-chromosomal). Also, each individ-

ual carries additional information called phenotype, which is necessary for the selection
of the individuals who will participate in the crossover process for the formation of new
offspring. In this way, the diploid representation of superior life forms is mimicked [29].
The superiority of this representation lies in the fact that each person carries twice as much
information as compared to the classical haploid approach, thus a greater diversity being
ensured in terms of potential workable solutions [19]. The final values of the phenotype
of an individual are decided by the dominance schemes that play an important role in
the algorithm’s performance. It is particularly important to design and experiment with
a good dominance scheme to guarantee the performance of the diploid GA as compared
to the haploid one.

One of the most important dominance schemes described in the literature have been
proposed by Ng and Wong [31], in which the dominant allele will always be part of the
phenotype. If there is a conflict between two dominant or two recessive alleles, the se-
lected one is strictly random. Another elaborated approach to the dominance scheme
is offered by Yang and Yao [46] and is called the dominance learning scheme in which
a dominant probability vector is defined. Within this scheme each element has a domi-
nance probability which represents the probability that a genotypic allele can be expressed
within the phenotype.

3. GENETIC OPERATORS IN THE CASE OF DGA

In this section we will describe the genetic operators in the case of diploid genetic
algorithms (DGA).

3.1. Crossover operators. Due to the importance of crossover operator in GAs, we present
an adaptation in the case of DGA of some of the crossover operators for real numbers, as
described by Herrera et al. [21] in the case of HGA.
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Further, we assume that the two individuals I1 and I2 to undergo recombination have
the following structure:

(3.2)
I1 = (C1

1 , C
1
2 ), where C1

1 = (c111, ..., c
1
1D) and C1

2 = (c121, ..., c
1
2D),

I2 = (C2
1 , C

2
2 ), where C2

1 = (c211, ..., c
2
1D) and C2

2 = (c221, ..., c
2
2D),

where D is the dimension of the chromosomes.
By combining different chromosomes belonging to different individuals, we can ob-

serve that we obtain a higher number of distinct offspring in comparison to the classical
HGA. In this way, we ensure an increased diversity of the created offspring, an aspect that
is also reflected on the basin of formation of the new population.

3.1.1. Simple crossover (one cut) (SX-DGA). A position i ∈ {1, 2, ..., D − 1} is chosen ran-
domly and the resulting four offspring Ok = (Ok

1 , O
k
2 ) for k ∈ {1, .., 4} are created as

follows:

(3.3)

O1 =
(
(c111, ..., c

1
1i, c

2
1i+1, ..., c

2
1D), (c121, ..., c

1
2i, c

2
2i+1, ..., c

2
2D)
)

O2 =
(
(c111, ..., c

1
1i, c

2
2i+1, ..., c

2
2D), (c121, ..., c

1
2i, c

2
1i+1, ..., c

2
1D)
)

O3 =
(
(c211, ..., c

2
1i, c

1
1i+1, ..., c

1
1D), (c221, ..., c

2
2i, c

1
2i+1, ..., c

1
2D)
)

O4 =
(
(c211, ..., c

2
1i, c

1
2i+1, ..., c

1
2D), (c221, ..., c

2
2i, c

1
1i+1, ..., c

1
1D)
)

3.1.2. Two point crossover (TPX-DGA). The two point crossover [30] derives from the sim-
ple crossover, but uses two cutting points i, j ∈ {1, 2, ..., D − 1} with i < j. The resulting
offspring Ok = (Ok

1 , O
k
2 ) for k ∈ {1, .., 4} are created as follows:

(3.4)
O1 =

(
(c111, ..., c

1
1i, c

2
1i+1, ..., c

2
1j , c

1
1j+1, ..., c

1
1D), (c121, ..., c

1
2i, c

2
2i+1, ..., c

2
2j , c

1
2j+1, ..., c

1
2D)
)

O2 =
(
(c111, ..., c

1
1i, c

2
1i+1, ..., c

2
1j , c

1
1j+1, ..., c

1
1D), (c221, ..., c

2
2i, c

1
2i+1, ..., c

1
2j , c

2
2j+1, ..., c

2
2D)
)

O3 =
(
(c211, ..., c

2
1i, c

1
1i+1, ..., c

1
1j , c

2
1j+1, ..., c

2
1D), (c121, ..., c

1
2i, c

2
2i+1, ..., c

2
2j , c

1
2j+1, ..., c

1
2D)
)

O4 =
(
(c211, ..., c

2
1i, c

1
1i+1, ..., c

1
1j , c

2
1j+1, ..., c

2
1D), (c221, ..., c

2
2i, c

1
2i+1, ..., c

1
2j , c

2
2j+1, ..., c

2
2D)
)

3.1.3. Uniform crossover (UX-DGA). In the case of uniform crossover, we do not divide the
chromosomes into segments, rather each gene is selected at random from one of the cor-
responding genes of the chromosomes that constitutes the individuals. The four offspring
Ok = (Ok

1 , O
k
2 ) for k ∈ {1, 2, 3, 4} are created as follows:

(3.5) Ok =
(
(ok11, ..., o

k
1D), (ok21, ..., o

k
2D)
)
,

and are built from genes as follows:

okij =

{
c1i if u = 0
c2i if u = 1

(3.6)

where k ∈ {1, 2, 3, 4}, i ∈ {1, 2} and j ∈ {1, ..., D}.
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3.1.4. Arithmetic crossover (AX-DGA). The arithmetic crossover linearly combines the chro-
mosomes of the parent individuals and produces four offspring Ok = (Ok

1 , O
k
2 ) for k ∈

{1, 2, 3, 4}, with the associated genes:

(3.7)

O1 =
(
λc11i + (1− λ)c12i, λc

2
1i + (1− λ)c22i

)
O2 =

(
λc11i + (1− λ)c12i, λc

2
2i + (1− λ)c21i

)
O3 =

(
λc12i + (1− λ)c11i, λc

2
1i + (1− λ)c22i

)
O4 =

(
λc12i + (1− λ)c11i, λc

2
2i + (1− λ)c21i

)
where λ ∈ [0, 1] is randomly generated and i ∈ {1, ..., D}.

3.1.5. BLX-α crossover (BLX-DGA). In the classical GAs, the blend crossover (BLX-α) was
introduced by Eshelman and Schaffer [16] and it provided a good searching ability for
separable fitness functions, while facing some difficulties in the optimization of non-
separable fitness functions. In the case of DGA the crossover is extended as follows:
for each individual k = 1, 2 at each locus i ∈ {1, ..., D}, the following values are calcu-
lated Cmin

ki = min(ck1i, c
k
2i), C

max
ki = max(ck1i, c

k
2i) and Jk = Cmax

ki − Cmin
ki . With these

values thus calculated, two gametes are generated for each individual, Gk = (gk1i, g
k
2i) in

the following form: gkji = is a randomly (uniformly) chosen number from the interval
[Cmin

ki − Jkα,C
max
ki + Jkα] where i ∈ 1, ..., D, j = 1, 2 and k = 1, 2. From these gametes

four offspring are built in the following form:

(3.8) O1 = (g11i, g
2
1i), O2 = (g11i, g

2
2i), O3 = (g12i, g

2
1i), O4 = (g12i, g

2
2i)

3.1.6. Max-Min Arithmetic crossover (MMAX-DGA). The Max-Min arithmetic crossover
operator described by Herrera et al. [21] in the case of classical HGA, can be extended
to DGA as follows: for each individual k = 1, 2 at each locus i ∈ {1, ..., D}, the following
values are calculated: Cmin

ki = min(ck1i, c
k
2i), C

max
ki = max(ck1i, c

k
2i). MMAX-DGA com-

bines two diploid individuals and generates six offspring as follows:

(3.9)

O1 =
(
λc11i + (1− λ)c12i, λc

2
1i + (1− λ)c22i

)
O2 =

(
λc11i + (1− λ)c12i, λc

2
2i + (1− λ)c21i

)
O3 =

(
λc12i + (1− λ)c11i, λc

2
1i + (1− λ)c22i

)
O4 =

(
λc12i + (1− λ)c11i, λc

2
2i + (1− λ)c21i

)
O5 =

(
Cmin

1i , Cmin
2i

)
O6 =

(
Cmax

1i , Cmax
2i

)
where λ ∈ [0, 1] is randomly generated, i ∈ {1, ..., D} and k = 1, 2.

3.1.7. Linear crossover (LX-DGA). The process begins with gametes creation for each indi-
vidual, practically three gametes from the two chromosomes of each individual, according
to the following formulae, provided by Schlierkamp-Voosen and Mühlenbein [42]:

gk1i =
1

2
ck1i +

1

2
ck2i; g

k
2i =

3

2
ck1i −

1

2
ck2i; g

k
3i = −1

2
ck1i +

3

2
ck2i(3.10)
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where i ∈ 1, ..., D. Having these gametes, the resulting nine offspring are built by com-
bining gametes generated from the chromosomes of each individual.

From the point of view of a taxonomy, the presented crossover operators are part of
four major groups of classification [21]: the simple (SX-DGA), two-point (TPX-DGA) and
uniform (UX-DGA) crossover operators belong to the group of discrete crossover op-
erators, arithmetical (AX-DGA) and linear (LX-DGA) are part of the group of aggrega-
tion based crossover operators, BLX-α-DGA is part of the group of neighborhood based
crossover operators and max-min-arithmetic (MMAX-DGA) belongs to the group of hy-
brid crossover operators.

3.2. Mutation operator. Due to the fact that in the case of the diploid individual the phe-
notype expresses its global characteristic within the population, the mutation, that certain
individuals suffer, is present in its internality, both chromosomes being affected at ran-
dom positions. This mechanism ensures the diversity of the individual in relation to the
population it comes from.

4. COMPUTATIONAL EXPERIMENTS

In this section we present a comprehensive comparison between haploid and diploid
genetic algorithms based on the extensive computational results.

In the field of evolutionary computation, the comparison of different algorithms is com-
monly done by using a large set of standard benchmarks or test functions from the liter-
ature. Trying to design a complete study using a whole set of test functions, in order to
determine if one algorithm is better than the other for each function, is a pointless task.
This is why, in our opinion when evaluating an algorithm, we must emphasize the type of
problems in which its performance is good, in order to characterize the type of problems
for which the algorithm is suitable and for which it is not. For a survey of benchmark
functions for solving optimization problems, we refer to Jamil and Yang [24].

In order to compare the investigated haploid and diploid genetic algorithms in an un-
biased manner, and to validate this comparison, we used a collection of 17 test functions
with diverse properties in terms of modality, regularity, separability, and valley landscape.

The test functions used in our computational experiments are presented hereafter, to-
gether with their main features.

1. Schwefel’s function [43] defined as:

F1(x1, x2, ..., xD) = 418.9829×D −
D∑
i=1

xisin(
√
|xi|)(4.11)

subject to −500 ≤ xi ≤ 500, for i = 1, ..., D. The considered Schwefel function is
continuous, differentiable, separable, scalable, multimodal, has many local optima
and the global minimum is located at x⋆ = (420.9687, ..., 420.9687) and F1(x

⋆) = 0.
2. Ackley’s function [24] defined as:

F2(x1, x2, ..., xD) = −20 exp
(
− 0.2

√√√√ 1

D

D∑
i=1

x2
i

)
−

− exp
( 1

D

D∑
i=1

cos(2πxi)
)
+ 20 + e

(4.12)

subject to −32 ≤ xi ≤ 32, for i = 1, ..., D. The considered Ackley function is con-
tinuous, differentiable, non-separable, scalable, multimodal, and has one global
minimum F2(x

⋆) = 0 at x⋆ = (0, ..., 0).
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3. Rastrigin’s function [13] defined as:

F3(x1, x2, ..., xD) = 10D +

D∑
i=1

(
x2
i − 10 cos(2πxi)

)
(4.13)

subject to −5.12 ≤ xi ≤ 5.12, for i = 1, ..., D. Rastrigin’s function is continu-
ous, differentiable, convex, separable, multimodal, and has one global minimum
F3(x

⋆) = 0 at x⋆ = (0, ..., 0).
4. Griewank’s function [20] defined as:

F4(x1, x2, ..., xD) = 1 +

D∑
i=1

x2
i

4000
−

D∏
i=1

cos
( xi√

i

)
(4.14)

subject to −100 ≤ xi ≤ 100, for i = 1, ..., D. Griewank’s function is continuous,
differentiable, non-separable, scalable, multimodal, and has one global minimum
F4(x

⋆) = 0 at x⋆ = (0, ..., 0).
5. Rosenbrock’s function [24] defined as:

F5(x1, x2, ..., xD) =

D−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
]

(4.15)

subject to −2.048 ≤ xi ≤ 2.048, for i = 1, ..., D. Rosenbrock’s function is contin-
uous, differentiable, non-separable, scalable, unimodal, and has one global mini-
mum F5(x

⋆) = 0 at x⋆ = (1, ..., 1).
6. Alpine N. 1 function [24] defined as:

F6(x1, x2, ..., xD) =

D∑
i=1

| xi sin(xi) + 0.1xi |(4.16)

subject to 0 ≤ xi ≤ 10, for i = 1, ..., D. Alpine N. 1 function is continuous,
non-convex, non-differentiable, separable, non-scalable, multimodal, and has one
global minimum F6(x

⋆) = 0 at x⋆ = (0, ..., 0).
7. Sphere function [24] defined as:

F7(x1, x2, ..., xD) =

D∑
i=1

x2
i(4.17)

subject to −5.12 ≤ xi ≤ 5.12, for i = 1, ..., D. The Sphere function is contin-
uous, convex, differentiable, separable, scalable, unimodal, and has one global
minimum F7(x

⋆) = 0 at x⋆ = (0, ..., 0).
8. Step function [24] defined as:

F8(x1, x2, ..., xD) =

D∑
i=1

(⌊
xi + 0.5

⌋)2(4.18)

subject to −100 ≤ xi ≤ 100, for i = 1, ..., D. The Step function is discontinuous,
non-differentiable, separable, scalable, unimodal, and has one global minimum
F8(x

⋆) = 0 at x⋆ = (0.5, ..., 0.5).
9. Sum Squares function [24] defined as:

F9(x1, x2, ..., xD) =

D∑
i=1

ixi(4.19)
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subject to −10 ≤ xi ≤ 10, for i = 1, ..., D. The Sum Squares function is con-
tinuous, convex, differentiable, separable, scalable, unimodal, and has one global
minimum F9(x

⋆) = 0 at x⋆ = (0, ..., 0).
10. Quartic function [24] defined as:

F10(x1, x2, ..., xD) =

D∑
i=1

ix4
i + random[0, 1)(4.20)

subject to −1.28 ≤ xi ≤ 1.28, for i = 1, ..., D. The Quartic function is continu-
ous, differentiable, separable, scalable, unimodal, and has one global minimum
F10(x

⋆) = 0 at x⋆ = (1, ..., 1).
11. Qing’s function [24] defined as:

F11(x1, x2, ..., xD) =

D∑
i=1

(
x2
i − i

)2
(4.21)

subject to −500 ≤ xi ≤ 500, for i = 1, ..., D. The Qing’s function is continuous,
non-convex, differentiable, separable, scalable, multimodal, and has one global
minimum F11(x

⋆) = 0 at x⋆ = (±
√
i, ...,±

√
i).

12. Dixon-Price function [24] defined as:

F12(x1, x2, ..., xD) = (x1 − 1)
2
+

D∑
i=2

i
(
2x2

i − xi−1

)2
(4.22)

subject to −10 ≤ xi ≤ 10, for i = 1, ..., D. The Dixon-Price function is continuous,
differentiable, non-separable, scalable, unimodal, and has one global minimum

F12(x
⋆) = 0 at x⋆ = (2−

2i−2

2i , ..., 2−
2i−2

2i ).
13. Exponential function [24] defined as:

F13(x1, x2, ..., xD) = −exp

(
−0.5

D∑
i=1

x2
i

)
(4.23)

subject to −1 ≤ xi ≤ 1, for i = 1, ..., D. The Exponential function is continuous,
differentiable, non-separable, scalable, multimodal, and has one global minimum
F13(x

⋆) = 0 at x⋆ = (0, ..., 0).
14. Periodic function [1] defined as:

F14(x1, x2, ..., xD) = 1 +

D∑
i=1

sin2(xi)− 0.1e(
∑D

i=1 x2
i )(4.24)

subject to −10 ≤ xi ≤ 10, for i = 1, ..., D. The Periodic function is continuous, non-
convex, differentiable, non-separable, scalable, multimodal, and has one global
minimum F14(x

⋆) = 0.9 at x⋆ = (0, ..., 0).
15. Powell Sum function [24] defined as:

F15(x1, x2, ..., xD) =

D∑
i=1

|xi|i+1(4.25)

subject to −1 ≤ xi ≤ 1, for i = 1, ..., D. The Periodic function is continuous, con-
vex, non-differentiable, separable, scalable, unimodal, and has one global mini-
mum F15(x

⋆) = 0 at x⋆ = (0, ..., 0).
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16. Ridge function [24] defined as:

F16(x1, x2, ..., xD) = x1 + d

(
D∑
i=2

x2
i

)α

(4.26)

where d and α are constants that usually are set to d = 2 and α = 0.5, −5 ≤ xi ≤ 5,
for i = 1, ..., D. The Ridge function is non-convex, differentiable, non-separable,
unimodal, and has one global minimum that depends on the hypercube it is de-
fined on. On the hypercube [−γ, γ]D, F16(x

⋆) = −γ located at x⋆ = (−γ, 0, ..., 0).
17. Schwefel’s Double-Sum function [24] defined as:

F17(x1, x2, ..., xD) =
D∑
i=1

 i∑
j=1

xj

2

(4.27)

subject to −65.536 ≤ xi ≤ 65.536, for i = 1, ..., D. The Schwefel’s Double-Sum
function is symmetric, non-separable, unimodal, and has one global minimum
F17(x

⋆) = 0 at x⋆ = (0, ..., 0).

Designing a ”good” test set of functions in order to compare the performance of two al-
gorithms is a difficult task; in our case the collection of benchmark instances was selected
based on the following arguments:

• Dimensionality of the solution space is an important aspect that affects the com-
plexity of the problem, see for further information [18]. In our experiments we
used only multidimensional problems and in order to have the same degree of
difficulty, for all the considered test functions we have selected two dimensions:
D = 25 and D = 50 of the search space.

• Separability is a notion closely related to the concept of epistasis, which in the
area of evolutionary algorithms measures how much the contribution of a gene to
the fitness of a given individual relies upon the values of the other genes. Obvi-
ously, the non-separable functions are more difficult to be optimized because the
search direction depends on more genes while the separable functions can be opti-
mized for each variable. In our case, we considered 8 separable functions (Ackley,
Griewank, Rosenbrock, Dixon-Price, Exponential, Periodic, Ridge and Schwefel
double-sum) and the other are non-separable.

• Multimodality is a notion related to multimodal functions, i.e. functions that have
two or more local optima, while unimodal functions satisfy the following prop-
erty: for some value m it is monotonically increasing for x ≤ m and monotoni-
cally decreasing for x ≥ m. In the case of multimodal functions, the search process
should be able to avoid the regions around local optima in order to approximate
as good as possible the global optimum. Obviously, the most difficult case ap-
pears when the local optima are randomly distributed within the search space.
In our case, we considered 8 multimodal functions (Schwefel, Ackley, Rastrigin,
Griewank, Alpine N. 1, Qing, Exponential and Periodic) and the other are uni-
modal.

• An important group of selected benchmark test functions contains functions that
have flat surfaces which are real obstacles for optimization algorithms, and in
which it is very difficult to direct the search process of an algorithm toward the
local optima because they do not give any information as to which direction is
favorable. In our case, we considered 4 functions having this feature: Power Sum,
Powell, Exponential and Ridge.
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4.1. Methodology. The aim of these experiments is to prove beyond any doubt the ad-
vantages of DGA over HGA and to emphasize the differences between the two genetic
representations (haploid vs diploid). Therefore, throughout these experiments we keep
the running conditions of HGA, respectively DGA similar, while the genetic parameters
are identical.

The proposed methodology is divided into two categories of experiments:
(1) Experiments 1 (section 4.2) compare the HGA and the DGA both in terms of qual-

ity of the results and running times. The algorithms are tested using all the con-
sidered benchmark functions with two dimensions: 25 and 50 respectively. The
population size is the same in both cases (HGA and DGA).

(2) Experiments 2 (section 4.3) explores the performance of HGA and DGA with re-
spect to various crossover operators.

Our proposed genetic algorithms: HGA and DGA, were implemented in Java and were
tested on a PC with Intel Core i3-8100 @ 3.6GHz, 8GB RAM, Windows 10 Education 64 bit
operating system.

Due to the specific nature of the benchmark functions, the genes are represented by
real numbers and the solutions space is RD.

Therefore, a haploid individual is represented as:

(4.28) Ih = (c1, c2, ..., cD)

where D is the dimension of the benchmark function, and ci are real numbers, i = 1, .., D.
A diploid individual consists of two coupled haploid chromosomes and it is repre-

sented as:

(4.29) Id = (C1, C2) =
(
(c11, c

1
2, ..., c

1
D), (c21, c

2
2, ..., c

2
D)
)
.

The fitness of an individual is based on the phenotype and it can be defined in various
ways. Due to the infinity of genetic values for each locus of a chromosome, it is improper
to establish a principle of confinement based strictly on the analyzed values. In this sense,
the phenotype of an individual encoded by real values is determined based on the average
of the values for each locus of an individual as:

(4.30) pheni = average(c1i , c
2
i ), i = 1, ..., D.

Thus, the fitness of an individual is:

(4.31) f = F (phen1, ..., phenD).

This kind of phenotype assures an even influence of the both chromosomes of the in-
dividual on the mating and survival chances of each individual.

Due to the importance and impact of the genetic parameters on the performance of the
GAs, in both our developed algorithms: HGA and DGA, their values have been selected
based on extensive computational experiments and statistical analyses. The chosen num-
ber of epochs was 200. Thus we ensure that the algorithms reach their optimum and no
evolution is possible. As can be seen further, actually the convergence occurs even much
earlier. The mutation rate was selected to be 5%, more or less this being the standard
value in GAs.

In both our developed algorithms, we used the roulette wheel selection operator [32],
because it is less invasive than the deterministic ones, such as (µ, λ) or (µ + λ), see for
further information [28], and allows the population to undergo a more resilient evolution.
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In roulette wheel selection, as in all selection methods, the fitness function assigns a fitness
to possible solutions or chromosomes. This fitness level is used to associate a probability
of selection with each individual chromosome. If fi is the fitness of individual in the
population, its probability of being selected is

(4.32) pi =
fi∑N
j=1 fj

,

where N is the number of individuals in the population.

4.2. Experiments 1. Haploid versus Diploid GAs Comparative Results. In this exper-
iment, the developed classic (haploid) and diploid algorithms have been tested on the
17 benchmark functions described previously. Because genetic algorithms make use of
randomness during the optimization process, each instance is solved multiple times, i.e.
30 runs per instance, and the average values of the best solutions obtained by each algo-
rithm were recorded. Also, the standard deviation of the best values were computed. In
all experiments, the values of the parameters used by each algorithm were chosen to be
the same: the population size was 1000 individuals, the mutation rate was pm = 0.05 and
the number of generations for each run was 200. In both GAs, haploid and diploid ones,
the selection was made by the roulette wheel technique and the two point crossover with
probability pc = 1.0 was used for the creation of the offspring. Two different tests were
carried out, one for the size of a chromosome of 25 genes and the other for a double size
of 50 genes.

In Table 1, we display the obtained statistical results by the HGA and DGA over 30
runs in the case of a chromosomal size of 25. Table 1 has the following structure: the first
column contains the benchmark function, the second column displays the mathematical
global minimum of the corresponding benchmark function, the next three columns pro-
vide the average values (Avg. val.) of the best solutions achieved, the standard deviation
of the best values (Std. dev.) and the corresponding average computational times reported
in seconds in order to obtain the solutions by the HGA, the next three columns provide
the average values (Avg. val.) of the best solutions achieved, the standard deviation of
the best values (Std. dev.) and the corresponding average computational times reported
in seconds in order to obtain the solutions by the DGA, while the last column displays
the percentage of performance improvements (I %) of the achieved results of DGA over
HGA.

Analyzing the results reported in Table 1, we can notice that in the case of all considered
benchmark functions, DGA performed significantly better than HGA in terms of obtained
average values. The improvements vary from 7.40% in the case of the Periodic function
to 94.67% in the case of the Schwefel’s Double-Sum function. Most of the achieved results
show an improvement of over 40%, with few exceptions: the Periodic function 7.40%
and the Griewank’s function 32.11%. We can observe that in 2 out of 17 considered test
functions, HGA delivers the same value in all 30 runs, while DGA matches the same value
only in the case of the Step function. In the other cases, when the proposed GA’s do not
provide in all 30 runs the same solution, the standard deviation ranges from 7.806E-18
to 0.0097 for HGA and from 7.806E-18 to 0.0034 in the case of DGA, fact that proves the
accuracy and robustness of both HGA and DGA. Regarding the running times, we can
observe that the average computational times of the DGA are higher in comparison to
those corresponding to the HGA, but this is somehow natural because DGA performs a
higher number of operations, caused by the duplication of the genetic information.
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TABLE 1. Statistical results of 30 runs obtained by HGA and DGA in the
case of a chromosomal size of 25

Test Global HGA DGA I [%]
function minimum Avg. val. Std. dev. Time Avg. val. Std. dev. Time

F1 0 35.1090 0.0000 5.432 13.2034 2.131E-13 13.918 62.39
F2 0 3.0915 5.529E-15 5.129 1.6469 2.797E-14 14.362 46.73
F3 0 4.6565 1.509E-15 5.147 1.6431 1.687E-14 13.951 64.71
F4 0 0.3226 7.327E-15 5.348 0.2190 1.540E-15 15.033 32.11
F5 0 39.1601 4.263E-13 4.326 23.3992 5.435E-13 12.261 40.25
F6 0 0.3666 5.107E-15 4.983 0.1172 2.997E-15 14.176 68.03
F7 0 0.1051 1.776E-15 4.486 0.0222 1.734E-16 11.967 78.88
F8 0 69.0000 0.0000 4.427 15.0000 0.0000 12.527 78.26
F9 0 0.0416 2.081E-17 4.415 0.0110 1.890E-16 11.969 73.56

F10 0 0.0054 0.0097 4.623 0.0026 0.0034 12.010 51.85
F11 0 6.3858 1.154E-13 4.411 2.6508 1.332E-15 11.921 58.49
F12 0 12.0806 7.727E-14 4.486 3.5564 6.661E-15 12.179 70.56
F13 -1 -0.2008 9.992E-16 3.750 -0.5981 1.887E-15 10.923 49.71
F14 0.9 1.0804 1.820E-14 6.519 1.0005 5.107E-15 16.739 7.40
F15 0 0.0318 7.806E-18 5.501 0.0141 7.806E-18 15.449 55.66
F16 −γ -4.0178 3.153E-14 4.031 -4.5769 7.993E-14 10.948 56.92
F17 0 3.4722 9.787E-7 6.466 0.1850 8.171E-5 14.004 94.67

TABLE 2. Statistical results of 30 runs obtained by HGA and DGA in the
case of a chromosomal size of 50

Test Global HGA DGA I [%]
function minimum Avg. val. Std. dev. Time Avg. val. Std. dev. Time

F1 0 312.1440 1.023E-12 14.944 77.1097 1.193E-11 48.676 75.30
F2 0 6.1028 5.329E-14 14.987 3.3964 4.44E-16 48.092 43.51
F3 0 31.8316 8.526E-14 14.822 16.0374 1.953E-13 47.932 49.62
F4 0 6.6450 1.669E-13 14.978 1.3217 1.376E-14 49.499 80.11
F5 0 286.7859 1.534E-12 12.015 87.9287 2.131E-13 39.060 69.34
F6 0 1.9785 3.264E-14 14.179 0.8361 1.465E-14 46.111 57.74
F7 0 1.1297 2.131E-14 11.621 0.3274 8.326E-15 38.890 71.02
F8 0 382.0000 0.0000 12.026 88.0000 0.0000 40.791 76.96
F9 0 1.4719 6.661E-15 11.903 0.2360 2.942E-15 39.357 83.97

F10 0 0.1072 0.0100 12.029 0.0709 0.0203 39.819 33.86
F11 0 75.8249 1.676E-12 11.686 69.3935 2.415E-13 39.256 8.48
F12 0 684.3180 1.364E-12 11.828 71.0618 1.833E-12 41.456 80.62
F13 -1 -0.0107 2.550E-16 11.570 -0.1056 8.187E-16 37.640 9.59
F14 0.9 1.0881 7.105E-15 19.530 0.9921 8.659E-15 61.908 8.82
F15 0 0.0536 4.649E-16 16.211 0.0224 1.838E-16 51.87 58.21
F16 −γ -1.4667 1.554E-14 11.109 -2.2185 2.309E-14 38.358 21.28
F17 0 19.6610 4.852E-6 13.135 4.2581 9.006E-3 43.862 78.34

In Table 2, we display the obtained statistical results by the HGA and DGA over 30
runs in the case of a chromosomal size of 50. Table 2 has the same structure as Table 1.

Analyzing the results reported in Table 2, we can observe that in the case of all con-
sidered benchmark functions, DGA performed significantly better than HGA in terms of
obtained average values. The improvements vary from 8.48% in the case of the Qing’s
function to 83.97% in the case of the Sum Squares function. Most of the obtained results
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show an improvement of over 33%, with four exceptions: the Qing’s function 8.48%, the
Periodic function 8.82%, the Exponential function 9.59% and the Ridge function 21.28%.
We can observe that in 1 out of 17 considered test functions, HGA delivers the same value
in all 30 runs, while DGA matches the same value only in the case of the Step function.
In the other cases, when the proposed GA’s do not provide the same solution in all 30
runs, the standard deviation ranges from 4.649E-16 to 0.01 for HGA and from 1.838E-16
to 0.0203 in the case of DGA, fact that proves the accuracy and robustness of both HGA
and DGA. Regarding the running times, we can observe that the average computational
times of the DGA are higher in comparison to those corresponding to the HGA, but this
is somehow natural because DGA performs a higher number of operations, caused by the
duplication of the genetic information.

As a preliminary conclusion of this first experiment, it is obvious that the quality of
the results obtained by running a DGA outperforms those achieved in the case of con-
ventional genetic algorithms (HGAs) and at the same time, we can observe a degradation
of the average values obtained as the size of the problem increases in the case of both
considered GA’s: HGA and DGA.

In Figures 1 and 2, we illustrate the convergence curves for both HGA and DGA. Ana-
lyzing the displayed charts, we may observe that the HGA converge faster than DGA in
all cases, with 3 to 24 epochs. This behavior is the result of the increased diversity of the
population in the case of DGA, a direct result of the increased number of descendants from
which the new population is formed. The reason behind the high convergence rate of the
HGA resides in the power of the best individuals to draw after them all the other individ-
uals and often getting stuck in local optima. In order to make the charts understandable
the Y axis is pruned due to the high diversity in the case of DGA. For Schwefel, Griewank,
Rosenbrok, Sphere, Step, Sum Squares, Qing and Dixon-Price benchmark functions, both
HGA and DGA algorithms converge after about the same number of epochs. In the case
of Ackley, Rastrigin, Quartic, Periodic, Powell Sum and Ridge benchmark functions, HGA
converges earlier than DGA. For all these functions, the diploid population is better than
the haploid one, because as we can see in Figures 1 and 2, the red area representing the the
diploid population fitness is bellow the gray area representing the fitness of the haploid
population.

We define the intra-generation diversity of a current population as follows:

(4.33) di =| Iiw − Iib |

where di is the diversity of the population in epoch i and Iiw and Iib are the worst, respec-
tively the best individual of the generation i. Evidently, large populations are more likely
to maintain genetic material and in general have higher genetic diversity, while small pop-
ulations are more likely to experience the loss of diversity over time. A genetic bottleneck
may occur when a population goes through a low number of individuals, resulting in a
rapid decrease in genetic diversity.

In Table 3, we present the average intra-generation diversity of the haploid and diploid
populations respectively. The average intra-generation diversity was computed as fol-
lows:

(4.34) d =

∑E
i=1 di
E

where E is the number of epochs until the convergence (not the maximum number of
epochs) and di is the diversity of the generation i.
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FIGURE 1. The evolution of the population for HGA (gray), respectively
DGA (red) in the case of benchmark functions F1 - F9

As we expected, HGA has a larger intra-generation diversity, although the best indi-
viduals are significantly worse than the diploid best individuals because the phenotype-
based fitness overcome the badness of the worst chromosome of each individual.

HGA converges faster than DGA, but the best individuals drag the worse ones after
them in local optima. On the other hand, DGA covers the search space better and thor-
oughly, the convergence is slower, but the best chromosomes do not have the power to
drag the population after them and a so called ”crowd wisdom” [25] avoids local optima
better.

Starting from the previously reported results, the next set of experiments aims at eval-
uating the quality of the results both from the point of view of the average values for each
test function and of the running times, in the conditions in which the population size is
halved in the case of the diploid genetic algorithm. Each experiment was repeated 30
times with random values in every run, for each run mean values of the best values and
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FIGURE 2. The evolution of the population for HGA (gray), respectively
DGA (red) in the case of benchmark functions F10 - F17

running times for each run were recorded. Also, these tests were performed for both chro-
mosomal sizes of 25 and 50 genes, the number of new generations computed being 200.
The results of this experiment are presented in Table 4 and Table 5 for the chromosomal
size of 25 genes and in and in Tables 6 and 7 for the chromosomal size of 50 genes. For
each test performed, the factor of improving the quality of the result was calculated based
on the minimum value of each test function.

Tables 4 - 7 have the following structure: the first two columns indicate the used test
function and its corresponding global minimum, the next three columns provide the av-
erage values (Avg.val.) obtained by the HGA in the case of a population size of 1000,
respectively 2000, and the corresponding average computational times reported in sec-
onds in order to achieve the corresponding solutions, the next three columns provide the
average values obtained by the DGA in the case of a population size of 500, respectively
1000, and the corresponding average computational times reported in seconds in order
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TABLE 3. The average intra-generation diversity of the populations

Test Function Average HGA Average DGA
Schwefel F1 589.57 374.48
Ackley F2 1.321 1.26

Rastrigin F3 24.069 19.00
Griewank F4 35.45 13.69

Rosenbrock F5 13175.69 2324.86
Alpine N1 F6 3.70 2.23

Sphere F7 12.08 3.71
Step F8 4626.42 1666.30

Sum-Squares F9 5.26 1.67
Quartic F10 2.46 0.62

Qing F11 1528.68 287.19
Dixon-Price F12 9689.34 2079.18
Exponential F13 0.081 0.079

Periodic F14 0.55 0.52
Powell Sum F15 24374.85 4.49

Ridge F16 5009.95 872.94
Schwefel Double-Sum F17 24.06 19.00

TABLE 4. Statistical results of 30 runs obtained by HGA and DGA in the
case of a chromosomal size of 25

Test Global Population Avg.val. Time Population Avg.val. Time I [%]
function minimum size HGA size DGA

F1 0 1000 35.109 5.432 500 33.6361 6.192 4.20
F2 0 1000 3.0915 5.129 500 2.772 6.429 10.33
F3 0 1000 4.6565 5.147 500 3.0499 6.164 34.50
F4 0 1000 0.3226 5.348 500 0.3094 6.570 4.09
F5 0 1000 39.1601 4.326 500 29.3468 5.320 25.06
F6 0 1000 0.3666 4.983 500 0.2873 6.266 21.63
F7 0 1000 0.1051 4.486 500 0.0607 5.264 42.25
F8 0 1000 69.00 4.427 500 52.00 5.100 24.64
F9 0 1000 0.0416 4.415 500 0.0368 5.237 11.54
F10 0∗ 1000 0.0054 4.623 500 0.0041 5.308 24.07
F11 0 1000 6.3858 4.411 500 4.8151 5.237 24.60
F12 0 1000 12.0806 4.486 500 6.5237 5.320 46.00
F13 -1 1000 -0.2008 3.750 500 -0.6551 4.914 56.84
F14 0.9 1000 1.0804 6.519 500 1.0208 7.595 5.52
F15 0 1000 0.0318 5.501 500 0.0235 6.601 26.10
F16 −γ 1000 -4.0178 4.031 500 -4.2036 4.848 18.92
F17 0 1000 3.4722 6.466 500 0.2532 6.140 92.71

to achieve the corresponding solutions, and the last column display the percentage of
performance improvements (I) of the DGA over HGA.

From the results obtained and presented in the Table 4, one can observe that our pro-
posed DGA outperforms the HGA in terms of the obtained average values. The algo-
rithm’s performance in the case of DGA is increased by at least 4.02% in the case of
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TABLE 5. Statistical results of 30 runs obtained by HGA and DGA in the
case of a chromosomal size of 25

Test Global Population Avg.val. Time Population Avg.val. Time I [%]
function minimum size HGA size DGA

F1 0 2000 15.3376 18.306 1000 13.2034 13.918 13.91
F2 0 2000 2.9548 17.951 1000 1.6469 14.362 44.26
F3 0 2000 1.7148 17.938 1000 1.6431 13.951 4.18
F4 0 2000 0.2898 18.531 1000 0.219 15.033 24.43
F5 0 2000 34.2007 16.895 1000 23.3992 12.261 31.58
F6 0 2000 0.1601 18.637 1000 0.1172 14.176 26.80
F7 0 2000 0.0248 16.427 1000 0.0222 11.967 10.48
F8 0 2000 26.00 16.609 1000 15.00 12.527 42.31
F9 0 2000 0.0231 17.025 1000 0.0110 11.969 52.38

F10 0 2000 0.0045 15.885 1000 0.0026 12.010 42.22
F11 0∗ 2000 3.8643 16.896 1000 2.6508 11.921 31.40
F12 0 2000 4.0369 17.462 1000 3.5564 12.179 11.90
F13 -1 2000 -0.2220 12.162 1000 -0.5981 10.923 48.34
F14 0.9 2000 1.0039 20.822 1000 1.0005 16.739 0.34
F15 0 2000 0.0165 19:922 1000 0.0141 15.449 14.55
F16 −γ 2000 -4.0865 14.140 1000 -4.5769 10.948 53.68
F17 0 2000 0.2632 24.931 1000 0.1850 14.004 29.71

Griewank’s function, reaching up to 92.71% for the Schwefel’s Double-Sum test func-
tion, in 11 out of 17 test functions, the percentage of performance improvement is over
24.43%. Regarding the running times, we notice that the computational times of the DGA
are comparable to those obtained in the case of running the HGA.

Analyzing the results presented in Table 5, we can observe that the DGA outperforms
HGA in terms of the obtained average values. The algorithm’s performance in the case
of DGA is increased by at least 0.34% in the case of the Periodic function, reaching up
to 53.68% for the Ridge test function, in 11 out of 17 test functions, the percentage of
performance improvement is over 21.63%. Regarding the running times, we can observe
that the computational times of the DGA are smaller as compared to those reported in the
case of running the HGA.

Taking a closer look at the results displayed in Table 6, we can remark that DGA out-
performs HGA in terms of the achieved average values, also in the case of a chromosomal
size of 50, a population size of 2000 individuals for HGA, respectively 1000 individuals
for DGA. The performance of the algorithm in the case of DGA is increased by at least
2.07% in the case of the Periodic function, reaching up to 72.80% for the Rastrigin test
function, and in 11 out of 17 test functions, the percentage of performance improvement
is over 25.00%. Regarding the running times, we notice that the computational times of
the DGA are comparable to those obtained in the case of running the HGA.

Analyzing the results achieved and displayed in Table 7, we can observe that DGA out-
performs HGA in terms of the achieved average values, also in the case of a chromosomal
size of 50, a population size of 2000 individuals for HGA, respectively 1000 individuals
for DGA. The performance of the algorithm in the case of DGA is increased by at least
1.11% in the case of the Periodic function, reaching up to 67.14% for the Griewank test
function, and in 10 out of 17 test functions, the percentage of performance improvement
is over 30.32%. Regarding the running times, we can observe that in 12 out of 17 test func-
tions, the computational times of the DGA are smaller as compared to those reported in
the case of running the HGA and for the other cases are slightly higher.
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TABLE 6. Statistical results of 30 runs obtained by HGA and DGA in the
case of a chromosomal size of 50

Test Global Population Avg.val. Time Population Avg.val. Time I [%]
function minimum size HGA size DGA

F1 0 1000 312.144 14.944 500 184.2350 16.521 40.98
F2 0 1000 6.1028 14.987 500 4.8956 14.962 19.78
F3 0 1000 31.8316 14.822 500 8.6588 16.254 72.80
F4 0 1000 6.6450 14.978 500 4.3256 15.210 34.90
F5 0 1000 286.7859 12.015 500 168.2563 14.323 41.33
F6 0 1000 1.9785 14.179 500 1.2620 15.336 36.21
F7 0 1000 1.1297 11.621 500 1.0234 12.985 9.41
F8 0 1000 382.00 12.026 500 233.2563 12.035 38.94
F9 0 1000 1.4719 11.903 500 0.6254 11.998 57.51
F10 0∗ 1000 0.1072 12.029 500 0.0969 12.655 9.61
F11 0 1000 75.8249 11.686 500 73.6635 13.665 2.85
F12 0 1000 684.3180 11.828 500 287.1092 12.194 58.04
F13 -1 1000 -0.0107 11.570 500 -0.0896 11.736 7.98
F14 0.9 1000 1.0881 19.530 500 1.0656 22.652 2.07
F15 0 1000 0.0536 16.211 500 0.0402 21.596 25.00
F16 −γ 1000 -1.4667 11.109 500 -0.4346 11.994 42.58
F17 0 1000 19.6610 13.135 500 13.4528 14.358 31.58

TABLE 7. Statistical results of 30 runs obtained by HGA and DGA in the
case of a chromosomal size of 50

Test Global Population Avg.val. Time Population Avg.val. Time I [%]
function minimum size HGA size DGA

F1 0 2000 226.0581 40.025 1000 77.1097 48.676 65.89
F2 0 2000 4.8745 58.325 1000 3.3964 48.092 30.32
F3 0 2000 18.1867 61.023 1000 16.0374 47.932 11.82
F4 0 2000 4.0228 58.766 1000 1.3217 49.499 67.14
F5 0 2000 148.3650 62.388 1000 87.9287 39.060 40.73
F6 0 2000 1.3847 59.234 1000 0.8361 46.111 39.62
F7 0 2000 0.8524 60.486 1000 0.3274 38.890 61.59
F8 0 2000 141.652 49.332 1000 88.001 40.721 37.88
F9 0 2000 0.3954 65.114 1000 0.2360 39.357 40.31
F10 0∗ 2000 0.0885 40.832 1000 0.0709 39.819 19.89
F11 0 2000 75.0332 38.215 1000 69.3935 39.256 7.52
F12 0 2000 214.9531 47.032 1000 71.0618 41.456 66.94
F13 -1 2000 -0.0102 36.002 1000 -0.1056 37.640 9.64
F14 0.9 2000 1.0032 61.205 1000 0.9921 61.908 1.11
F15 0 2000 0.0269 53.022 1000 0.0224 51.87 16.73
F16 −γ 2000 -0.6915 41.214 1000 -2.2185 38.358 31.67
F17 0 2000 8.2110 47.322 1000 4.2581 43.862 48.14

A further conclusion of this experiment is that DGA outperforms HGA in terms of the
quality of the achieved results even when the size of the population of the DGA is halved,
while the computational effort of both genetic algorithms are quite similar.

4.3. Experiments 2. Haploid vs Diploid GAs Behaviour on Different Crossover Opera-
tors. The purpose of this experiment was the study of the behavior of genetic algorithms,
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both haploid and diploid, under the conditions of major modifications of the crossing op-
erator. To perform this experiment seven variants of this operator have been used. Each
experiment was repeated 30 times with random values in every run and mean of the best
values produced by each algorithm have been recorded. Also, standard deviation of the
best values were computed. In all experiments, the values of the parameters used by
each algorithm were chosen to be the same, so the population size was 1000 individuals,
mutation rate was 0.05 and the number of generations for each run was 200. In both inves-
tigated GAs: haploid and diploid, the selection was made by the roulette wheel technique
and the size of each chromosome was 25 genes.

Tables 8 - 10 have the following structure: the first two columns indicate the used
test function and its corresponding global minimum, the next column displays the used
crossover operator, for each test function we investigated seven different operators, the
next two columns provide the average values obtained by the HGA, respectively DGA,
and the last column displays the percentage of performance improvements (I) of the DGA
over the HGA.

Analyzing the displayed results in Tables 8 -10, the following observations emerge:

(1) We observe a significant improvement of the average results obtained by using
different crossover operators, in both investigated GAs: HGA and DGA, in some
situations even reaching the global minimum value of the test function.

(2) In 12 out of 17 test functions (F1-F4, F6-F10, F12, F14 , F15), using a particular
crossover technique combined with the use of diploidy can lead to results whose
average values are very close to the global minimum of the test function.

(3) In 9 out of 17 test functions (F2-F4, F6, F7, F9, F10, F15, F17) the BLX crossing tech-
nique combined with the use of diploidy lead to an improvement of the average
values of the DGA over HGA of more than 90%.

(4) For all the considered test functions and crossover operators, the DGA provided
better average values in comparison to those achieved by the HGA, except four
cases when both DGA and HGA obtained the global minimum: in the case of
Rastrigin’s Function with the crossover operator BLX − 0.3 and in the case of the
Step function with the crossover operators: BLX − 0, BLX − 0.3 and BLX − 0.5.

Overall, the comparison between the investigated GA’s: diploid genetic algorithms and
haploid genetic algorithms can be summarized as follows:

(1) In terms of quality of the achieved results, the DGA outperforms HGA in the case
of all considered test functions. The main reason is that the DGA covers the search
space better and has a slower convergence, which makes the algorithm avoid local
optima. The improvements of DGA over HGA vary from 8.82% to 94.67%.

(2) The search times for DGA are longer than the corresponding ones in the case of
HGA due to the slower convergence. However, when comparing the quality of
the results and the execution time, there is a balance in favour of quality. HGA’s
are faster than DGA’s with a range from 4% to about 90%.

(3) We also investigated the performance of HGA and DGA with respect to various
crossover operators. This is because we wanted to make sure that the performance
of DGA is independent of the genetic operators, among which the crossover is the
most important. We observed that the crossover operator plays an important role
in the performance of both HGA and DGA and again the DGA outperformed the
HGA in terms of the achieved average values.
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TABLE 8. Statistical results of 30 runs obtained by HGA and DGA using
different crossover methods in the case of the benchmark functions F1 -
F6

Test Global Crossover Avg.val. Avg.val. I [%]
fnction minimum operator HGA DGA

F1 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

577.3638
83.1695
42.8536
8185.9515
9865.0504
10339.19303
9698.1175
5.0902
1.2856

468.3567
67.2589
31.6597
8138.2286
8499.1507
7324.8558
6827.8118
2.1623
0.1063

18.88
19.13
26.12
0.58
13.85
29.15
29.60
57.52
91.73

F2 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

5.7785
4.2745
1.8792
1.5649
0.0046
4.249E-4
3.474E-4
0.3733
1.1022

2.7724
2.2370
0.9154
0.0716
0.0016
7.972E-6
1.435E-6
0.0255
0.0012

52.02
47.67
51.29
95.42
65.22
98.12
99.59
93.17
99.89

F3 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

23.7417
10.6452
1.6074
36.9054
0.2701
0.00
1.037E-4
0.4461
5.5465

6.5783
5.0069
1.5639
1.9461
0.0067
0.00
4.074E-8
0.0127
6.695E-4

72.29
52.97
2.71
94.73
97.52
-
99.96
97.15
99.99

F4 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

3.2667
1.0358
0.0879
0.0678
1.131E-6
1.602E-11
2.743E-3
0.0324
0.0277

0.7273
0.4438
0.0865
0.0052
2.07E-7
1.122E-14
1.105E-7
2.257E-4
1.123E-6

77.74
57.15
1.59
92.33
81.70
99.93
99.60
99.30
99.99

F5 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

166.2661
49.3213
37.3251
32.6086
28.4515
27.1132
26.8146
29.9702
31.2400

58.3750
41.0161
33.4032
29.0396
28.1295
27.0055
26.1092
28.2408
28.0932

64.89
16.84
10.51
10.94
1.13
0.40
2.63
5.77
10.07

F6 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

1.0062
0.4734
0.1560
31.8549
7.2958
5.525E-7
4.142E-4
0.0468
8.7948

0.3617
0.2259
0.0808
23.4847
2.7135
7.701E-9
1.089E-5
0.0318
0.0606

64.05
52.28
48.21
26.28
62.81
98.61
97.37
32.05
99.31
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TABLE 9. Statistical results of 30 runs obtained by HGA and DGA using
different crossover methods in the case of the benchmark functions F7 -
F12

Test Global Crossover Avg.val. Avg.val. I [%]
fnction minimum operator HGA DGA

F7 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

0.4118
0.2595
0.0484
0.0139
4.128E-7
3.552E-13
9.314E-9
0.0142
0.0091

0.0892
0.0482
0.0215
2.909E-4
2.395E-8
3.455E-15
3.737E-11
1.725E-5
3.447E-7

78.34
81.43
55.58
97.91
94.20
99.03
99.60
99.88
100

F8 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

241
142
16
6
0
0
0
2
1

61
25
11
1
0
0
0
0
0

74.69
82.39
31.25
83.33
-
-
-
100
100

F9 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

0.4748
0.2532
0.0252
0.0069
1.563E-4
2.329E-12
5.137E-8
0.0019
0.0052

0.1244
0.0470
0.0102
5.402E-4
5.524E-6
2.491E-15
9.877E-10
2.999E-5
1.435E-6

73.80
81.44
59.52
92.17
96.47
99.89
98.08
98.42
99.97

F10 0∗

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

0.0486
0.0363
0.0614
0.0167
0.0172
0.0166
0.0397
0.0084
0.0208

0.0180
0.0125
0.0301
0.0045
6.829E-4
6.627E-5
0.0027
9.544E-5
3.732E-3

62.96
65.56
50.98
73.05
96.03
99.60
93.12
98.86
82.06

F11 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

117.866
16.5189
8.5718
1736.887
1503.256
1.0032
1.0008
40.8264
425.9237

27.6948
6.8158
6.9793
1346.093
910.252
0.8962
0.9631
12.6860
106.3197

76.50
58.74
18.58
22.50
39.45
10.67
3.77
68.93
75.04

F12 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

210.9759
75.1921
2.8886
1.8930
0.5172
0.5006
0.5003
1.0869
1.3621

10.8047
6.1684
1.712
0.6471
0.5016
0.5000
0.5000
0.5076
0.5115

94.88
91.80
40.73
95.82
3.02
0.12
0.06
53.30
62.45
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TABLE 10. Statistical results of 30 runs obtained by HGA and DGA using
different crossover methods in the case of the benchmark functions F13 -
F17

Test Global Crossover Avg.val. Avg.val. I [%]
fnction minimum operator HGA DGA

F13 -1

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

-0.1116
-0.2039
-0.0535
-0.3441
-0.1918
-0.2957
-0.2142
-0.0942
-0.1228

-0.4535
-0.4645
-0.3349
-0.4516
-0.6595
-0.7096
-0.6988
-0.5875
-0.6984

38.48
32.73
29.73
16.39
57.87
58.77
61.67
54.46
65.62

F14 0.9

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

1.0806
1.0318
1.0024
4.3330
0.9098
0.9199
1.0172
1.3559
1.2365

1.0462
1.0031
1.0007
1.7297
0.9008
0.9
0.9985
0.9019
1.0322

3.18
2.78
0.17
60.08
0.99
2.16
1.84
33.48
16.52

F15 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

0.1912
0.0469
0.0062
1.339E-6
6.521E-11
3.353E-27
1.073E-16
7.291E-9
1.815E-10

0.0093
0.0078
3.234E-4
1.041E-8
3.767E-12
7.689E-29
1.418E-18
7.413E-11
1.559E-11

95.14
83.37
94.78
99.22
94.22
97.71
98.68
98.68
91.41

F16 −γ

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

1.1903
-4.0438
-4.0319
-0.5362
-1.5249
-1.3541
-1.6511
-1.0381
-0.1564

-3.6484
-4.5941
-4.8226
-3.8226
-1.6146
-1.4326
-1.7223
-1.7415
-0.683

78.17
57.55
81.68
73.62
2.58
2.15
2.13
17.75
10.87

F17 0

SX
TPX
UX
AX
BLX-0
BLX-0.3
BLX-0.5
MMAX
LX

7.2356
4.1252
1.3265
1.0233
0.9523
0.1245
0.2322
0.8526
0.4125

2.6254
0.2569
0.2422
0.2588
0.0624
0.0124
0.1022
0.0414
0.1203

63.72
93.77
81.74
74.71
93.45
90.04
55.99
95.14
70.84

5. CONCLUSIONS AND FURTHER RESEARCH

The article makes a comprehensive comparison between haploid genetic algorithms
(HGA) and diploid genetic algorithms (DGA). We investigated both representations from
all perspective, to make sure that no specific configuration aspect influences the results.
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The research follows a strict methodology and attempts to investigate: (1) the qual-
ity of the achieved results; (2) the necessary computational times in order to achieve the
solutions; (3) the impact of the genetic operators on the quality of the results.

We concluded that the quality of the results achieved by running DGA is definitely bet-
ter than those obtained in the case of conventional GAs (HGA). On the other hand HGA
is faster than DGA. However, comparing the quality of the results and the search time,
the balance is in favour of DGA, meaning that, although the number of chromosomes is
double, the execution time is is less than double, comparing with HGA.

We have proven that DGA is always better than HGA, independent of the genetic op-
erators. The reason for the better performance of DGA is given by a more thorough search
of the space. The best individuals do not have enough power to draw the population in
local optima, which are avoided this way.

We have proven that DGA is always better than HGA in terms of the quality of the
achieved results, independent of the genetic operators or the problem in stake. The rea-
son for achieving a better performance is based on a better exploration of the space and
thus by a more thorough search of it. This yields from the considered phenotype of the
individual, which was chosen as the average of the two chromosomes, assuring an even
influence of the two chromosomes on the survival chances of the individual.

The diploid population is more compact, its amplitude is lower and the number of
chromosomes is double, which leads to a exploration of the solution space more thor-
oughly. The best individuals do not have enough power to draw the population to local
optima, which are avoided this way.

Based on the fascinating results achieved by the diploid genetic algorithms and pre-
sented in this paper, in the near future we plan to investigate the following research di-
rections:

(1) the use of DGAs for solving different complex optimization problems;
(2) to explore and compare poly-ploid genetic algorithms against DGAs and HGAs;
(3) to investigate different ways of defining the phenotype of the DGA.
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