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On the solution of the generalized functional equation
arising in mathematical psychology and theory of learning
approached by the Banach fixed point theorem

ALI TURAB and WUTIPHOL SINTUNAVARAT

ABSTRACT. In mathematical psychology, the model of decision practice represents the development of moral
judgment that deals with the time to decide the meaning of the various choices and selecting one of them for use.
Most animal behavior research classifies such situations as two distinct phenomena. On the other hand, reward
plays a big part in this kind of study since, based on the selected side and food location, such circumstances may
be classified into four categories. This paper intends to investigate such types of behavior and establish a general
functional equation for it. The proposed functional equation can be used to describe several psychological and
learning theory models in the existing literature. By using the fixed point theory tools, we obtain the results
related to the existence, uniqueness, and stability of a solution to the proposed functional equation. Finally, we
give two examples to support our main results.

1. INTRODUCTION AND PRELIMINARIES

Mathematical psychology is an approach to psychological study focused on mathemat-
ical modeling of perceptual, thinking, cognitive, and motor processes. On the other hand,
the learning process may also be interpreted in animals or humans as a set of choices
between many alternative responses. In recent mathematical learning experiments, in-
vestigators have concluded that such simple learning experiments follow the stochastic
process (for the detail, see [6]).

Our emphasis is on a primary type of learning experiment. In such experiments, each
series of trials collects the topic of alternate answers under the experimenters’ instructions.
The alternative options may be to click one of the button sets, turn right in a maze, hop
over a barrier until a shock is released, or struggle to recall a phrase.

In 2019, Turab and Sintunavarat [24] discussed the experimental work of Bush and Wil-
son [7] and analyzed the movement of a paradise fish in a two-choice situation. If a fish is
awarded by selecting the correct side in such experiments, its probability will increase in
the subsequent trials. Bush and Wilson [7] concluded that the current possibility of select-
ing the right side takes the form α1x+ 1− α1, where α1 ∈ (0, 1) is the learning parameter
appropriate to this particular outcome and x is the probability of selecting the right-hand
side of the tank. At the same time, if the fish chooses the other side, its probability will
decrease to α2x, where α2 ∈ (0, 1). Various conclusions can be obtained regarding the
animals’ final behavior in such processes. For example, in the reinforcement-extinction
model, if more animals select the reward side, the non-reward side’s risk will decline. As a
result, the animals will start to divert to the reward side. In comparison, the habit-forming
paradigm suggests that animals may be stable on all sides. Such type of relationship can
be described in Table 1.
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Operators for reinforcement-extinction model
Fish’s Response Event Outcome Outcomes

(Left side) (Right side)
Reinforcement E1 α1x α1x+ 1− α1

Non-reinforcement E2 α2x+ 1− α2 α2x

Operators for habit formation model
Reinforcement E1 α1x α1x+ 1− α1

Non-reinforcement E2 α2x α2x++1− α2

TABLE 1. Operators describing the fish behavior under some models

Turab and Sintunavarat [24, 25] described such relationship by the following functional
equation

(1.1) U(x) = xU(α1x+ 1− α1) + (1− x)U(α2x)

for all x ∈ [0, 1], where 0 < α1 ≤ α2 < 1 and U : [0, 1] → R is an unknown function such
that {

U(0) = 0,
U(1) = 1.

(1.2)

They used the fixed point results to obtain the existence and uniqueness of a solution to
the proposed equation (1.1) with the condition (1.2).

In 2020, Turab and Sintunavarat [26] used the above idea to observe the learning pro-
cess of dogs enclosed in a tiny box with a steel grid floor and proposed the following
functional equation

(1.3) U(x) = xU(α1x+ (1− α1)β1) + (1− x)U(α2x+ (1− α2)β2)

for all x ∈ [0, 1], where β1, β2 ∈ [0, 1], 0 < α1 ≤ α2 < 1 and U : [0, 1] → R is an unknown
function.

Recently, in [27], the authors extended the idea of (1.1) by proposing the following
generalized functional equation

(1.4) U(x) = xU(f(x)) + (1− x)U(g(x))

for all x ∈ [0, 1], where U : [0, 1] → R is an unknown function and f, g : [0, 1] → [0, 1] are
Banach contraction mappings satisfying

(1.5) g(0) = 0

under several conditions. The above functional equation (1.4) is used to describe the re-
lationship between predator animals and their two prey choices. Numerous research on
human and animals behavior in such situations have generated notable findings (for the
detail, see [5, 9, 14, 15, 28, 29, 30, 21]).

On the other hand, the theory of fixed points is concerned with the conditions that
ensure the existence of points x in a set Y that satisfies an operator equation x = Gx,
where G is a transformation defined on a set Y . It consists of techniques that can be used
to solve problems in diverse areas of mathematics. For the recent research in this area, we
refer [2, 8, 10, 18, 19] and the references therein.

In the progression, the following noted result will be needed.

Theorem 1.1 (Banach Fixed Point Theorem in [4]). Let (X, d) be a complete metric space and
T : X → X be a Banach contraction mapping, that is,

(1.6) d(Tx, Ty) ≤ kd(x, y)
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for all x, y ∈ X , where k ∈ [0, 1). Then T has precisely one fixed point. Moreover, the Picard
iteration {xn} in X , which is defined by xn = Txn−1 for all n ∈ N, where x0 ∈ X , converges to
the unique fixed point of T .

2. INTRODUCTION TO THE IMITATION MODEL

The word “imitation” is thought to be a fundamental phenomenon in social behavior.
The experiment demonstrated that imitation is a learned behavior that can be managed
via rewards and penalties. Miller and Dollard [16] classified imitation into three types:

(1) identical behavior,
(2) matched-dependent interaction, and
(3) copying behavior.

Schien [21] attempted to test Miller and Dollard’s declarations [16] with the army se-
lectees. Later on, to observe the imitation in children, Shwartz [22] organized a guessing
game in which two children were brought together in a room. There were fifty trials, and
each participant was instructed to predict whether the experimenter would say ‘a’ or ‘b’
to each child at any given trial. In order to prepare for the trials, a schedule was created by
arranging the slots within the ten tests. At the end of the experiment, Shwartz discovered
that 9- and 10-year-olds imitated more as compared to the 15- and 16-year-olds, implying
that kindergarten children will imitate more.

By depending on child 2’s imitation and non-imitation behavior and the confirmation
and denial of the experimenter, we can divide such responses into four events (see Table
2).

Child 2’s Responses Outcomes Events Probabilities
R1 (imitation) O1 (confirmation) E1 px
R1 (imitation) O2 (denial) E2 (1− p)x

R2 (non-imitation) O1 (confirmation) E3 p(1− x)
R2 (non-imitation) O2 (denial) E4 (1− p)(1− x)

TABLE 2. Possible responses in the Shwartz experiment [22]

Here, by following the work discussed in [24, 26], we propose the following general
functional equation to discuss the experimental work of Shwartz [22]

U(x) = pxU(h1(x)) + (1− p)xU(h2(x))

+p(1− x)U(h3(x)) + (1− p)(1− x)U(h4(x))(2.7)

for all x ∈ [0, 1], where p ∈ [0, 1], U : [0, 1] → R is an unknown function such that U(0) = 0
and h1, h2, h3, h4 : [0, 1] → [0, 1] are given mappings such that

(2.8) h3(0) = h4(0) = 0.

Our aim is to find the necessary conditions for the existence and uniqueness of a so-
lution to the proposed functional equation (2.7) with (2.8) by utilizing the Banach fixed
point theorem. After that, we present two examples to show the significance of our re-
sult in this area of research. Finally, we discuss the stability of a solution to the proposed
model.
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3. EXISTENCE AND UNIQUENESS RESULTS

Let Y = [0, 1]. We indicate in this paper, the class of all continuous real-valued func-
tions U : Y → R such that U(0) = 0 and

(3.9) sup
x1 ̸=x2

|U(x1)− U(x2)|
|x1 − x2|

< ∞

by B. It is straightforward that (B, ∥·∥) is a Banach space, where ∥·∥ is defined by

(3.10) ∥U∥ = sup
x1 ̸=x2

|U(x1)− U(x2)|
|x1 − x2|

for all U ∈ B (for the detail, see [25]).

Theorem 3.2. Consider the functional equation (2.7) with (2.8). Suppose that h1, h2, h3, h4 :
Y → Y are Banach contraction mappings with contractive coefficients α1, α2, α3, α4, respectively,
satisfying

2 (α1 + α2 + α3 + α4) < 1

and
h1(0) = h2(0) = 0.

Then (2.7) has a unique solution. Furthermore, the sequence {Un} in B defined for each x ∈ Y by

Un(x) = pxUn−1(h1(x)) + (1− p)xUn−1(h2(x))

+p(1− x)Un−1(h3(x)) + (1− p)(1− x)Un−1(h4(x))(3.11)

for all n ∈ N, where U0 is given in B, converges to a unique solution of (2.7).

Proof. Let d : B×B → R be a metric induced by ∥·∥ on B. Thus (B, d) is a complete metric
space. We deal with the operator G from B which is defined for each U ∈ B by

(GU)(x) = pxU(h1(x)) + (1− p)xU(h2(x))

+p(1− x)U(h3(x)) + (1− p)(1− x)U(h4(x))

for all x ∈ Y . For each U ∈ B, we obtain

(GU)(0) = pU(h3(0)) + (1− p)U(h4(0)) = 0.

Also, G is continuous and ∥GU∥ < ∞ for all U ∈ B. Therefore, G is a self operator on B.
Furthermore, it is clear that the solution of (2.7) is equivalent to the fixed point of G. Since
G is a linear mapping, for U1, U2 ∈ B, we obtain

∥GU1 −GU2∥ = ∥G(U1 − U2)∥ .
For each x1, x2 ∈ Y with x1 ̸= x2, we get

G(U1 − U2)(x1)−G(U1 − U2)(x2)

x1 − x2

=
1

x1 − x2
[px1(U1 − U2)(h1(x1)) + (1− p)x1(U1 − U2)(h2(x1))

+p(1− x1)(U1 − U2)(h3(x1)) + (1− p)(1− x1)(U1 − U2)(h4(x1))

−px2(U1 − U2)(h1(x2))− (1− p)x2(U1 − U2)(h2(x2))

−p(1− x2)(U1 − U2)(h3(x2)) −(1− p)(1− x2)(U1 − U2)(h4(x2))]

=
1

x1 − x2
[px1(U1 − U2)(h1(x1))− px1(U1 − U2)(h1(x2))

+(1− p)x1(U1 − U2)(h2(x1))− (1− p)x1(U1 − U2)(h2(x2))

+p(1− x1)(U1 − U2)(h3(x1))− p(1− x1)(U1 − U2)(h3(x2))
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+(1− p)(1− x1)(U1 − U2)(h4(x1))− (1− p)(1− x1)(U1 − U2)(h4(x2))

+px1(U1 − U2)(h1(x2))− px2(U1 − U2)(h1(x2))

+(1− p)x1(U1 − U2)(h2(x2))− (1− p)x2(U1 − U2)(h2(x2))

+p(1− x1)(U1 − U2)(h3(x2))− p(1− x2)(U1 − U2)(h3(x2))

+(1− p)(1− x1)(U1 − U2)(h4(x2)) −(1− p)(1− x2)(U1 − U2)(h4(x2))] .

Then we have∣∣∣∣G(U1 − U2)(x1)−G(U1 − U2)(x2)

x1 − x2

∣∣∣∣
=

∣∣∣∣ 1

x1 − x2
[px1(U1 − U2)(h1(x1))− px1(U1 − U2)(h1(x2))]

+
1

x1 − x2
[(1− p)x1(U1 − U2)(h2(x1))− (1− p)x1(U1 − U2)(h2(x2))]

+
1

x1 − x2
[p(1− x1)(U1 − U2)(h3(x1))− p(1− x1)(U1 − U2)(h3(x2))]

+
1

x1 − x2
[(1− p)(1− x1)(U1 − U2)(h4(x1))

−(1− p)(1− x1)(U1 − U2)(h4(x2))]

+
1

x1 − x2
[px1(U1 − U2)(h1(x2))− px2(U1 − U2)(h1(x2))]

+
1

x1 − x2
[(1− p)x1(U1 − U2)(h2(x2))− (1− p)x2(U1 − U2)(h2(x2))]

+
1

x1 − x2
[p(1− x1)(U1 − U2)(h3(x2))− p(1− x2)(U1 − U2)(h3(x2))]

+
1

x1 − x2
[(1− p)(1− x1)(U1 − U2)(h4(x2))

−(1− p)(1− x2)(U1 − U2)(h4(x2))]|
≤ α1px1 ∥U1 − U2∥+ α2(1− p)x1 ∥U1 − U2∥+ α3p(1− x1) ∥U1 − U2∥

+α4(1− p)(1− x1) ∥U1 − U2∥
+ |p(U1 − U2)(h1(x2))− p(U1 − U2)(h1(0))|
+ |(1− p)(U1 − U2)(h2(x2))− (1− p)(U1 − U2)(h2(0))|
+ |p(U1 − U2)(h3(x2))− p(U1 − U2)(h3(0))|
+ |(1− p)(U1 − U2)(h4(x2))− (1− p)(U1 − U2)(h4(0))|

≤ α1px1 ∥U1 − U2∥+ α2(1− p)x1 ∥U1 − U2∥+ α3p(1− x1) ∥U1 − U2∥
+α4(1− p)(1− x1) ∥U1 − U2∥+ α1px2 ∥U1 − U2∥+ α2(1− p)x2 ∥U1 − U2∥
+α3px2 ∥U1 − U2∥+ α4(1− p)x2 ∥U1 − U2∥

≤ 2(α1 + α2 + α3 + α4) ∥U1 − U2∥ .
This gives that

d(GU1, GU2) = ∥GU1 −GU2∥
≤ 2(α1 + α2 + α3 + α4) ∥U1 − U2∥
= 2(α1 + α2 + α3 + α4)d(U1, U2).

As 0 ≤ 2(α1+α2+α3+α4) < 1, by Theorem 1.1, we get the conclusion of this theorem. □

From Theorem 3.2, we have the following result.
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Corollary 3.1. Consider the functional equation (2.7) with (2.8). Suppose that h1, h2, h3, h4 :
Y → Y are Banach contraction mappings with contractive coefficients α1, α2, α3, α4, respectively,
satisfying α1 ≤ α2 ≤ α3 ≤ α4 with 8α4 < 1. Also, assume that

h1(0) = h2(0) = 0.

Then (2.7) has a unique solution. Furthermore, the sequence {Un} in B defined for each x ∈ Y by

Un(x) = pxUn−1(h1(x)) + (1− p)xUn−1(h2(x))

+p(1− x)Un−1(h3(x)) + (1− p)(1− x)Un−1(h4(x))(3.12)

for all n ∈ N, where U0 is given in B, converges to a unique solution of (2.7).

Theorem 3.3. Consider the functional equation (2.7) with (2.8). Suppose that h1, h2, h3, h4 :
Y → Y are Banach contraction mappings with contractive coefficients α1, α2, α3, α4, respectively,
satisfying α1 ≤ α2 ≤ α3 ≤ α4. Also, there exist α5, α6 ≥ 0 such that{

h1(x) ≤ α5,
h2(x) ≤ α6

(3.13)

for all x ∈ Y and assume that 6α4+α5+α6 < 1. Then (2.7) has a unique solution. Furthermore,
the sequence {Un} in B defined for each x ∈ Y by

Un(x) = pxUn−1(h1(x)) + (1− p)xUn−1(h2(x))

+p(1− x)Un−1(h3(x)) + (1− p)(1− x)Un−1(h4(x)),(3.14)

for all n ∈ N, where U0 is given in B, converges to a unique solution of (2.7).

Proof. The line of the proof of this theorem is the same as Theorem 3.2. Here, we highlight
those parts which are different from the previous theorem. For each x1, x2 ∈ Y with
x1 ̸= x2, we get∣∣∣∣G(U1 − U2)(x1)−G(U1 − U2)(x2)

x1 − x2

∣∣∣∣
≤ α1px1 ∥U1 − U2∥+ α2(1− p)x1 ∥U1 − U2∥

+α3p(1− x1) ∥U1 − U2∥+ α4(1− p)(1− x1) ∥U1 − U2∥
+ |p(U1 − U2)(h1(x2))− p(U1 − U2)(0)|
+ |(1− p)(U1 − U2)(h2(x2))− (1− p)(U1 − U2)(0)|
+ |p(U1 − U2)(h3(x2))− p(U1 − U2)(h3(0))|
+ |(1− p)(U1 − U2)(h4(x2))− (1− p)(U1 − U2)(h4(0))|

≤ α1px1 ∥U1 − U2∥+ α2(1− p)x1 ∥U1 − U2∥+ α3p(1− x1) ∥U1 − U2∥
+α4(1− p)(1− x1) ∥U1 − U2∥+ α5p ∥U1 − U2∥
+α6(1− p) ∥U1 − U2∥+ α3px2 ∥U1 − U2∥+ α4(1− p)x2 ∥U1 − U2∥

≤ (6α4 + α5 + α6) ∥U1 − U2∥ .

This gives that

d(GU1, GU2) ≤ (6α4 + α5 + α6)d(U1, U2).

As 0 ≤ (6α4 + α5 + α6) < 1, by Theorem 1.1, we get the conclusion of this theorem. □

From Theorem 3.3, we get the following corollary.
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Corollary 3.2. Consider the functional equation (2.7). Suppose that h1, h2, h3, h4 : Y → Y
are contraction mappings with contractive coefficients α1, α2, α3, α4 respectively, satisfying α1 ≤
α2 ≤ α3 ≤ α4. Also, there exists α ≥ 0 such that{

h1(x) ≤ α,
h2(x) ≤ α

(3.15)

for all x ∈ Y and assume that 6α4 + 2α < 1. Then (2.7) has a unique solution. Furthermore, the
sequence {Un} in B defined for each x ∈ Y by

Un(x) = pxUn−1(h1(x)) + (1− p)xUn−1(h2(x))

+p(1− x)Un−1(h3(x)) + (1− p)(1− x)Un−1(h4(x)),(3.16)

for all n ∈ N, where U0 is given in B, converges to a unique solution of (2.7).

Remark 3.1. Our proposed model (2.7) with (2.8) is a generalization of many mathemati-
cal models existing in the particular research.

(1) If we put p = 0 (or p = 1) and define h2, h4 : Y → Y by

h2(x) = α1x+ 1− α1 and h4(x) = α2x,

for all x ∈ Y , where 0 < α1 ≤ α2 < 1 (or define h1, h3 : Y → Y as the same rule,
respectively), then our functional equation (2.7) reduces to the functional equation
(1.1).

(2) If we put p = 0 (or p = 1) and define h2, h4 : Y → Y (or h1, h3 : Y → Y ) as Banach
contraction mappings with h4(0) = 0 (or h3(0) = 0), then our functional equation
(2.7) reduces to (1.4), which is the generalization functional equation in [27, 5, 23].

To support our argument, we now present the following examples.

Example 3.1. Consider the following functional equation

(3.17) U(x) = pxU
(x
8

)
+ (1− p)xU

(x
9

)
+ p(1− x)U

(x
7

)
+ (1− p)(1− x)U

( x

11

)
for all x ∈ Y , where U : Y → R is an unknown function. If we set the mappings
h1, h2, h3, h4 : Y → Y by

h1(x) =
x

8
, h2(x) =

x

9
, h3(x) =

x

7
and h4(x) =

x

11

for all x ∈ Y , then the functional equation (2.7) reduces to the functional equation (3.17).
Here, h1, h2, h3, h4 are Banach contraction mappings with contractive coefficients α1 =

1
8 , α2 = 1

9 , α3 = 1
7 and α4 = 1

11 , respectively, and thus

2(α1 + α2 + α3 + α4) =
2605

2772
< 1.

Also,

h1(0) = h2(0) = h3(0) = h4(0) = 0.

Now, all assumptions of Theorem 3.2 hold. Thus, the functional equation (3.17) has a
unique solution.
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Moreover, if we choose an initial approximation U0(x) = x for all x ∈ Y , then the
following iteration converges to a unique solution of (3.17):

U1(x) =
1

5544
[−211px2 + 112x2 + 288px+ 504x],

U2(x) =
1

170400029184

 57488005p2x3 − 56982800px3 + 14049280x3

−415653120p2x2 − 422537472px2 + 341397504x2

+459841536p2x+ 1609445376px+ 1408264704x

 ,

...

Un(x) = pxUn−1

(x
8

)
+ (1− p)xUn−1

(x
9

)
+ p(1− x)Un−1

(x
7

)
+(1− p)(1− x)Un−1

( x

11

)
for all n ∈ N.

Example 3.2. Consider the following functional equation

(3.18) U(x) = pxU

(
x+ 1

23

)
+(1−p)xU

(
x+ 2

21

)
+p(1−x)U

( x

19

)
+(1−p)(1−x)U

( x

17

)

for all x ∈ Y , where U : Y → R is an unknown function. If we set the mappings
h1, h2, h3, h4 : Y → Y by

h1(x) =
x+ 1

23
, h2(x) =

x+ 2

21
, h3(x) =

x

19
and h4(x) =

x

17

for all x ∈ Y , then the functional equation (2.7) reduces to the functional equation (3.18).
Here, h1, h2, h3, h4 are Banach contraction mappings with contractive coefficients α1 =

1
23 , α2 = 1

21 , α3 = 1
19 and α4 = 1

17 , respectively. Also,

|h1(x)| ≤
2

23
=: α1 and |h2(x)| ≤

1

7
=: α1 for all x ∈ Y

and

h3(0) = h4(0) = 0.

Thus,

6α4 + α5 + α6 =
6

17
+

2

23
+

1

7
=

1595

2737
< 1.

Now, all hypotheses of Theorem 3.3 hold. Thus, the functional equation (3.18) has a
unique solution.
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Moreover, if we choose an initial approximation U0(x) = x for all x ∈ Y , then the
following iteration converges to a unique solution of (3.18):

U1(x) =
1

156009
[320px2 − 1748x2 − 9041px+ 24035x],

U2(x) =
1

36395183601

 −28160p2x3 + 323104px3 − 924692x3

+8338726p2x2 − 120820127px2 + 263306047x2

+108634075p2x− 487490543px+ 530310862x


+

1

16276262961

 23040p2x3 − 241376px3 + 631028x3

−5863526p2x2 + 71252603px2 − 148133823x2

+5840486p2x− 71011227px+ 147502795x

 ,

...

Un(x) = pxUn−1

(
x+ 1

23

)
+ (1− p)xUn−1

(
x+ 2

21

)
+ p(1− x)Un−1

( x

19

)
+(1− p)(1− x)Un−1

( x

17

)
for all n ∈ N.

4. STABILITY ANALYSIS

The consistency of solutions is of considerable significance in the theory of mathemat-
ical modeling. Therefore, it is essential to discuss the stability of the proposed mathemat-
ical model (2.7) here. For instance of the Hyers-Ulam and Hyers-Ulam-Rassias stability
for various types of equations, we refer [23, 1, 3, 11, 12, 13, 17, 23, 20, 31]. Now, we state
the following result related to the Hyers-Ulam-Rassias type stability of a solution to the
proposed model (2.7).

Theorem 4.4. Under the assumption of Theorem 3.2, the fixed point equation of G, where G :
B → B is defined for each U ∈ B by

(GU)(x) = pxU(h1(x)) + (1− p)xU(h2(x))

+p(1− x)U(h3(x)) + (1− p)(1− x)U(h4(x))(4.19)

for all x ∈ Y , has the Hyers-Ulam-Rassias stability, that is, for a fixed function φ : B → [0,∞),
we have that for every U ∈ B with d (GU,U) ≤ φ(U), there exists a unique U ′ ∈ B such that
GU ′ = U ′ and d (U,U ′) ≤ Cφ(U) for some C > 0.

Proof. Let U ∈ B such that d (GU,U) ≤ φ(U). From Theorem 3.2, there exists a unique
U ′ ∈ B such that GU ′ = U ′. Then we have

d (U,U ′) ≤ d (U,GU) + d (GU,U ′)

≤ φ(U) + d (GU,GU ′)

≤ φ(U) + 2(α1 + α2 + α3 + α4)d (U,U
′)

and so
d (U,U0) ≤ Cφ(U),

where C :=
1

1− 2(α1 + α2 + α3 + α4)
. □

From the above analysis, we obtain the following result related to the Hyers-Ulam
stability.
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Corollary 4.3. Under the assumption of Theorem 3.2, the fixed point equation of G, where G :
B → B is defined for each U ∈ B by

(GU)(x) = pxU(h1(x)) + (1− p)xU(h2(x))

+p(1− x)U(h3(x)) + (1− p)(1− x)U(h4(x)),(4.20)

for all x ∈ Y , has Hyers-Ulam stability, that is, for τ > 0 (a fixed number), we have that for
every U ∈ B with d (GU,U) ≤ τ , there exists a unique U ′ ∈ B such that GU ′ = U ′ and
d (U,U ′) ≤ Cτ for some C > 0.

Using the same line in the proof of Theorem 4.4, we can use Theorem 3.3 to obtain
the Hyers-Ulam-Rassias stability of the fixed point equation of G, where G is defined as
(4.19). Based on the large of our proposed model (2.7), the results in this section cover
several stability results of the existing model in the literature including results in [23].

5. CONCLUSION AND OPEN PROBLEMS

Bush and Wilson’s model [7] and Shwartz’s imitation model [22] play a vital role in
mathematical psychology and learning theory. The authors of [7] developed a concept of
“reward” based on animals choosing the right side in a two-choice situation and classified
such circumstances into four categories: left-reward, right-reward, right non-reward, and
left non-reward. On the other hand, Shwartz used such aspects to observe children’s
imitative and non-imitative behavior in specific circumstances (see [22]). In this paper,
by using the idea presented in [7, 22], we proposed a general functional equation that
can be used to discuss the psychological behavior of animals and humans in a two-choice
situation. The Banach fixed point theorem has been used to examine the existence and
uniqueness of a generalized functional equation’s solution. Furthermore, we discussed
the stability of a solution to the proposed model. In the end, we present the following
questions as open problems for those interested in this type of research.

Problem 1: Is the condition h3(0) = 0 = h4(0) necessary for the functional equation
(2.7)?

Problem 2: Are the conditions mentioned in Theorem 3.3 sufficient to prove the ex-
istence and uniqueness of a solution to the functional equation (2.7)?
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