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Levitin−Polyak Well-Posedness for Parametric Set
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ABSTRACT. The aim of this paper is to introduce two notions of Levitin−Polyak (LP in short) well-posedness
for a parametric set optimization problem, a pointwise and a global notion. Necessary and sufficient conditions
for a parametric set optimization problem to be LP well-posed are given. Characterizations of LP well-posedness
for a parametric set optimization problem in terms of upper Hausdorff convergence and Painlevé−Kuratowski
convergence of sequences of approximate solution sets are also established.

1. INTRODUCTION

In recent years, many authors have worked on set optimization problems. The rea-
son for this popularity is their applications in areas like game theory, mathematical eco-
nomics, fuzzy optimization and many more; see [15] and references therein.

Kuroiwa [20, 21] proposed various set order relations for comparison of sets to define
notions of minimal solution of a set optimization problem. For details, we refer the reader
to the survey paper [2]. The study of the solution sets of a perturbed set optimization
problem, perturbed with respect to the feasible set or the objective set-valued map is a
fast growing topic and is studied under stability theory. Various authors have studied
stability theory of a perturbed set optimization problem in different directions.

Xu and Li [29] derived the upper, lower semicontinuity and closedness of the minimal
solution and weak minimal solution set mappings to a parametric set optimization prob-
lem under some strong assumptions. Later, Xu and Li in [30] weakened and modified the
assumptions of [29] to study the continuity of the minimal solution set map to parametric
set optimization problem. Karuna and Lalitha [14] studied stability in terms of Hausdorff
and Painlevé−Kuratowski convergence of minimal and weak minimal solution sets in set
optimization problems by perturbing the feasible set. Han and Huang [12] derived the
Hausdorff upper semicontinuity of the minimal solution mapping to a parametric set op-
timization problem with perturbed feasible set map. Khoshkhabar-amiranloo [17] stud-
ied stability of the minimal solution mappings of parametric set optimization problems
in terms of semi-continuity and compactness. Preechasilp and Wangkeeree [27] studied
stability in terms of upper semicontinuity, lower semicontinuity, and closedness of the
solution mapping to a parametric set optimization problem. Zhang and Huang [31] ob-
tained the upper semi-continuity, lower semi-continuity and compactness of relaxed min-
imal and minimal solution mappings for parametric set optimization problems.

Well-posedness of optimization problems plays an important role in the study of the
stability theory. Many authors have studied the well-posedness for set optimization prob-
lems under different conditions. In [32], the authors studied three types of well-posedness
for set optimization problems with cone-bounded objective function values. Gutiérrez et
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al. [11] improved some results in [32] to obtain the well-posedness of set optimization
problems, by relaxing the condition of cone-boundedness of the objective function val-
ues. Crespi et al. [5] obtained a notion of global well-posedness for set-optimization
problems by generalizing one of the notions of global well-posedness in [32]. Dhingra
and Lalitha [6] studied a notion of well-setness for set optimization problem using the
excess function. Crespi et al. [4] obtained some characterizations for pointwise and global
well-posedness in set optimization in terms of compactness and upper semicontinuity of
solution set map.

Khoshkhabar-amiranloo and Khorram [18] studied LP well-posedness [24] for set op-
timization problems. They introduced global notions of metrically well-setness and met-
rically LP well-setness for set optimization problems and the pointwise notions of LP
well-posedness for set optimization problems. They also obtained scalar characterizations
of LP well-posedness and metrically well-setness of a set optimization problem using a
scalarization function in terms of well-posedness and metrically well-setness of a corre-
sponding scalar optimization problem, respectively. Khoshkhabar-amiranloo [16] derived
characterizations of generalized LP well-posedness of set optimization problem in terms
of the upper Hausdorff convergence and Painlevé−Kuratowski convergence of sequences
of sets of approximate solutions. Vui et al. [28] introduced different types of notions of
LP well-posedness for set optimization problems using three types of set order relations.
They also established characterizations of these notions using the Kuratowski measure of
noncompactness. Recently, Ansari et al. [1] studied different notions of LP well-posedness
for set optimization problem. They obtained characterizations LP well-posedness for set
optimization problems using the Kuratowski measure of noncompactness. They also es-
tablished the relationship between stability and LP well-posedness for set optimization
problem. In [10], Gupta and Srivastava introduced a notion of LP well-posedness for set
optimization problem and established its characterizations in terms of Hausdorff upper
semicontinuity and compactness of an approximate solution map. Duy [8] studied vari-
ous notions of LP well-posedness for set optimization problem with respect to the upper
set less order relation, established relationships between them and gave sufficient condi-
tions for them.

Well-posedness for perturbed optimization problems has been studied by various au-
thors. Zolezzi [33, 34] introduced the notion of parametric well-posedness by embedding
the original optimization problem in a family of perturbed optimization problems. Lig-
nola and Morgan [25] studied parametric well-posedness for a family of variational in-
equalities. Lalitha and Bhatia [23] introduced the notion of well-posedness for parametric
quasivariational inequality problems with set-valued maps. In [22], the authors studied
LP well-posedness for parametric quasivariational inequality problem.

Motivated by these papers, we study LP well-posedness for parametric set optimiza-
tion problem. In this paper, we introduce a pointwise and a global notion of LP well-
posedness for parametric set optimization problem and obtain necessary and sufficient
conditions for a parametric set optimization problem to be LP well-posed. We also estab-
lish upper Hausdorff convergence and Painlevé−Kuratowski convergence of sequences
of approximate solution sets of a LP well-posed parametric set optimization problem.

The rest of the paper is organized as follows. In Section 2, we recall some prelimi-
naries required in the sequel. In Section 3, we introduce a pointwise notion of LP well-
posedness for parametric set optimization problem. We give Dontchev−Zolezzi measure
and Furi−Vignoli measure for pointwise LP well-posed parametric set optimization prob-
lem. We then establish upper Hausdorff convergence and Painlevé−Kuratowski conver-
gence of sequences of approximate solution sets for a pointwise LP well-posed parametric
set optimization problem. In Section 4, we define a global notion of LP well-posedness
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for parametric set optimization problem. We give necessary and sufficient conditions for
global LP well-posed parametric set optimization problem. We also establish relation-
ship between pointwise LP well-posedness and global LP well-posedness notions. We
then establish upper Hausdorff convergence and Painlevé−Kuratowski convergence of
sequences of approximate solution set maps for a global LP well-posed parametric set
optimization problem.

2. PRELIMINARIES

Let Y be a real normed linear space and let K be a closed convex pointed cone with
nonempty interior. Let K induce the following order relations in Y, for y1, y2 ∈ Y, we
have

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K,

y1 <K y2 ⇐⇒ y2 − y1 ∈ intK,

where intK denotes the interior of K.
Let P[Y ] denote the collection of all nonempty subsets of Y and Ac denote the comple-

ment of a set A in Y. We recall the following set order relations from [19], if A,B ∈ P[Y ]

A ≤l
K B ⇐⇒ B ⊆ A+K

and
A <l

K B ⇐⇒ B ⊆ A+ intK.

Let X be a real normed linear space. We denote the open and closed ball in X centered
at origin and radius r with r > 0 by BX(r) and BX [r] respectively and diameter of a set
A ⊆ X by diamA := sup{∥x− y∥ : x, y ∈ A}.

For two nonempty sets U and W of X, the excess function of U over W, denoted by
ex(U,W ) is defined as

ex(U,W ) := sup
u∈U

d(u,W ), where d(u,W ) := inf
w∈W

∥u− w∥.

For a sequence of sets {Un} ⊆ X , the sequence {Un} converges to a set U in X, in the
sense of upper Hausdorff set convergence if

ex(Un, U) → 0 as n → ∞.

We now recall the notion of Painlevé−Kuratowski convergence (Definition 2.1, [9]). For
a sequence of sets {Un} in X, we have

Li Un := {x ∈ X : xn → x, xn ∈ Un, for sufficiently large n},

Ls Un := {x ∈ X : xnm
→ x, xnm

∈ Unm
, {nm} is an increasing sequence of integers}.

The sequence {Un} converges to a set U in the sense of Painlevé−Kuratowski, if

Ls Un ⊆ U ⊆ Li Un.

The relation Ls Un ⊆ U is known as the upper part of the convergence and the relation
U ⊆ Li Un is known as the lower part of the convergence.

We now recall the notions of upper continuous, lower continuous, continuous and com-
pact set-valued map from [15]. For the sake of convenience, we refer the notions of upper
continuous and lower continuous as upper semicontinuous and lower semicontinuous.

Definition 2.1. (Definition 3.1.1 and Definition 3.1.7, [15]) Let G : X ⇒ Y be a set-valued
map. Then G is

(i) upper semicontinuous at x̄ ∈ X if for every open set W in Y containing G(x̄),
there exists a neighbourhood V of x̄ such that G(x) ⊆ W for all x ∈ V .
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(ii) lower semicontinuous at x̄ ∈ X if for every open set W in Y with G(x̄) ∩W ̸= ∅,
there exists a neighbourhood V of x̄ such that G(x) ∩W ̸= ∅ for all x ∈ V .

(iii) continuous at x̄ ∈ X if it is both upper semicontinuous and lower semicontinuous
at x̄.

(iv) compact at x̄ ∈ X if for every sequence {xn} and yn ∈ G(xn), with xn → x̄, there
exists a subsequence {ynk

} of {yn} such that ynk
→ ȳ ∈ G(x̄).

The map G is said to be upper semicontinuous (lower semicontinuous, continuous,
compact) on a subset U of X if G is upper semicontinuous (lower semicontinuous, con-
tinuous, compact) at every point x̄ ∈ U .

In this paper, we require the following characterization of upper and lower semiconti-
nuity.

Lemma 2.1. Let G : X ⇒ Y be a set valued mapping.
(i) (Proposition 3.1.6, [15]) G is lower semicontinuous at x̄ ∈ X if and only if for every

sequence {xn} in X with xn → x̄ and for any ȳ ∈ G(x̄), there exist yn ∈ G(xn) such
that yn → ȳ.

(ii) (Proposition 3.1.5, [15]) If G(x̄) is compact, then G is upper semicontinuous at x̄ if and
only if for any sequence {xn} in X with xn → x̄ and for any yn ∈ G(xn), there exist
ȳ ∈ G(x̄) and a subsequence {ynk

} of yn such that ynk
→ ȳ.

Let Z be a normed space and T be a nonempty subset of Z. The parametric set opti-
mization problem corresponding to a parameter t ∈ T is defined as follows:

(P(t)) Min F (x, t)

subject to x ∈ M(t),

where M : T ⇒ X and F : X×T ⇒ Y. We assume M(t) ̸= ∅, compact set and F (x, t) ̸= ∅,
for every t ∈ T and x ∈ M(t).

A point x̄ ∈ M(t) is said to be an l-weak minimal solution of (P(t)) if, for any x ∈
M(t) such that F (x, t) <l

K F (x̄, t) ⇒ F (x̄, t) <l
K F (x, t). We denote the set of all l-weak

minimal solutions of the problem (P(t)) by l-WMin(F, t).

3. POINTWISE LP WELL-POSEDNESS

In this section we introduce a notion of pointwise LP well-posedness for parametric
set optimization problem (P(t)). Throughout the paper, we assume e to be a fixed element
of intK.

Definition 3.2. Let t̄ ∈ T and {tn} be a sequence in T such that tn → t̄ . Let x̄ ∈
l-WMin(F, t̄ ). A sequence {xn} in X is said to be a pointwise LP minimizing sequence at
x̄ for (P(t̄ )) corresponding to {tn} if there exist εn ↓ 0, xn ∈ M(tn) + BX [εn] such that

F (xn, tn) ≤l
K F (x̄, tn) + εne, ∀n.

Definition 3.3. Let t̄ ∈ T, x̄ ∈ l-WMin(F, t̄ ). (P(t̄ )) is said to be pointwise LP well-posed at
x̄, if for any sequence {tn} in T converging to t̄ , every pointwise LP minimizing sequence
at x̄ for (P(t̄ )) corresponding to {tn} converges to x̄.

Remark 3.1. Definition 3.2 and Definition 3.3 extend Definition 2.6 (iii) and Definition
2.7(iii) of [16] respectively to the case of a parametric set optimization problem. In [16],
the author defined these notions for l-minimal solutions of the set optimization problem.

The following example illustrates Definition 3.3.
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Example 3.1. Consider parametric set optimization problem, where X = R, Y = R2,
K = R2

+, Z = R, T = [0, 1], e = (1, 1) and M : T ⇒ X is defined as

M(t) := [−t, 1 + t]

and F : X × T ⇒ Y is defined as

F (x, t) :=


[(x, x), (x, 2)], if 0 ≤ x ≤ 1, t = 0,

{(1, 1)}, if x < 0 or x > 1, t = 0,

{(t, t)}, if t ̸= 0.

Let t̄ = 0. Then l-WMin(F, t̄) = {0}. Clearly, (P(t̄ )) is pointwise LP well-posed at
x̄ ∈ l-WMin(F, t̄ ) where x̄ = 0.

Now, let t′ = 1. Then l-WMin(F, t′) = M(t′) = [−1, 2]. Clearly, (P(t′)) is not point-
wise LP well-posed at x′ = 1, since the sequence {x′

n} where x′
n = 1

n , is a pointwise LP
minimizing sequence at x′ = 1 corresponding to any t′n → t′ but x′

n → 0 ̸= x′.

Let x̄ ∈ X, then we define the approximate solution set map, Se(x̄, ·, ·) : {x̄}×T×R+ ⇒
X as

Se(x̄, t, ε) := {x ∈ X : x ∈ M(t) + BX [ε], F (x, t) ≤l
K F (x̄, t) + εe}.

We observe that if tn → t̄ and {xn} is a pointwise LP minimizing sequence at
x̄ ∈ l-WMin(F, t̄ ), then xn ∈ Se(x̄, tn, εn), for every n where {εn} is a sequence such that
εn ↓ 0.

We now give some properties of the map Se(x̄, ·, ·).

Proposition 3.1. Let t ∈ T and x̄ ∈ l-WMin(F, t). Then the following conditions hold:
(i) x̄ ∈ Se(x̄, t, ε), for every ε ≥ 0.

(ii) If ε1 ≤ ε2, then Se(x̄, t, ε1) ⊆ Se(x̄, t, ε2).
(iii)

⋂
ε>0

Se(x̄, t, ε) = Se(x̄, t, 0), if F is compact-valued on M(t)× {t}.

(iv)
⋃

x̄∈l-WMin(F, t)

Se(x̄, t, 0) = l-WMin(F, t).

Proof. (i) Let ε ≥ 0. Then F (x̄, t) + εe ⊆ F (x̄, t) +K, which implies x̄ ∈ Se(x̄, t, ε).
(ii) Let ε1 ≤ ε2 and x ∈ Se(x̄, t, ε1), then x ∈ M(t) + BX [ε1] and F (x̄, t) + ε1e ⊆

F (x, t) +K. Since ε1 ≤ ε2, thus F (x, t) ≤l
K F (x̄, t) + ε2e and x ∈ M(t) + BX [ε2].

(iii) Let x ∈
⋂
ε>0

Se(x̄, t, ε). Then for every ε > 0, we have

x ∈ M(t) + BX [ε], F (x̄, t) + εe ⊆ F (x, t) +K.(3.1)

As F is compact-valued on M(t)× {t}, therefore, taking ε → 0 in (3.1), we obtain

x ∈ M(t), F (x̄, t) ⊆ F (x, t) +K,

which implies
x ∈ Se(x̄, t, 0).

Conversely, suppose x ∈ Se(x̄, t, 0), then by (ii) it follows that x ∈ Se(x̄, t, ε),
for every ε > 0. Therefore, x ∈

⋂
ε>0

Se(x̄, t, ε).

(iv) Let x̄ ∈ l-WMin(F, t), then x̄ ∈ Se(x̄, t, 0). Therefore x̄ ∈
⋃

x̄∈l-WMin(F, t)

Se(x̄, t, 0).

Conversely, let x ∈
⋃

x̄∈l-WMin(F, t)

Se(x̄, t, 0). Then x ∈ Se(x̄, t, 0), for some x̄ ∈

l-WMin(F, t), which implies

x ∈ M(t) and F (x, t) ≤l
K F (x̄, t).(3.2)
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Let x1 ∈ M(t) be such that F (x1, t) <
l
K F (x, t), then using (3.2), we have

F (x̄, t) ⊆ F (x, t) +K ⊆ F (x1, t) + intK +K,

which implies
F (x1, t) <

l
K F (x̄, t).

As x̄ ∈ l-WMin(F, t), therefore F (x̄, t) <l
K F (x1, t). Using (3.2), we obtain F (x, t) <l

K

F (x1, t) and hence x ∈ l-WMin(F, t).
□

We now give sufficient conditions for the approximate solution set to be closed.

Theorem 3.1. Let t ∈ T, M(t) be a compact set and x̄ ∈ l-WMin(F, t). If F (·, t) is upper
semicontinuous and compact-valued on X, then for every ε ≥ 0, Se(x̄, t, ε) is closed.

Proof. Let ε ≥ 0 and {xn} be a sequence such that xn ∈ Se(x̄, t, ε), for every n and xn → x′.
Since xn ∈ Se(x̄, t, ε), therefore xn ∈ M(t) + BX [ε] and

F (xn, t) ≤l
K F (x̄, t) + εe,

that is
F (x̄, t) + εe ⊆ F (xn, t) +K, ∀n.

For each ȳ ∈ F (x̄, t), there exists yn ∈ F (xn, t) such that

ȳ + εe− yn ∈ K.(3.3)

Now F (x′, t) is compact and F (·, t) is upper semicontinuous at x′. Since xn → x′ and
yn ∈ F (xn, t), therefore there exist y′ ∈ F (x′, t) and a subsequence {ynk

} of {yn} such that
ynk

→ y′. As K is closed, therefore (3.3) gives

ȳ + εe− y′ ∈ K,

which implies
F (x′, t) ≤l

K F (x̄, t) + εe

and hence
x′ ∈ Se(x̄, t, ε).

□

We now present Dontchev−Zolezzi measure (Proposition 36, [7]) for pointwise LP
well-posed problem.

Theorem 3.2. Let t̄ ∈ T and x̄ ∈ l-WMin(F, t̄ ).
(i) If (P(t̄ )) is pointwise LP well-posed at x̄, then Se(x̄, ·, ·) is upper semicontinuous at (t̄ , 0).

(ii) If Se(x̄, t̄ , 0) = {x̄} and Se(x̄, ·, ·) is upper semicontinuous at (t̄ , 0) then (P(t̄ )) is point-
wise LP well-posed at x̄.

Proof. (i) Suppose on the contrary Se(x̄, ·, ·) is not upper semicontinuous at (t̄ , 0).
Then there exist an open set W containing Se(x̄, t̄ , 0) and sequences tn → t̄ and
εn ↓ 0 such that

Se(x̄, tn , εn) ⊈ W.(3.4)

Thus there exists a sequence {xn} such that xn ∈ Se(x̄, tn, εn) but xn /∈ W . Clearly,
{xn} is a pointwise LP minimizing sequence at x̄ for (P(t̄ )) corresponding to {tn}.
Since (P(t̄ )) is pointwise LP well-posed at x̄, therefore xn → x̄ ∈ Se(x̄, t̄ , 0) ⊆ W ,
which contradicts (3.4).
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(ii) Let {tn} be a sequence in T such that tn → t̄ and {xn} be a pointwise LP minimiz-
ing sequence at x̄ for (P(t̄ )) corresponding to {tn}. Then there exists εn ↓ 0 such
that xn ∈ Se(x̄, tn, εn). As Se(x̄, ·, ·) is upper semicontinuous at (t̄ , 0), therefore
for every neighbourhood V of 0, there exists n0 ∈ N such that

Se(x̄, tn, εn) ⊆ Se(x̄, t̄ , 0) + V, for every n ≥ n0.

Since Se(x̄, t̄ , 0) = {x̄}, we have xn → x̄. Hence, (P(t̄ )) is pointwise LP well-posed
at x̄.

□

Remark 3.2. (i) The above result extends Proposition 2.1 of [34].
(ii) The condition Se(x̄, t̄ , 0) = {x̄} cannot be dropped in Theorem 3.2(ii). In Example 3.1,

it can be seen that for t̄ = 1, l-WMin(F, t̄) = [−1, 2] and for x̄ = 1 and e = (1, 1),
Se(x̄, t̄ , 0) = M(t̄) = [−1, 2] ̸= {x̄} and Se(x̄, ·, ·) is upper semicontinuous at (t̄ , 0)
but (P(t̄)) is not pointwise LP well-posed at x̄.

We now give Furi−Vignoli measure (Page 21, [7]) for pointwise LP well-posed prob-
lem.

Theorem 3.3. Let t̄ ∈ T and x̄ ∈ l-WMin(F, t̄ ). Then (P(t̄ )) is pointwise LP well-posed at x̄ if
and only if diamSe(x̄, t, ε) → 0 as (t, ε) → (t̄ , 0).

Proof. Suppose (P(t̄ )) is pointwise LP well-posed at x̄ and diamSe(x̄, t, ε) ↛ 0 as (t, ε) →
(t̄ , 0). Then there exist tn → t̄ , εn ↓ 0 and δ > 0 such that

diamSe(x̄, tn, εn) > δ, ∀n.

Thus, there exist un, xn ∈ Se(x̄, tn, εn) such that

d(un, xn) > δ, ∀n.(3.5)

Clearly, {un} and {xn} are pointwise LP minimizing sequences at x̄ for (P(t̄ )) corre-
sponding to {tn}. Since (P(t̄ )) is pointwise LP well-posed at x̄, therefore un → x̄ and
xn → x̄. Therefore d(un, xn) → 0, which contradicts (3.5). Hence, diamSe(x̄, t, ε) → 0 as
(t, ε) → (t̄ , 0).

Conversely, let {tn} be a sequence in T such that tn → t̄ and {xn} be a pointwise LP
minimizing sequence at x̄ for (P(t̄ )) corresponding to {tn}. Then there exist εn ↓ 0 such
that xn ∈ Se(x̄, tn, εn), for every n. Also x̄ ∈ Se(x̄, tn, εn), for every n. If xn ↛ x̄, then
∃ δ > 0 and a subsequence {xnk

} of {xn} such that

d(xnk
, x̄) ≥ δ, for every k,

hence
diamSe(x̄, tnk

, εnk
) ≥ δ > 0, for every k,

which is a contradiction to the fact that diamSe(x̄, tn, εn) → 0 as tn → t̄ and εn → 0.
Therefore xn → x̄ and hence (P(t̄ )) is pointwise LP well-posed at x̄. □

We again consider Example 3.1. It may be verified that Se(x̄, t, ε) = [0, ε] for x̄ = 0,
ε > 0 and t ̸= 1. Therefore, diamSe(x̄, t, ε) → 0 as t → 0 and ε → 0. Hence, by above
theorem, (P(0)) is pointwise LP well-posed at x̄ = 0.

The next two theorems give necessary conditions for pointwise LP well-posedness.
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Theorem 3.4. If t̄ ∈ T, x̄ ∈ l-WMin(F, t̄ ), (P(t̄ )) is pointwise LP well-posed at x̄ and F is
compact at (x̄, t̄ ). Then for any tn → t̄ and any pointwise LP minimizing sequence {xn} at x̄ for
(P(t̄ )) corresponding to {tn}, we have

ex(F (xn, tn), F (l-WMin(F, t̄ ), t̄)) → 0.

Proof. Let tn ∈ T be such that tn → t̄ and {xn} be a pointwise LP minimizing sequence at
x̄ ∈ l-WMin(F, t̄ ) for (P(t̄ )) corresponding to {tn}. Since (P(t̄ )) is pointwise LP well-posed
at x̄, therefore xn → x̄. On the contrary, suppose

ex(F (xn, tn), F (l-WMin(F, t̄ ), t̄)) ↛ 0.

Then there exists δ > 0 and a subsequence {xnk
} of {xn} such that

F (xnk
, tnk

) ⊈ F (l-WMin(F, t̄ ), t̄) + BY (δ), ∀ k,

where BY (δ) is open ball in Y with center at origin and radius δ. Thus for every k, there
exists vnk

∈ F (xnk
, tnk

) such that

vnk
/∈ F (l-WMin(F, t̄ ), t̄) + BY (δ)

which implies

vnk
∈ [F (l-WMin(F, t̄ ), t̄) + BY (δ)]

c.(3.6)

Now, vnk
∈ F (xnk

, tnk
) with (xnk

, tnk
) → (x̄, t̄ ) and F is compact at (x̄, t̄ ), therefore there

exists a subsequence {vnkl
} of {vnk

} such that vnkl
→ v̄ ∈ F (x̄, t̄ ). Using (3.6), we have

v̄ ∈ [F (l-WMin(F, t̄ ), t̄) + BY (δ)]
c,

which is a contradiction as v̄ ∈ F (x̄, t̄ ) ⊆ F (l-WMin(F, t̄ ), t̄). □

Next results give characterizations of pointwise LP well-posedness in terms of upper
Hausdorff convergence of sequences of approximate solution sets.

Theorem 3.5. If t̄ ∈ T, x̄ ∈ l-WMin(F, t̄ ) and (P(t̄ )) is pointwise LP well-posed at x̄, {tn}
is a sequence in T with tn → t̄ and {εn} is a sequence of real numbers such that εn ↓ 0, then
ex(Se(x̄, tn, εn), S

e(x̄, t̄ , 0)) → 0.

Proof. Let t̄ ∈ T and x̄ ∈ l-WMin(F, t̄ ). Let {tn} be a sequence in T such that tn → t̄ and
{εn} be a sequence of real numbers such that εn ↓ 0. If possible, suppose

ex(Se(x̄, tn, εn), S
e(x̄, t̄ , 0)) ↛ 0.

Then there exists a δ > 0 and subsequences {tnk
} of {tn} and {εnk

} of {εn} such that

Se(x̄, tnk
, εnk

) ⊈ Se(x̄, t̄ , 0) + BX(δ), ∀ k.

Then, for each k, there exists xnk
∈ Se(x̄, tnk

, εnk
) such that

xnk
/∈ Se(x̄, t̄ , 0) + BX(δ).(3.7)

Clearly, {xnk
} is a pointwise LP minimizing sequence at x̄ for (P(t̄ )) corresponding to

{tnk
}. Thus xnk

→ x̄, which contradicts (3.7) as x̄ ∈ Se(x̄, t̄ , 0). □

Theorem 3.6. If t̄ ∈ T, x̄ ∈ l-WMin(F, t̄), Se(x̄, t̄ , 0) is compact and for every sequence {tn}
in T such that tn → t̄ and every sequence of real numbers {εn} such that εn ↓ 0,

ex(Se(x̄, tn, εn), S
e(x̄, t̄, 0)) → 0,

then Se(x̄, ·, ·) is upper semicontinuous at (t̄ , 0).
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Proof. Let t̄ ∈ T and x̄ ∈ l-WMin(F, t̄ )). If Se(x̄, ·, ·) is not upper semicontinuous at (t̄ , 0),
then there exist a δ > 0, a sequence {tn} in T with tn → t̄ and a sequence {εn}, εn ↓ 0
such that

Se(x̄, tn, εn) ⊈ Se(x̄, t̄ , 0) + BX(δ), ∀n,
which implies for each n, there exists xn ∈ Se(x̄, tn, εn) such that

xn /∈ Se(x̄, t̄ , 0) + BX(δ).

This is a contradiction to the fact that ex(Se(x̄, tn, εn), S
e(x̄, t̄ , 0)) → 0. □

Using Theorem 3.2(ii) we have the following corollary.

Corollary 3.1. If t̄ ∈ T, x̄ ∈ l-WMin(F, t̄ ), Se(x̄, t̄ , 0)={x̄} and ex(Se(x̄, tn, εn), Se(x̄, t̄ , 0))
→ 0, for every sequence {tn} in T with tn → t̄ and every sequence of real numbers {εn} such
that εn ↓ 0, then (P(t̄ )) is pointwise LP well-posed at x̄.

Next two theorems give characterizations of pointwise LP well-posedness in terms of
the Painlevé−Kuratowski convergence of sequences of approximate solution sets.

Theorem 3.7. Let t̄ ∈ T, x̄ ∈ l-WMin(F, t̄ ) and (P(t̄ )) be pointwise LP well-posed at x̄. If {tn}
is a sequence in T such that tn → t̄ and {εn} is a sequence of real numbers such that εn ↓ 0. Then

Ls Se(x̄, tn, εn) ⊆ Se(x̄, t̄ , 0).

Proof. Let {tn} be a sequence in T such that tn → t̄ , {εn} be a sequence of real numbers
such that εn ↓ 0 and let x ∈ Ls Se(x̄, tn, εn). Then there exists a subsequence {xnk

} such
that xnk

∈ Se(x̄, tnk
, εnk

) and xnk
→ x, where {tnk

} is a subsequence of {tn} and {εnk
}

is a subsequence of {εn}. Therefore, {xnk
} is a pointwise LP minimizing sequence at x̄

for (P(t̄ )) corresponding to {tn}. Also, (P(t̄ )) is pointwise LP well-posed at x̄, therefore
xnk

→ x̄, which together with the fact that xnk
→ x implies that x ∈ Se(x̄, t̄ , 0). Hence

Ls Se(x̄, tn, εn) ⊆ Se(x̄, t̄ , 0).

□

Theorem 3.8. Let t̄ ∈ T, x̄ ∈ l-WMin(F, t̄ ) and (P(t̄ )) be pointwise LP well-posed at x̄. If {tn}
is a sequence in T such that tn → t̄ and {εn} is a sequence of real numbers such that εn ↓ 0 and
Se(x̄, t̄ , 0) is singleton set. Then

Se(x̄, t̄ , 0) ⊆ Li Se(x̄, tn, εn).

Proof. Since Se(x̄, t̄ , 0) is singleton, therefore Se(x̄, t̄ , 0) = {x̄}. Let {tn} be a sequence
in T such that tn → t̄ and {εn} be a sequence of real numbers such that εn ↓ 0 and
let xn ∈ Se(x̄, tn, εn), then {xn} is a pointwise LP minimizing sequence at x̄ for (P(t̄ ))
corresponding to {tn}. Therefore xn → x̄ and hence Se(x̄, t̄ , 0) ⊆ Li Se(x̄, tn, εn). □

4. GLOBAL LP WELL-POSEDNESS

In this section we introduce a notion of global LP well-posedness for parametric set
optimization problem (P(t)).

Definition 4.4. Let t̄ ∈ T and {tn} be a sequence in T such that tn → t̄ . A sequence {xn}
in X is said to be a global LP minimizing sequence for (P(t̄ )) corresponding to {tn}, if
there exist εn ↓ 0, xn ∈ M(tn) + BX [εn], un ∈ l-WMin(F, tn) such that

F (xn, tn) ≤l
K F (un, tn) + εne, ∀n.
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Definition 4.5. Let t̄ ∈ T . (P(t̄ )) is said to be globally LP well-posed, if for any sequence
{tn} in T converging to t̄ and every global LP minimizing sequence {xn} corresponding
to {tn}, there exists a subsequence {xnk

} of {xn} and x̄ ∈ l-WMin(F, t̄ ) such that xnk
→ x̄.

Remark 4.3. (i) Let t̄ ∈ T. If (P(t̄ )) is pointwise LP well-posed at x̄ ∈ l-WMin(F, t̄ )
and l-WMin(F, t̄ ) is singleton, then (P(t̄ )) is globally LP well-posed.

(ii) Definition 4.4 and Definition 4.5 extend Definition 2.6(iv) and Definition 2.7(iv) of
[16] respectively to the case of a parametric set optimization problem. In [16], the
author introduced the notion of generalized Levitin−Polyak well-posedness for
l-minimal solutions of the set optimization problem.

(iii) Definition 4.4 and Definition 4.5 also extend Definition 3.1 and Definition 3.2 of [3]
respectively. In [3], authors defined the notion of LP well-posed vector optimiza-
tion problem using weak efficient solutions of a vector optimization problem.

The following example illustrates Definition 4.5.

Example 4.2. Consider parametric set optimization problem, where X = R, Y = R2,
K = R2

+, Z = R, T = [0, 1], e = (1, 1) and M : T ⇒ X is defined as

M(t) := [−1− t, 1 + t]

and F : X × T ⇒ Y is defined as

F (x, t) :=


[0, t]× [0, t], if 0 ≤ t < 1,

]0, 1]× ]0, 1], if x < 0, t = 1,

[0, 1]× [0, 1], if x ≥ 0, t = 1.

Let 0 ≤ t̄ < 1. Then l-WMin(F, t̄ ) = [−1− t̄ , 1+ t̄ ]. Then (P(t̄ )) is globally LP well-posed.
Let t′ = 1. Then l-WMin(F, t′) = [0, 2]. Clearly, xn = −1 − 1

n is a global LP minimizing
sequence for (P(t′)) and xn → −1 /∈ l-WMin(F, t′). Hence, (P(t′)) is not globally LP well-
posed.

Example 4.3. Consider parametric set optimization problem, where X = R, Y = R2,
K = R2

+, Z = R, T = [0, 1], e = (1, 1) and M : T ⇒ X is defined as

M(t) := [−1− t, 1 + t]

and F : X × T ⇒ Y is defined as

F (x, t) := [0, 1]× [0, 1], ∀ x, t.

Clearly, l-WMin(F, t) = [−1− t, 1+ t] and (P(t)) is globally LP well-posed for any t ∈ [0, 1]
but (P(t)) is not pointwise LP well-posed at any x̄ ∈ l-WMin(F, t). For instance, xn = 1+ 1

n
is a pointwise LP minimizing sequence at x̄ = 0 but xn ̸→ 0.

We define the approximate solution set map Se(·, ·) : T × R+ ⇒ X as

Se(t, ε) = {x ∈ X : x ∈ M(t)+BX [ε] and ∃ x̄ ∈ l-WMin(F, t) such that F (x, t) ≤l
K F (x̄, t)+εe}.

We observe that if t̄ ∈ T , {tn} ⊆ T such that tn → t̄ and {xn} is a global LP minimizing
sequence for (P(t̄ )) corresponding to {tn} then xn ∈ Se(tn, εn).

We now give some properties of the map Se(·, ·).

Proposition 4.2. Let t ∈ T. The following statements are true:
(i)

⋃
x̄∈l-WMin(F, t)

Se(x̄, t, ε) = Se(t, ε), ∀ ε ≥ 0.

(ii) l-WMin(F, t) ⊆ Se(t, ε), ∀ ε ≥ 0.
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(iii) Se(t, 0) = l-WMin(F, t).

Proof. (i) Let x̄ ∈ l-WMin(F, t) and let x ∈ Se(x̄, t, ε), then x ∈ M(t) + BX [ε] and
F (x, t) ≤l

K F (x̄, t) + εe. Thus, x ∈ Se(t, ε). Conversely, suppose x ∈ Se(t, ε), then
∃ x̄ ∈ l-WMin(F, t) such that x ∈ M(t) + BX [ε] and F (x, t) ≤l

K F (x̄, t) + εe. Thus
x ∈ Se(x̄, t, ε) and hence x ∈

⋃
x̄∈l-WMin(F,t)

Se(x̄, t, ε).

(ii) Let x̄ ∈ l-WMin(F, t) then x̄ ∈ Se(t, ε), ∀ ε ≥ 0.
(iii) Using (ii), we have l-WMin(F, t) ⊆ Se(t, 0). Let x ∈ Se(t, 0), then x ∈ M(t) and

there exists x̄ ∈ l-WMin(F, t) such that

F (x, t) ≤l
K F (x̄, t).(4.8)

Let x1 ∈ M(t) be such that F (x1, t) <
l
K F (x, t). As F (x, t) ⊆ F (x1, t) + intK, then

by using (4.8), we have

F (x̄, t) ⊆ F (x, t) +K ⊆ F (x1, t) + intK +K = F (x1, t) + intK,

which implies
F (x1, t) <

l
K F (x̄, t).

Now x̄ ∈ l-WMin(F, t), so F (x̄, t) <l
K F (x1, t). Using (4.8), we have F (x, t) <l

K

F (x1, t). Hence, x ∈ l-WMin(F, t).
□

We now give Dontchev−Zolezzi measure [7] for globally LP well-posed problem.

Theorem 4.9. Let t̄ ∈ T. (P(t̄ )) is globally LP well-posed if and only if Se(·, ·) is upper semicon-
tinuous at (t̄ , 0) and l-WMin(F, t̄ ) is compact.

Proof. Suppose Se(·, ·) is not upper semicontinuous at (t̄ , 0) then there exists an open set
W containing Se(t̄ , 0) and sequences tn → t̄ and εn ↓ 0 such that

Se(tn, εn) ⊈ W.(4.9)

Thus, there exists a sequence {xn} such that xn ∈ Se(tn, εn) and xn /∈ W . Clearly, {xn} is
a global LP minimizing sequence for (P(t̄ )) corresponding to {tn}. Since (P(t̄ )) is globally
LP well-posed, therefore there exists a subsequence {xnk

} of {xn} such that xnk
→ x̄ ∈

l-WMin(F, t̄ ). Thus x̄ ∈ l-WMin(F, t̄ ) = Se(t̄ , 0) ⊆ W, which is a contradiction. Hence
Se(·, ·) is upper semicontinuous at (t̄ , 0).

We now claim that l-WMin(F, t̄ ) is compact. Let {un} be a sequence in Se(t̄ , 0) =
l-WMin(F, t̄ ), then un ∈ M(t) and there exist wn ∈ l-WMin(F, t̄ ) such that

F (un, t̄ ) ≤l
K F (wn, t̄ ),

for every n. Thus, for every sequence {εn} such that εn ↓ 0 we have

F (un, t̄ ) ≤l
K F (wn, t̄ ) + εne,

which implies that un ∈ Se(t̄ , εn). Since (P(t̄ )) is globally LP well-posed, therefore there
exists a subsequence {unk

} of {un} such that unk
→ ū ∈ l-WMin(F, t̄ ). Hence, l-WMin(F, t̄ )

is compact.
Conversely, let {tn} be a sequence in T such that tn → t̄ and let {xn} be a global LP

minimizing sequence for (P(t̄ )) corresponding to {tn}, then there exist εn ↓ 0 such that
xn ∈ Se(tn, εn), for every n. Since Se(·, ·) is upper semicontinuous at (t̄ , 0), therefore for
every neighbourhood V of 0, there exists n0 ∈ N such that

xn ∈ Se(t̄ , 0) + V, ∀n ≥ n0,
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which implies d(xn, S
e(t̄ , 0)) → 0. Since l-WMin(F, t̄ ) = Se(t̄ , 0) is compact, there exists

a subsequence {xnk
} of {xn} such that xnk

→ x̄ ∈ l-WMin(F, t̄ ). Hence, (P(t̄ )) is globally
LP well-posed. □

We now give an example to show that the condition l-WMin(F, t̄ ) is compact cannot
be relaxed.

Example 4.4. Consider parametric set optimization problem where X = R, Y = R2,
K = R2

+, Z = R, T = [0, 1] and M : T ⇒ X is defined as M(t) := R and F : X × T ⇒ Y is
defined as

F (x, t) := [0, t]× [0, t].

Then l-WMin(F, t) = R, for every t ∈ T . Let t̄ ∈ T and {tn} be a sequence in T such
that tn → t̄ . Clearly, Se(·, ·) is upper semicontinuous at (t, ε) = (t̄ , 0) but l-WMin(F, t̄ )
is not compact. Let xn = n, then {xn} is a global LP minimizing sequence for (P(t̄ ))
corresponding to {tn}, but it has no convergent subsequence. Hence, (P(t̄ )) is not globally
LP well-posed.

The following theorem establishes relationship between pointwise LP well-posedness
and global LP well-posedness.

Theorem 4.10. If t̄ ∈ T and l-WMin(F, t̄ ) is compact. If x̄ ∈ l-WMin(F, t̄ ) and Ux̄ is a
neighbourhood of (t̄, 0) then the graph of the family {Ux̄}x̄∈l-WMin, that is⋃

x̄∈l-WMin

(Ux̄ × x̄) = {(u, x̄) : u ∈ Ux̄, x̄ ∈ l-WMin}(4.10)

is open and (P(t̄ )) is pointwise LP well-posed at x̄, for every x̄ ∈ l-WMin(F, t̄ ) then (P(t̄ )) is
globally LP well-posed.

Proof. Let t̄ ∈ T. By Theorem 4.9, it is sufficient to show that Se(·, ·) is upper semicontinu-
ous at (t, ε) = (t̄ , 0). Let V be a neighbourhood of Se(t̄ , 0). For any x̄ ∈ l-WMin(F, t̄ ), we
have Se(x̄, t̄ , 0) ⊆ Se(t̄ , 0) ⊆ V. Since (P(t̄ )) is pointwise LP well-posed at x̄, then Se(x̄, ·, ·)
is upper semicontinuous at (t, ε) = (t̄ , 0). Therefore there exists a neighbourhood Ux̄ of
(t̄,0) such that Se(x̄, t, ε) ⊆ V , ∀ (t, ε) ∈ Ux̄. Let U =

⋂
{Ux̄ : x̄ ∈ l-WMin(F, t̄ )}. Using

Proposition 3 of [26], we have U is an open set hence, U is a neighbourhood of (t̄ , 0) and⋃
x̄∈l-WMin(F, t̄ )

Se(x̄, t, ε) ⊆ V, ∀ (t, ε) ∈ U.

Thus, there exists a neighbourhood U of (t̄ , 0) such that

Se(t, ε) ⊆ V, ∀ (t, ε) ∈ U.

Hence, Se(·, ·) is upper semicontinuous at (t, ε) = (t̄ , 0). □

The set l-WMin(F, t) can be considered as a set-valued map l-WMin(F, ·) : T ⇒ X as

l-WMin(F, t) = {x̄ ∈ M(t) : F (x, t) <l
K F (x̄, t), x ∈ M(t) ⇒ F (x̄, t) <l

K F (x, t)}.
We now recall a result from [12], which gives upper semicontinuity of the set-valued

map l-WMin(F, ·).

Theorem 4.11. (Theorem 4.1, [12]) Let t̄ ∈ T. Suppose
(i) M (t̄ ) is compact and M(·) is continuous at t̄ ,

(ii) F is continuous on M (t̄) × {t̄ } with compact values.
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Then l-WMin(F, ·) is upper semicontinuous at t̄.

We now give sufficient conditions for globally LP well-posed parametric set optimiza-
tion problem.

Theorem 4.12. Let t̄ ∈ T. If F is continuous on M (t̄ ) × {t̄ } with compact values, M(t̄ ) is
compact and M (·) is continuous at t̄. Then (P(t̄ )) is globally LP well-posed.

Proof. Let {tn} be a sequence in T such that tn → t̄ and {xn} be a global LP minimizing
sequence for (P(t̄ )) corresponding to {tn}, then there exist εn ↓ 0, xn ∈ M(tn) + BX [εn],
un ∈ l-WMin(F, tn) such that

F (xn, tn) ≤l
K F (un, tn) + εne, ∀n.

Using Theorem 4.11, we have l-WMin(F, ·) is upper semicontinuous at t̄ . As tn → t̄ and
un ∈ l-WMin(F, tn), therefore there exists ū ∈ l-WMin(F, t̄ ) and a subsequence {unm

} of
{un} such that

unm → ū ∈ l-WMin(F, t̄ ).
Also, xn ∈ M(tn) + BX [εn], hence there exists x′

n ∈ M(tn) such that

∥xn − x′
n∥ ≤ εn.(4.11)

Now tn → t̄ , x′
n ∈ M(tn) and M(·) is upper semicontinuous at t̄ , therefore there exists a

subsequence {x′
nm

} of {x′
n} and x̄ ∈ M(t̄ ) such that x′

nm
→ x̄ ∈ M(t̄ ). Using (4.11), we

have xnm
→ x̄ ∈ M(t̄ ).

We claim that F (x̄, t̄ ) ≤l
K F (ū, t̄ ). Let w̄ ∈ F (ū, t̄). Since F is lower semicontinuous at

(ū, t̄), therefore there exists wnm ∈ F (unm , tnm) such that wnm → w̄. Now

wnm
∈ F (unm

, tnm
) ⊆ F (xnm

, tnm
)− εnm

e+K,

therefore there exists vnm
∈ F (xnm

, tnm
) such that

wnm ∈ vnm − εnme+K.(4.12)

Since F is upper semicontinuous at (x̄, t̄ ), therefore without loss of generality there exists
a subsequence {vnm

} of {vnm
} and v̄ ∈ F (x̄, t̄ ) such that vnm

→ v̄. Taking limit, (4.12)
gives w̄− v̄ ∈ K, which implies F (x̄, t̄ ) ≤l

K F (ū, t̄ ). Let z ∈ M(t̄ ) be such that F (z, t̄ ) <l
K

F (x̄, t̄ ), then
F (ū, t̄ ) ⊆ F (x̄, t̄ ) +K ⊆ F (z, t̄ ) + intK +K,

which implies F (z, t̄ ) <l
K F (ū, t̄ ). Also ū ∈ l-WMin(F, t̄ ), so F (ū, t̄) <l

K F (z, t̄ ), which
leads to F (x̄, t̄ ) <l

K F (z, t̄ ). Therefore, x̄ ∈ l-WMin(F, t̄ ) and hence (P(t̄ )) is globally LP
well-posed. □

We now give examples to show that conditions assumed in Theorem 4.12 cannot be
relaxed.

Example 4.5. (i) (F is compact-valued on M(t̄ )× {t̄ } cannot be dropped)
Consider parametric set optimization problem where X = R, Y = R2, K = R2

+,
Z = R, T = [0, 1], e = (1, 1) and M : T ⇒ X is defined as M(t) := [−1 − t, 1 + t]
and F : X × T ⇒ Y is defined as

F (x, t) :=


]0, 1]×]0, 1], if x < 0, t = 0,

[0, 1]× [0, 1], if x ≥ 0, t = 0,

[0, t]× [0, t], if t ̸= 0.

Let t̄ = 0. Then M(0) = [−1, 1] and l-WMin(F, t̄ ) = [0, 1]. Clearly, M(0) is
compact, M(·) is continuous at t̄ = 0, F is continuous on M(0)× {0} but F is not
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compact-valued on M(0) × {0}. Let tn = 1
n , {εn} = { 1

n}, and xn = −1 − 1
n , then

{xn} is a global LP minimizing sequence for (P(t̄ )) corresponding to {tn}. Now
xn → −1 /∈ l-WMin(F, t̄ ). Therefore, (P(t̄ )) is not globally LP well-posed.

(ii) (M(t̄ ) is compact cannot be dropped)
Consider parametric set optimization problem where X = R, Y = R2, K = R2

+,
Z = R, T = [−1, 1], e = (1, 1) and M(t) := N, ∀ t ∈ T and F : X × T ⇒ Y is
defined as

F (x, t) :=


{(t, t)}, if x = 1,

{(t+ 1
x , t+

1
x )}, if x ∈ N and x ̸= 1,

{(2, 2)}, otherwise.

Let t̄ = 1. Then l-WMin(F, t̄ ) = {1}. Clearly, M(·) is continuous at t̄ , F is con-
tinuous on M(t̄ ) × {t̄ } with compact values but M(t̄ ) is not compact. Clearly,
(P(t̄ )) is not globally LP well-posed as for {εn} = { 1

n}, {xn} = {n} is a global LP
minimizing sequence for (P(t̄ )) for any {tn} in T such that tn → t̄ but {xn} has no
convergent subsequence.

(iii) (F is continuous on M(t̄ )× {t̄ } cannot be dropped)
Consider parametric set optimization problem where X = R, Y = R2, K = R2

+,
Z = R, T = [0, 1], e = (1, 1) and M : T ⇒ X is defined as M(t) := [−1 + t, 2 − t]
and F : X × T ⇒ Y is defined as

F (x, t) :=


[0, 1]× [0, 1], if − 1 ≤ x < 1,

[1, 2]× [1, 2] if 1 ≤ x ≤ 2,

∅, otherwise.

Clearly, l-WMin(F, t) = [−1 + t, 1[. Let t̄ = 0. Then M(·) is continuous at t̄ = 0
and M(t̄ ) is compact, F is compact-valued on M(t̄ )×{t̄ } but F is not continuous
at x = 1 ∈ M(t̄ ) × {t̄ }. Let {tn} be any sequence in T such that tn → t̄, and let
xn = 1 − 1

n . Let {εn} = { 1
n}. Then {xn} is a global LP minimizing sequence for

(P(t̄ )) corresponding to {tn} and xn → 1 /∈ l-WMin(F, t̄ ). Therefore (P(t̄ )) is not
globally LP well-posed.

We now present necessary conditions for globally LP well-posed parametric set opti-
mization problem.

Theorem 4.13. If t̄ ∈ T, {tn} is a sequence in T such that tn → t̄, F is compact on l-WMin(F, t̄ )
and (P(t̄ )) is globally LP well-posed, then for any global LP minimizing sequence {xn} for (P(t̄ ))
corresponding to {tn}, there exists a subsequence {xnk

} of {xn} such that

ex(F (xnk
, tnk

), F (l-WMin(F, t̄ ), t̄)) → 0.

Proof. Let t̄ ∈ T, {tn} be a sequence in T such that tn → t̄ and {xn} be a global LP
minimizing sequence for (P(t̄ )) corresponding to {tn}. Since (P(t̄ )) is globally LP well-
posed, therefore there exists a subsequence {xnk

} of {xn} such that xnk
→ x̄, where x̄ ∈

l-WMin(F, t̄ ). Suppose ex(F (xnk
, tnk

), F (l-WMin(F, t̄ ), t̄)) ↛ 0. Then there exists δ > 0
and without loss of generality a subsequence {xnk

} of {xnk
} such that

F (xnk
, tnk

) ⊈ F (l-WMin(F, t̄ ), t̄) + BY (δ),

for every k. Proceeding as in Theorem 3.4, we obtain there exists v̄ ∈ F (x̄, t̄ ) such that

v̄ ∈ [F (l-WMin(F, t̄ ), t̄) + BY (δ)]
c,

which is a contradiction as v̄ ∈ F (x̄, t̄ ) ⊆ F (l-WMin(F, t̄ ), t̄). □
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Next results present characterizations of globally LP well-posedness in terms of the
upper Hausdorff convergence of sequences of approximate solution sets. Lalitha and
Chatterjee [3] and Khoshkhabar-amiranloo [16] gave similar characterizations of LP well-
posedness for vector and set optimization problems respectively.

Theorem 4.14. If t̄ ∈ T, {tn} is a sequence in T such that tn → t̄ , {εn} is a sequence of real
numbers such that εn ↓ 0 and (P(t̄ )) is globally LP well-posed, then

ex(Se(tn, εn), S
e(t̄ , 0)) → 0.

Proof. If possible, suppose ex(Se(tn, εn), S
e(t̄ , 0)) ↛ 0. Then there exist a δ > 0 and a

subsequence {εnk
} such that

Se(tnk
, εnk

) ⊈ Se(t̄ , 0) + BX(δ),

which implies for every k, there exists xnk
∈ Se(tnk

, εnk
) such that

xnk
/∈ Se(t̄ , 0) + BX(δ), ∀ k.(4.13)

Therefore, {xnk
} is a global LP minimizing sequence for (P(t̄ )) corresponding to {tnk

}.
Thus, there exists a subsequence of {xnk

} converging to some element of l-WMin(F, t̄ ).
Without loss of generality, we assume xnk

→ x, where x ∈ l-WMin(F, t̄ ) = Se(t̄ , 0), which
is a contradiction to (4.13). □

Theorem 4.15. If t̄ ∈ T, Se(t̄ , 0) is compact and {tn} is a sequence in T such that tn → t̄ , {εn}
is a sequence of real numbers such that εn ↓ 0 and ex(Se(tn, εn), S

e(t̄ , 0)) → 0, then Se(·, ·) is
upper semicontinuous at (t̄ , 0).

Proof. Proof is similar to Theorem 3.6. □

Using Theorem 4.9 we have the following corollary.

Corollary 4.2. If t̄ ∈ T, l-WMin(F, t̄ ) is compact, {tn} is a sequence in T such that tn → t̄ ,
{εn} is a sequence of real numbers such that εn ↓ 0 and ex(Se(tn, εn), S

e(t̄ , 0)) → 0, then (P(t̄ ))
is globally LP well-posed.

Next two theorems give characterizations of globally LP well-posedness in terms of the
Painlevé−Kuratowski convergence of sequences of approximate solution sets.

Theorem 4.16. If t̄ ∈ T, {tn} is a sequence in T such that tn → t̄ and {εn} is a sequence of real
numbers such that εn ↓ 0, (P(t̄ )) is globally LP well-posed. Then

Ls Se(tn, εn) ⊆ Se(t̄ , 0).

Converse holds, if M(t̄ ) is compact and M(·) is upper semicontinuous at t̄.

Proof. Let x̄ ∈ Ls Se(tn, εn). Then, there exist xnk
∈ Se(tnk

, εnk
) such that xnk

→ x̄, where
{tnk

} and {εnk
} are subsequences of {tn} and {εn} respectively. Therefore, {xnk

} is a
global LP minimizing sequence for (P(t̄ )) corresponding to {tnk

}. Since (P(t̄ )) is globally
LP well-posed, therefore {xnk

} has a subsequence that converges to some element in l-
WMin(F, t̄ ). Also, xnk

→ x̄, therefore every subsequence of {xnk
} converges to x̄. Hence,

x̄ ∈ Se(t̄ , 0).
Conversely, let {xn} be a global LP minimizing sequence for (P(t̄ )) corresponding to

{tn}. Then xn ∈ Se(tn, εn). Now xn ∈ M(tn) + BX [εn] implies there exists x′
n ∈ M(tn)

such that ∥ xn − x′
n ∥≤ εn. Since M(·) is upper semicontinuous at t̄ , therefore there exists

subsequence {x′
nk
} of {x′

n} and x̄ ∈ M(t̄ ) such that x′
nk

→ x̄. Hence, xnk
→ x̄ ∈ M(t̄ ).

Thus, x̄ ∈ Ls Se(tnk
, εnk

), which implies x̄ ∈ Se(t̄ , 0).
□
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Theorem 4.17. If t̄ ∈ T, {tn} is a sequence in T such that tn → t̄ and {εn} is a sequence of real
numbers such that εn ↓ 0, Se(t̄ , 0) is singleton and (P(t̄ )) is globally LP well-posed. Then

Se(t̄ , 0) ⊆ Li Se(tn, εn).

Proof. Let x̄ ∈ Se(t̄ , 0) and {xn} be a sequence such that xn ∈ Se(tn, εn). Clearly, {xn} is
a global LP minimizing sequence for (P(t̄ )) corresponding to {tn}. Since (P(t̄ )) is globally
LP well-posed, therefore there exists a subsequence {xnk

} of {xn} such that xnk
→ x ∈

l-WMin(F, t̄ ) = Se(t̄ , 0). Since Se(t̄ , 0) is singleton, therefore xnk
→ x̄ and hence x̄ ∈

Li Se(tn, εn). □

Theorem 4.16 and Theorem 4.17 extend Theorem 3.4 of [16] to the case of parametric
set optimization problem.

5. CONCLUSIONS

In this paper we introduce a pointwise and a global notion of Levitin−Polyak well-
posedness for a parametric set optimization problem. These notions are characterized
in terms of upper Hausdorff convergence and Painlevé−Kuratowski convergence of se-
quences of approximate solution sets.

Acknowledgments. The authors thank the referees for their valuable suggestions which
helped to improve the paper.
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